Spelling suggestions: "subject:"track propagation"" "subject:"crack propagation""
191 |
Aplicação de modelos coesivos intrínsecos na simulação da propagação dinâmica de fraturas. / Application of intrinsic cohesive models for simulation of dynamic crack propagation.Amorim, José Adeildo de 06 September 2007 (has links)
The phenomena studied in Fracture Mechanics can be observed either in Nature,
the most sophisticated systems or ordinary structures. As a consequence, Engineers
need to be alert for investigating the variety of complex mechanisms, related with
fracture processes, which are capable of appearing in these systems. The possibility of
failure is a real premise has to be considered not only in the design of structures, but
also throughout their life. Undoubtedly, in this context Fracture Mechanics should be
used to carry out prognostics of potential crack propagation patterns, verifying if there
exists or not risk of keeping a structure in service usage. An alternative formulation
widely applied to simulate fracture behavior is the Cohesive Zone Modeling (CZM)
approach. It is a scientific branch of Fracture Mechanics originally proposed by
Barenblatt (1959, 1962) and Dugdale (1960), and which after Xu and Needleman s
works (1993, 1994) has acquired a great acceptance in scientific community. For this
reason, the present work employs Xu and Needleman s model to simulate dynamic
crack propagation in brittle materials, introducing the Software for Simulation of
Dynamic Cohesive Fracture (DyCOH), which is based on Object-Oriented
Programming (OOP) paradigm for facilitating future reuse and extension of
implemented code. Using DyCOH software two numerical applications are shown.
First, for verification purpose, the classical Xu and Needleman s problem is simulated
and the response of DyCOH is compared with literature results. Second, for didactic
aspiration, a simpler problem is studied in order to understand the influence of loading
speed on fracture patterns of a tie-bar. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os fenômenos estudados pela Mecânica da Fratura podem ser observados na
própria Natureza, em sistemas de altíssimo padrão tecnológico, bem como em estruturas
mais tradicionais. Dessa forma, os engenheiros devem estar alerta para investigar a
variedade de mecanismos complexos, relacionados aos processos de fratura, que podem
surgir nesses sistemas. Nesse sentido, a possibilidade de falha precisa ser encarada
como uma premissa real a ser observada não somente nas etapas de projeto, mas durante
toda vida útil das estruturas. Sem dúvida, para auxiliar nessa tarefa, a Mecânica da
Fratura pode ser utilizada através da realização de prognósticos dos potenciais padrões
de propagação de trincas, verificando a existência ou não de risco de manter
determinada estrutura em serviço. Uma formulação alternativa que vem sendo
amplamente empregada para a simulação do comportamento a fratura é a de Modelos de
Zona Coesiva. Estes formam um ramo da Mecânica da Fratura originalmente proposto
por Barenbllat (1959, 1962) e Dugdale (1960), e que depois dos trabalhos de Xu e
Needleman (1993, 1994) tem recebido uma grande aceitação no meio científico. Assim
sendo, o presente trabalho emprega o modelo coesivo de Xu e Needleman para
simulação da propagação dinâmica de fraturas em matérias frágeis, dando início a
construção do DyCOH (Software for Simulation of Dynamic Cohesive Fracture ). Este é
concebido com base nos conceitos de programação orientada a objetos, visando facilitar
o reuso e a extensibilidade do código base. Através do DyCOH, duas aplicações
numéricas são realizadas. Na primeira, o problema clássico de Xu e Needleman é
simulado e os resultados obtidos pelo DyCOH são comparados com os disponíveis na
literatura técnica, de forma a realizar a verificação numérica do código. No segundo, um
problema mais simples é estudado com objetivo de entender a influência da velocidade
de aplicação do carregamento no padrão de fraturamento de um tirante, permitindo
observar a capacidade do DyCOH em reproduzir um exemplo mais didático.
