• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 15
  • 7
  • 6
  • 3
  • 1
  • Tagged with
  • 94
  • 94
  • 22
  • 20
  • 19
  • 15
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Crystal structures of monohydrate and methanol solvate compounds of {1-[(3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzyl)amino]cyclopentyl}methanol

Stapf, Manuel, Seichter, Wilhelm, Mazik, Monika 17 April 2024 (has links)
In the title monohydrate compound, 1a, and the methanol solvate compound, 1b, the tri­ethyl­benzene derivative, C35H51N5O, has three functionalized side arms and three ethyl groups, the former being located on one side of the central benzene ring, while the latter are directed to the opposite side. Both the crystals are constructed of structurally similar dimers of 1:1 host–guest complexes held together by N—H...O and O—H...N hydrogen bonds, and in 1a additionally by O—H...O hydrogen bonds. The structure of 1b contains additional highly disordered solvent mol­ecules. Thus, the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON was used to generate a modified data set, in which the contribution of the disordered mol­ecules to the structure amplitudes is eliminated. These solvent mol­ecules are not considered in the reported chemical formula.
72

A highly porous flexible Metal–Organic Framework with corundum topology

Grünker, Ronny, Senkovska, Irena, Biedermann, Ralf, Klein, Nicole, Lohe, Martin R., Müller, Philipp, Kaskel, Stefan 31 March 2014 (has links) (PDF)
A flexible Metal–Organic Framework Zn4O(BenzTB)3/2 (DUT-13) was obtained by combination of a tetratopic linker and Zn4O6+ as connector. The material has a corundum topology and shows the highest pore volume among flexible MOFs. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
73

Chemistry of polynuclear transition-metal complexes in ionic liquids

Ahmed, Ejaz, Ruck, Michael 02 April 2014 (has links) (PDF)
Transition-metal chemistry in ionic liquids (IL) has achieved intrinsic fascination in the last few years. The use of an IL as environmental friendly solvent, offers many advantages over traditional materials synthesis methods. The change from molecular to ionic reaction media leads to new types of materials being accessible. Room-temperature IL have been found to be excellent media for stabilising transition-metal clusters in solution and to crystallise homo- and heteronuclear transition-metal complexes and clusters. Furthermore, the use of IL as solvent provides the option to replace high-temperature routes, such as crystallisation from the melt or gas-phase deposition, by convenient room- or low-temperature syntheses. Inorganic IL composed of alkali metal cations and polynuclear transition-metal cluster anions are also known. Each of these areas will be discussed briefly in this contribution. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
74

Cristallochimie de nouveaux polymères de coordination chiraux poreux à corps central fluorène pour la séparation et la catalyse énantiosélective : synthèses, structures cristallines et réactivité / Cristallochemistry of new chiral coordination polymers with fluorene core for enantioselective separation and catalysis : synthesis, crystal structures and reactivity

Robin, Julien 16 December 2013 (has links)
Ce travail porte sur la cristallochimie de polymères de coordination poreux, ou Metal-Organic Frameworks (MOFs), pour la séparation et la catalyse énantiosélective. Les molécules chirales sont d'une importance capitale et jouent un rôle important dans la reconnaissance moléculaire. Il est donc nécessaire de pouvoir synthétiser un seul énantiomère ou de pouvoir séparer un mélange. La particularité des polymères de coordination à bénéficier d'une partie organique est la possibilité d'introduire des fragments chiraux dans la structure-même des matériaux. Nous avons décidé d'introduire la chiralité dans les MOFs par utilisation de ligands carboxylates originaux chiraux à cœur fluorène. Le premier chapitre de ce mémoire est consacré à l'étude bibliographique des MOFs avec une description des concepts de cette chimie qui permet de comprendre la stratégie mise en place dans cette étude. Le deuxième chapitre décrit la stratégie de synthèse des ligands ainsi que leurs caractérisations. Les trois chapitres suivants décrivent la synthèse, les structures cristallines et les caractérisations physico-chimiques de séries de MOFs regroupés par métal utilisé pour leur élaboration (Zn, Cd et Cu). Ces trois chapitres exposent les problématiques généralement rencontrées avec les MOFs, comme la perte de porosité par interpénétration des réseaux, et les stratégies mises en place pour les contourner, comme l'augmentation de la taille et de la fonctionnalité des ligands utilisés. Enfin la réactivité thermique et chimique des MOFs a été investiguée par diffraction des rayons X par la poudre afin de comprendre les mécanismes réactionnels et la création éventuelle de sites acides en vue d'applications en catalyse. Les techniques expérimentales sont détaillées dans le dernier chapitre de ce mémoire. Enfin un récapitulatif de cette étude est présenté afin de conclure sur la stratégie exposée dans ce mémoire et les perspectives offertes par cette étude. / This work deals with crystallochemistry of new porous coordination polymers or Metal-Organic Frameworks (MOFs) for enantioselective separation and catalysis. Chiral molecules are of a key role in molecular recognition as a consequence the ability to synthesize only one enantiomer or to separate a mixture is priority for chemistry. The particularity of coordination polymers to possess an organic part gives the possibility to introduce chiral fragments in the material structure. We decided to introduce chirality on MOFs by using originals chiral carboxylates ligands with fluorene core. The first chapter is devoted to the bibliographic study of porous coordination polymers. The second chapter describes the ligands synthesis strategy and characterizations. The next three chapters group the crystal structures and physicochemical characterizations of coordination polymers according to the metal used for their preparation (Zn, Cd et Cu). These three chapters explore also the general issues related to MOFs as the loss of porosity consequent to frameworks interpenetration, and strategies implemented to circumvent, such as increasing the size and functionality of the ligands used. Finally the thermal and chemical reactivity of MOFS has been investigated by powder X rays diffraction in order to understand reactions mechanisms and eventually the creation of acid sites for catalytic applications. The experimental technics are detailed in the last chapter. Finally a summary of this work closes this thesis showing the future perspectives of this work.
75