|
192 |
Détection et caractérisation de fissures dans des aubes de turbine monocristallines pour l’évaluation de leurs durées de vie résiduelles / Detection and characterization of cracks in monocrystalline turbine blades for the evaluation of the durations of residual lifeMaffren, Thierry 05 April 2013 (has links)
Les aubes TuHP équipant le M88 subissent des contraintes thermomécaniques extrêmes qui provoquent l’amorçage et la propagation de fissures. Ces fissures peuvent évoluer rapidement et devenir critiques pour la sécurité. Actuellement, ces aubes sont inspectées in-situ au moyen d’un endoscope ou d’un vidéoscope dans le domaine du visible. Cependant, ce mode d’inspection par voie visuelle laisse souvent planer un doute sur la présence ou non d’une fissure ou sur sa criticité. Le démontage du module pour une inspection approfondie au microscope est alors nécessaire,augmentant le coût et le délai de la maintenance.L’objectif de la thèse est double. Il s’agit d’une part de valider un nouveau moyen de détection, sans démontage, de la fissuration des aubes HP en complément de l’inspection visuelle classique in-situ, et d’autre part d’utiliser les données expérimentales pour simuler la propagation d’une fissure et évaluer le caractère prédictif du modèle utilisé (direction et vitesse de propagation). La solution proposée pour réduire, voire supprimer le démontage des aubes, consiste à détecter les fissures par thermographie active flying spot dans le très proche infrarouge, de 1 à 2 microns (bande SWIR) au travers d’un endoscope classique. Le premier volet de la thèse a consisté à mettre au point le dispositif flying spot dans une configuration représentative d’un endoscope, puis à valider ce procédé d’inspection par des essais sur des aubes TuHP en retour d’expérience.Le deuxième volet de la thèse est davantage tourné vers la simulation. Le travail a tout d’abord consisté à intégrer un modèle de propagation de fissures en régime de fatigue prenant en compte les effets du temps et de l’environnement, dans le code de calcul par éléments finis ZeBuLon. Ce modèle a ensuite été utilisé pour simuler la propagation de fissures dans des aubes TuHP soumises à des cycles de chargement et de température complexes et représentatifs d’une mission réelle. La dernière partie du travail a consisté à comparer les résultats des simulations numériques avec les observations réalisées sur des aubes TuHP en retour d’expérience, afin d’évaluer le caractère prédictif du modèle de propagation pour cette application (direction et vitesse). / High pressure turbine blades undergo heavy thermomechanical constraints which drive initiation and propagation of cracks. These cracks may propagate rapidly and become critical for safety. The inspection of blades is currently conducted with endoscopes or videoscopes in the visible range. However, this kind of control is not sufficient to distinguish a crack from a surface defect, and it can be difficult to assess the criticality of a crack. In these cases, the dismantling of the engine for an accurate inspection with a microscope is necessary but this operation is time consuming and costly.This study has two aims. The first aim consists in validating a new inspection system complementary to the observations in the visible range. The second aim consists in using the experimental results to simulate the propagation of a crack and evaluate the ability of the model to predict the trajectory of a crack in a blade.The proposed solution to improve the detection of cracks in situ was to use the flying spot active thermography process in the SWIR range (1-2μm – short wavelength infrared) through a classical endoscope. The first aim of the experimental work was to develop the flying spot process to work on an industrial endoscope, and to validate it with tests on a series of cracked blades. The second part of this study is focused on the numerical simulation of the cracks. First, this work consisted in integrating a fatigue crack propagation model which takes into account the effects of creep and oxidation, in the finite element software ZeBuLoN. Then, this model was used to simulate the propagation of a crack in blades undergoing a complex load and thermal cycle representative of a real aircraft mission. The last part of this work consisted in comparing the numerical results with the experimental observations on cracked blades, to check the ability of themodel to predict the direction and the velocity of a crack in a blade.
|
193 |
Um modelo multiescala concorrente para representar o processo de fissuração do concreto. / A concurrent multiscale model to represent the crack process of concrete.Eduardo Alexandre Rodrigues 06 November 2015 (has links)
Este trabalho propõe uma técnica de modelagem multiescala concorrente do concreto considerando duas escalas distintas: a mesoescala, onde o concreto é modelado como um material heterogêneo, e a macroescala, na qual o concreto é tratado como um material homogêneo. A heterogeneidade da estrutura mesoscópica do concreto é idealizada considerando três fases distintas, compostas pelos agregados graúdos e argamassa (matriz), estes considerados materiais homogêneos, e zona de transição interfacial (ZTI), tratada como a parte mais fraca entre as três fases. O agregado graúdo é gerado a partir de uma curva granulométrica e posicionado na matriz de forma aleatória. Seu comportamento mecânico é descrito por um modelo constitutivo elástico-linear, devido a sua maior resistência quando comparado com as outras duas fases do concreto. Elementos finitos contínuos com alta relação de aspecto em conjunto com um modelo constitutivo de dano são usados para representar o comportamento não linear do concreto, decorrente da iniciação de fissuras na ZTI e posterior propagação para a matriz, dando lugar à formação de macrofissuras. Os elementos finitos de interface com alta relação de aspecto são inseridos entre todos os elementos regulares da matriz e entre os da matriz e agregados, representando a ZTI, tornando-se potenciais caminhos de propagação de fissuras. No estado limite, quando a espessura do elemento de interface tende a zero (h ?0) e, consequentemente, a relação de aspecto tende a infinito, estes elementos apresentam a mesma cinemática da aproximação contínua de descontinuidades fortes (ACDF), sendo apropriados para representar a formação de descontinuidades associados a fissuras, similar aos modelos coesivos. Um modelo de dano à tração é proposto para representar o comportamento mecânico não linear das interfaces, associado à formação de fissuras, ou até mesmo ao eventual fechamento destas. A fim de contornar os problemas causados pela malha de elementos finitos de transição entre as malhas da macro e da mesoescala, que, em geral, apresentam diferenças expressivas 5 de refinamento, utiliza-se uma técnica recente de acoplamento de malhas não conformes. Esta técnica é baseada na definição de elementos finitos de acoplamento (EFAs), os quais são capazes de estabelecer a continuidade de deslocamento entre malhas geradas de forma completamente independentes, sem aumentar a quantidade total de graus de liberdade do problema, podendo ser utilizados tanto para acoplar malhas não sobrepostas quanto sobrepostas. Para tornar possível a análise em multiescala em casos nos quais a região de localização de deformações não pode ser definida a priori, propõe-se uma técnica multiescala adaptativa. Nesta abordagem, usa-se a distribuição de tensões da escala macroscópica como um indicador para alterar a modelagem das regiões críticas, substituindo-se a macroescala pela mesoescala durante a análise. Consequentemente, a malha macroscópica é automaticamente substituída por uma malha mesoscópica, onde o comportamento não linear está na iminência de ocorrer. Testes numéricos são desenvolvidos para mostrar a capacidade do modelo proposto de representar o processo de iniciação e propagação de fissuras na região tracionada do concreto. Os resultados numéricos são comparados com os resultados experimentais ou com aqueles obtidos através da simulação direta em mesoescala (SDM). / A concurrent multiscale analysis of concrete is presented, in which two distinct scales are considered: the mesoscale, where the concrete is modeled as a heterogeneous material and the macroscale that treats the concrete as a homogeneous material. The mesostructure heterogeneities are idealized as three phase materials composed of the coarse aggregates, mortar matrix and the interfacial transition zone (ITZ). The coarse aggregates are generated from a grading curve and placed into the mortar matrix randomly. Their behavior is described using an elastic-linear constitutive model due to their significant higher strength when compared with the other two phases of the concrete. Special continuum finite elements with a high aspect ratio and a damage constitutive model are used to describe the nonlinear behavior associated to the propagation of cracks, which initiates in the ITZ and then propagates to the mortar matrix given place to a macro-crack formation. These interface elements with a high aspect ratio are inserted in between all regular finite elements of the mortar matrix and in between the mortar matrix and aggregate elements, representing the ITZ. In the limit case, when the thickness of interface elements tends to zero (h ?0) and consequently the aspect ratio tends to infinite, these elements present the same kinematics as the continuous strong discontinuity approach (CSDA), so that they are suitable to represent the formation of discontinuities associated to cracks, similar to cohesive models. A tensile damage model is proposed to model the nonlinear mechanical behavior of the interfaces, associated to the crack formation and also to the possible crack closure. To avoid transition meshes between the macro and the mesoscale meshes, a new technique for coupling non-matching meshes is used. This technique is based on the definition of coupling finite elements (CFEs), which can ensure the continuity of displacement between independent meshes, without increasing the total number of degrees of freedom of the problem. This technique can be used to couple non-overlapping and overlapping meshes.To make possible the concurrent multiscale analysis, where the strain localization region cannot be defined a priori, an adaptive multiscale model is proposed. In this approach the macroscale stress distribution is used as an indicator to properly change from the macroscale to the mesoscale modeling in the critical regions during the analysis. Consequently, the macroscopic mesh is automatically replaced by a mesoscopic mesh where the nonlinear behavior is imminent. A variety of tests are performed to show the ability of the proposed methodology in predicting the behavior of initiation and propagation of cracks in the tensile region of the concrete. The numerical results are compared with the experimental ones or with those obtained by the direct simulation in mesoscale (DSM).