Ternary Rare-Earth Coinage Metal Arsenides LnTAs2, Sm2Cu3As3; Quaternary Arsenide Oxides Sm2CuAs3O and Selenides KGd2CuSe4, KLn2Cu3Se5, and K2Ln4Cu4Se9 (Ln = Y, La - Nd, Sm, Gd - Lu; T = Cu, Ag, Au): Syntheses, Crystal Structures and Physical Properties

Jemetio Feudjio, Jean Paul 22 August 2004 (has links) (PDF)
This thesis describes the syntheses, the crystal structures, and the physical properties of some new ternary and quaternary rare-earth coinage metal arsenides, selenides and oxides. All ternary compounds LnCu1+[delta]As2 (Ln = Y, La, Ce, Nd, Sm, Gd - Lu), LnAg1+[delta]As2 (Ln = La - Nd, Sm), and LnAuAs2 (Ln = Pr, Sm, Gd, Tb) adopt structures closely related to the HfCuSi2 type consisting of PbO-like layers of T and As atoms, square layers of As atoms and layers of Ln atoms separating the former two building units. All copper compounds of this series contain regular square nets of As atoms, whereas the respective nets in the silver and gold compounds are distorted. Two principally different patterns of distortion have been found: [As] zigzag chains in LnAgAs2 (Ln = Pr, Nd, Sm) and [As] cis-trans chains in LaAg1.01(1)As2, CeAgAs2, and PrAuAs2. Both patterns can undergo a further reduction of symmetry to end up with a pattern of As2 dumb-bells as can be seen in SmAuAs2, GdAuAs2, and TbAuAs2. Stoichiometric samples LnCuAs2 (Ln = Y, Pr, Nd, Sm, Gd, Tb, Dy, Er) have been used for measurements of the conductivity [rho], magnetic susceptibility [chi] and heat capacity cp. All investigated compounds exhibit metallic conductivity and, except for Y, order antiferromagnetically at temperatures below 10 K. In contrast to LnCuAs2 compounds, the silver compound CeAgAs2 shows semiconducting behavior throughout the temperature range from 4 to 350 K, whereas in PrAgAs2 metallic conductivity is preserved. The crystal structure of Sm2CuAs3O contains two different PbO-like layers formed either by Sm and O or Cu and As atoms. Both PbO-type layers are separated by sheets of Sm and distorted square nets of As atoms. The As atoms are arranged in planar zigzag chains, like those found in NdAgAs2. Sm2CuAs3O is thus the first quaternary rare-earth pnictide oxide with a distorted As net. The quaternary potassium rare-earth copper selenides KGd2CuSe4, KLn2Cu3Se5 (Ln = Ho, Er, Tm), and K2Ln4Cu4Se9 (Ln = Dy, Y) extend three series of previously described sulfide and selenide compounds. All three series adopt a three-dimensional tunnel structure built up by [LnSe6] octahedra and [CuSe4] tetrahedra. The K atoms reside in the tunnels with a bicapped trigonal prismatic coordination of eight Se atoms for KGd2CuSe4 and KLn2Cu3Se5 (Ln = Ho, Er, Tm), while for K2Ln4Cu4Se9 (Ln = Dy, Y), the K atoms are coordinated by seven Se atoms in monocappped trigonal prisms.
76

Synthese von Amino- bzw. Hydrazinosilanen und -boranen, Lithiumsalzen, Iminoborenen und Borkationen / Synthesis of amino- and hydrazinosilanes and -boranes, lithium salts, iminoborenes and boron cations

Matthes, Christoph 23 January 2008 (has links)
No description available.
77

Struktur und Umwandlungen von Eisphasen in Gegenwart der Gase Helium, Neon und Argon / Structures and transitions of ice phases in the presence of the gases helium, neon and argon

Gotthardt, Frank 17 May 2001 (has links)
No description available.
78

Ionic liquids as crystallisation media for inorganic materials

Ahmed, Ejaz, Breternitz, Joachim, Groh, Matthias Friedrich, Ruck, Michael 09 April 2014 (has links) (PDF)
Ionic liquids (ILs) have made a great impact on materials science and are being explored for potential applications in several disciplines. In this article, we briefly highlight the current state-of-the-art techniques employing ILs as new crystallisation media, working as neutral solvent, template or charge compensating species. The use of an IL as environmental friendly solvent offers many advantages over traditional crystallisation methods. The change from molecular to ionic reaction media leads to new types of materials being accessible. Room temperature ILs have been found to be excellent solvent systems for the crystallisation of a wide range of substances and morphologies ranging from nanoscopic crystals to micro- and even to macroscopic crystals. Moreover, high temperature routes, such as crystallisation from melts or gas phase deposition, have been replaced by convenient room or low temperature syntheses, employing ILs as reaction media. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
79