|
194 |
Studies on the Modeling of Fatigue Crack Growth and Damage in Concrete : A Thermodynamic ApproachKhatoon, Pervaiz Fathima M January 2014 (has links) (PDF)
Fatigue in concrete is a complex phenomenon involving formation of microcracks, their coalescence into major crack and simultaneous formation of the fracture process zone ahead of the crack tip. Complex phenomena are best dealt through an energy approach and hence it is reasonable to use the theory of thermodynamics. Fracture mechanics and damage mechanics are two theories that are based on physically sound principles and are used to describe failure processes in materials. The former deals with the study of macroscopic cracks, whereas the latter defines the state of microcracking. In this study, the concepts from these theories are utilized to improve our understanding and modeling of fatigue process in concrete.
In this thesis, a closed form expression for the thermodynamic function entropy is proposed and examined for its size independency and its use as a material property to characterize failure of concrete under fatigue. In the thermodynamic formalism, dissipative phenomena are described by a dissipation potential or its dual, from which evolution laws for internal variables could be defined. In this work, closed form expressions for dual of dissipation potential are derived using concepts of dimensional analysis and self-similarity within the framework of fracture mechanics and damage mechanics. Consequently, a fatigue crack propagation law and a fatigue damage evolution law are proposed respectively.
A method is proposed in this study to correlate fracture mechanics and damage mechanics theories by equating the potentials obtained in each theory. Through this equivalence, a crack could be transformed into an equivalent damage zone and vice versa. Also, damage state corresponding to a given crack in a member can be quantified in terms of a damage index. An analytical way of computing size independent S-N curves is proposed, using a nonlocal damage theory by including aggregate size and specimen size in the formulation. It is realized from this study that fracture mechanics and damage mechanics theories should be used in a unified manner in order to accurately model the process of fatigue in concrete.
Furthermore, based on the models developed in this study, several damage indicators for fatigue of concrete are proposed. The advantages and limitations of each of these indices are presented such that, the relevant damage index could be used, based on available parameters. Additionally, deterministic sensitivity studies are carried out to determine the most important parameters influencing fatigue life of a concrete member.
|
195 |
An adaptive model reduction approach for 3D fatigue crack growth in small scale yielding conditions / Une approche adaptative avec réduction de modèle pour la propagation tridimensionnelle des fissures de fatigue en condition de plasticité confinéeGalland, Florent 04 February 2011 (has links)
Il est connu depuis des décennies que la propagation des fissures de fatigue dans les matériaux élastoplastiques est très sensible à l’histoire du chargement car le comportement non-linéaire du matériau peut avoir une grande influence sur les vitesses de propagation. Cependant, le calcul brut de millions de cycles de fatigue avec des comportements matériaux non-linéaires sur des structures tridimensionnelles réalistes conduirait à des temps de calcul prohibitifs. Ainsi, nous proposons de coupler deux approches de réduction de modèle a priori et a posteriori, afin de diminuer considérablement le coût de calcul de ce type de problèmes. Tout d’abord, considérant l’hypothèse de plasticité confinée, une stratégie de réduction de modèle a posteriori du comportement plastique de la structure fissurée est proposée. Le modèle réduit ainsi obtenu fournit incrémentalement l’état plastique autour du front de fissure, duquel est déduite la vitesse instantanée de la fissure. De plus, une seconde approche de réduction de modèle, a priori cette fois, est aussi mise en place afin d’accélérer encore plus les temps de résolution du problème global. Cette approche a priori consiste à construire incrémentalement —et sans calculs préalables— une base réduite spécifique à chaque cas-test, en extrayant de l’information des champs de déplacement de la structure au cours du temps et pendant la propagation éventuelle de la fissure. Ainsi, les champs de déplacement solutions de la géométrie fissurée réactualisée sont vus comme une combinaison linéaire de cette base réduite de vecteurs. La méthode numérique considérée ici est la méthode des éléments finis. De fait, pendant la propagation de la fissure, la discrétisation spatiale du modèle doit être réactualisée afin d’être conforme avec le front de la fissure. Dans ce but, une technique spécifique de déformation de maillage est utilisée, et permet de discrétiser la géométrie variable du modèle avec des maillages de même topologie. Cette technique de déformation de maillage apparaît comme une étape clé de la stratégie de réduction de modèle. Finalement, une approche adaptative est construite autour de cette stratégie. Elle permet de garantir la qualité des résultats obtenus par rapport à un critère de précision donné. La précision et l’efficacité de cette stratégie globale sont démontrées à travers de nombreux exemples bidimensionnels et tridimensionnels dans le cadre de propagation de fissure en model, de même que pour un exemple industriel d’une pièce fissurée d’hélicoptère. / It has been known for decades that fatigue crack propagation in elastic-plastic media is very sensitive to load history since the nonlinear behavior of the material can have a great influence on propagation rates. However, the raw computation of millions of fatigue cycles with nonlinear material behavior on tridimensional structures would lead to prohibitive calculation times. In this respect, we propose a global model reduction strategy, mixing both the a posteriori and a priori approaches in order to drastically decrease the computational cost of these types of problems. First, the small scale yielding hypothesis is assumed, and an a posteriori model reduction of the plastic behavior of the cracked structure is performed. This reduced model provides incrementally the plastic state in the vicinity of the crack front, from which the instantaneous crack growth rate is inferred. Then an additional a priori model reduction technique is used to accelerate even more the time to solution of the whole problem. This a priori approach consists in building incrementally and without any previous calculations a reduced basis specific to the considered test-case, by extracting information from the evolving displacement field of the structure. Then the displacement solutions of the updated crack geometries are sought as linear combinations of those few basis vectors. The numerical method chosen for this work is the finite element method. Hence, during the propagation the spatial discretization of the model has to be updated to be consistent with the evolving crack front. For this purpose, a specific mesh morphing technique is used, that enables to discretize the evolving model geometry with meshes of the same topology. This morphing method appears to be a key component of the model reduction strategy. Finally, the whole strategy introduced above is embedded inside an adaptive approach, in order to ensure the quality of the results with respect to a given accuracy. The accuracy and the efficiency of this global strategy have been shown through several examples; either in bidimensional and tridimensional cases for model crack propagation, including the industrial example of a helicopter structure.
|
196 |
Modélisation de la transition traction-cisaillement des métaux sous choc par la X-FEM / X-FEM simulation of the shear-tensile transition for dynamic crack propagationHaboussa, David 22 November 2012 (has links)
Dans un contexte de vulnérabilité militaire des sous-marins, les ingénieurs et chercheurs doivent être capables de prédire le comportement des structures fissurées. Ainsi, la modélisation de la transition des changements de modes de propagation de fissure (cisaillement-traction et inversement) des métaux sous sollicitations extrêmes devient un outil incontournable ou essentiel. Des critères tridimensionnels de direction de propagation de fissure développés pour une rupture par cisaillement ou par ouverture sont exposés. Des formules de direction de propagation semi-analytiques et analytiques, fonctions des facteurs d’intensité des contraintes et du coefficient de Poisson, sont ainsi proposées. L’interprétation de ces formules laisse envisager la prise en compte des effets tridimensionnels dans de futures simulations 3D de propagation de fissure. Une étude du problème en deux dimensions est également développée, proposant une formule analytique du critère en cisaillement. De plus un algorithme automatique de transition cisaillement-traction a été implémenté dans le code de calcul de dynamique explicite Europlexus, développé par le CEA. Une méthodologie d’identification des paramètres du modèle pour un matériau donné et pour un cas quasi-statique a été proposée. Confronté à l’interprétation de deux expériences connues de propagation dynamique (expériences de Kalthoff et de Ravichandran), le modèle proposé a montré sa pertinence. De plus, afin de mieux connaître le comportement à rupture de l’acier à Haute Limite Élastique Soudable, deux études expérimentales dédiées au suivi de la propagation dynamique d’un front de fissure ont été développées et validées sur des essais de rupture sous chargement quasi-statique et dynamique de type choc. Cette étude expérimentale a permis d’observer que les branchements de fissures, relevés sur les essais sous chargement quasi-statique, n’apparaissent plus sous chargement dynamique et pour des sollicitations en mode I pur. Les méthodes théoriques et numériques développées dans ces travaux de thèse permettent donc de simuler, automatiquement et avec un unique modèle, les changements de modes de rupture au cours d’une propagation dynamique de fissure. De plus, les protocoles expérimentaux exposés dans ce manuscrit permettent d’appréhender les phénomènes de transition cisaillement-traction en soulevant l’importance de la vitesse de sollicitation et du mode de sollicitation de l’essai. / We propose an approach to the simulation of the shear-tensile transition in dynamic crack growth based on two points: a new crack propagation criterion which is suitable for shear, and an algorithm which is capable of handling the transition from shear mode to tensile mode and back in the same simulation. The new crack propagation criterion for brittle crack growth is based on the maximum shear stress rather than the maximum hoop stress. The shear stress direction becomes the new crack’s direction in which propagation is initiated for shear-type failure. The stress state at the crack’s tip is obtained through a local approach which can be used even in the case of extensive plasticity. Additionally, we propose to control the transition from shear mode to tensile mode during the simulation of crack propagation using an equivalent strain estimated at the crack’s tip. Depending on a threshold strain, the propagation direction is predicted using the maximum shear stress (in the shear case) or the maximum hoop stress (in the tensile case).
|
197 |
Etude de dégradation des voies ferrées urbaines / Track degradationMai, Si Hai 02 May 2011 (has links)
Ce travail réalisé dans le cadre d'une collaboration industrielle avec la société ALSTOM Transport porte sur l'étude de la dégradation des voies ferrées urbaines. Les composantes de voie retenus pour cette étude sont le rail et la dalle de voie en béton. Concernant le rail, différents problèmes sont abordés : contact roue – rail, usure du rail, usure ondulatoire du rail, et fatigue de contact de roulement (RCF) du rail. Un outil numérique avec des interfaces graphiques, nommé CONUS, est développé pour le problème de contact roue – rail et le problème d'usure du rail. Des théories classiques (Hertz, Kalker, Archard, etc.) sont implantées dans cet outil. La méthode stationnaire est implantée dans un code de calcul par éléments finis pour étudier l'état asymptotique de l'acier du rail sous le chargement répété des trains. Ceci nous permet de prédire les régimes de RCF du rail. La mécanique de l'endommagement est utilisée pour prédire la fatigue du matériau béton. Le formalisme de Marigo couplé avec le modèle d'endommagement de Mazars permet de modéliser la dégradation progressive de la rigidité du matériau sous chargement cyclique. Une campagne d'essais de fatigue du béton en flexion a été réalisée. Elle a pour but de valider le modèle théorique et d'identifier les paramètres du matériau. Le dimensionnement d'une dalle de voie en béton a fait l'objet d'une application de cette méthode. Le modèle de réseau de poutres (lattice model) a été utilisé pour étudier la propagation des fissures dans les structures en béton. Ce modèle a été implanté dans le logiciel de calcul par éléments finis, CESAR-LCPC. Les résultats numériques (propagation de fissures) obtenus pour les structures simples sous chargement statique sont en tout point comparables avec les résultats d'essais expérimentaux. Ce modèle a ensuite été utilisé pour étudier la fissuration sous chargement de fatigue. Pour cela un modèle d'endommagement simple modélisant la dégradation des éléments «poutres» s'est avéré suffisant pour décrire la cinématique de propagation des fissures / This work is part of the collaboration between the laboratory Navier (UMR ENPC /IFSTTAR/ CNRS) and ALSTOM Transport company (TGS/Trackway). It focuses on the study of the degradation of urban railways. The components of track considered in this study are the rail and the concrete slab. Regarding the rail, different problems are discussed : wheel – rail contact, rail wear, rail corrugation and rolling contact fatigue (RCF). A numerical tool with graphical interfaces, called CONUS, is developed to predict the behaviour of the wheel - rail contact, the rail wear, and the rail corrugation problems. Classical theories (Hertz, Kalker, Archard, etc...) are implemented in this tool. The stationary method is implemented in a finite element software to study the asymptotic state of the rail steel under repeated loading of trains.The damage mechanics is used to predict the fatigue life of concrete. Marigo's formalism coupled with Mazars' damage model is used to predict the gradual degradation of material stiffness under cyclic loading. A campaign of fatigue tests for concrete in bending was conducted. It aims at validating the theoretical model and identifying material parameters. We applied this method in order to design the concrete slabs of urban railway. The lattice model was used to study the crack propagation in concrete structures. This model was implemented in the finite element software, CESAR-LCPC. The numerical results obtained for simple structures under static loading are consistent with the results of laboratory experiments. This model was then used to study the crack propagation under fatigue loading. For that purpose, a simple damage model of degradation of the "beams" elements describes the kinematics of crack propagation with a satisfying accuracy
|
198 |
Theoretische und numerische Untersuchungen zu morphologischen Übergängen beim RißwachstumMühle, Volker 15 February 2000 (has links)
In dieser Arbeit wird die Strukturbildung beim Risswachstum im stationären und instationärem Temperaturfeld im Rahmen der linear-elastischen Bruchmechanik analysiert und numerisch mittels der Methode der finiten Elemente (FEM) untersucht. Die beim langsamen Eintauchen eines heißen schmalen Glasstreifens in kaltes Wasser mit wachsender Temperaturdifferenz oder Eintauchgeschwindigkeit beobachteten Übergänge zwischen keinem, einem geraden und einem oszillierenden Riss werden in ein morphologisches Diagramm eingetragen und die Art des Überganges zur oszillierenden Rissausbreitung bestimmt. Die theoretischen Ergebnisse werden mit Experimenten verschiedener Autoren verglichen. Gleichartige Untersuchungen werden für die Ausbreitung mehrerer Risse durchgeführt. Beim Abschrecken einer erwärmten breiten Probe entstehen hierarchisch geordnete Risslängenstrukturen. Das Skalenverhalten der Rissdichte in Abhängigkeit von der Risslänge wird untersucht. Die Theorie liefert ohne Fitparameter eine sehr gute Übereinstimmung mit dem Experiment. / This paper investigates the formation of crack patterns in stationary and transient temperature fields analytically with linear elastic fracture mechanics and numerically with the finite elements method (FEM). In particular, we consider the experimental situation of a narrow thin strip of hot glass slowly lowered into cold water, with temperature difference and velocity as variable parameters. The parameter regions of no crack, one straight crack and one oscillating crack are determined. The type of phase transition related to the borderline between straight and oscillating crack is characterized. The theoretical results are compared with those of other authors. Similar investigations and comparisions are done for the propagation of multiple cracks. Quenching of a wide thin strip leads to a hierarchy of cracks whose scaling properties are analyzed. Without any fitting, theory and experiment agree surprisingly well.
|
199 |
Vliv zbytkových napětí na kontaktní porušování keramických laminátů / Influence of the residual stresses on the contact failure of ceramic laminatesGerman, Roman January 2018 (has links)
The presence of the compressive or tensile thermal residual stresses in layers of a ceramic laminate induced due to different volume change of each layer´s material during the cooling from the sintering temperature can considerably affect resistivity of ceramics against contact damage. Within this work 2D parametric FEM models were created, in order to study the effect of the surface layer thickness, residual stress values and indenting body dimension on the initiation and propagation of the cone crack in the surface layer of the laminate. For the analysis of the critical conditions for the crack initiation, the coupled stress-energy criterion was used and for the determination of the direction of crack propagation we used the maximum tangential stress criterion. The results show that compressive thermal stresses in the surface layer increase the critical force for the crack initiation, shorten the crack distance from the contact area and shorten the occurred crack itself. Moreover, the compressive stresses enlarge the angle of the crack declination during the propagation process which cause an earlier crack arrest. The tensile thermal stresses have exactly the opposite effect. Results of simulations were compared to experimental results but due to lack of available measurements, the verification is partially limited.
|
200 |
Návrh speciálních asfaltových směsí SAL určených pro opravu cementobetonových krytů / Design of special asphalt mixtures SAL for the repair of cement concrete pavementsKalfeřt, Martin January 2014 (has links)
In this thesis layer with increased resistance to crack propagation (SAL) are designed. The theoretical part describes the SAL layer, further the input materials, their production and design of various mixtures. The following is a description of the tests, which include tests of permanent deformation, crack propagation, low-temperature characteristics, test, flexural strength and relaxation. After the test results and conclusion are stated.
|
Page generated in 0.0816 seconds