Metallo-supramolecular Architectures based on Multifunctional N-Donor Ligands

Tanh Jeazet, Harold Brice 18 August 2010 (has links) (PDF)
Self-assembly processes were used to construct supramolecular architectures based on metal-ligand interactions. The structures formed strongly depend on the used metal ion, the ligand type, the chosen counter ion and solvent as well as on the experimental conditions. The focus of the studies was the design of multifunctional N-donor ligands and the characterization of their complexing and structural properties. This work was divided into three distinct main parts: The bis(2-pyridylimine), the bis(2-hydroxyaryl) imine and the tripodal imine / amine ligand approach. In the first part a series of bis(2-pyridylimine) derivatives having different linking elements were employed as building blocks for novel supramolecular architectures. Reaction of individual d-block metal salts with these ligands has led to the isolation of coordination polymers, a metallamacrocycle, double-stranded helicates, triple-stranded helicates as well as of circular meso-helicates. The nature of the spacer in the Schiff base ligands, the noncovalent weak interactions, such as hydrogen bond, face-to-face π-π and edge-to-face CH-π interactions, are all important factors influencing the architecture of the final products. Topological control of the assembly process of the hexanuclear meso-helicates is clearly associated with the bidentate coordination of the sulfate anion which directs the formation of a double- rather than a triple-stranded helicate around the octahedrally coordinated Cu(II). Surprisingly, the variation of the linker function in the ligands, which significantly changes the linking angle of the pyridylimine strands, has only a little influence of the resulting structure. Also the use of a mixture of ligands does not influence the meso-helicate topology; the result is the symmetrically mixed meso-helicate. The new iron(II) triple helicate [Fe2(L5)3](PF6)4 14 {L5 = bis[4-(2-pyridylmethyleneimino)phenyl]-1,1-cyclohexane} in its chloride form binds strongly to DNA as confirmed by induced circular dichroism signals in both the metal-to-ligand charge transfer (MLCT) and in-ligand bands of the helicate. The induced CD spectrum gives some evidence that [Fe2(L5)3]4+ interacts with the DNA in a single binding mode, which is consistent with major groove binding. The cytotoxicity of the new iron(II) triple helicate 14 was evaluated on human lung cancer A549 cells and compared with that of cisplatin and that of the previously reported iron(II) triple helicate [Fe2(L1)3]4+{L1 = bis[4-(2-pyridylmethyleneimino)phenyl]methane}. The first results show some distinguishing features for 14 obviously caused by the existing structural differences of the complexes. In the second part of the thesis, novel uranyl complexes of the bis(2-hydroxyaryl) imine ligands have been synthesized and characterized. 1D coordination polymers and mononuclear structures were formed. In all complexes a distorted hexagonal bipyramidal coordination geometry around the uranyl centre is observed. The imine nitrogen atoms of the ligands do not bind to the metal centre but interact strongly with the hydroxy group via H-bonding. DFT calculations made with L8 ( α,α’-Bis(salicylimino)-m-xylene) are in good agreement with the X-ray crystal structure data. Liquid-liquid extraction studies involving selected ligands and Eu(III) or U(VI) indicate remarkably high selectivity for U(VI) over Eu(III) at weak acidic pH conditions. We believe that the study made opens up new possibilities for uranyl ion extraction which could be interesting in view of the treatment of nuclear waste. In the third part of the thesis, a series of multifunctional tripodal ligands with different N-donor centres were used for U(VI) and lanthanide, Nd(III), Eu(III) and Yb(III), binding and extraction. Reaction of these metal ions with selected tripodal ligands afforded complexes which were characterized by ESI mass spectroscopy. The complex composition was found to be 1:1 in all cases. The extraction behaviour of the tripodal ligands towards Eu(III) and U(VI) was studied both in the absence and presence of octanoic acid as co-ligand using the extraction system Eu(NO3)3 or UO2(NO3)2–buffer–H2O/ ligand–CHCl3. These separation systems show a remarkably high selectivity for U(VI) over Eu(III). It is interesting to note that the addition of the octanoic acid to the extraction system leads to high synergistic effects. A series of Eu(III) extraction experiments were done to clarify the composition of the extracted complexes. The results clearly point to the formation of various species with changing composition.
80

Polynuclear Coordination Assemblies : Synthesis, Crystal Structures And Magnetic Behavior

Sengupta, Oindrila 11 1900 (has links) (PDF)
Construction of polynuclear metal assemblies from discrete 0D clusters to extend 3D networks, comprised of metal ions and bridging organic/inorganic ligands has attracted immense attention, owing to their intriguing network topologies and interesting properties. Proper ligand design and the appropriate choice of the metal center are of vital importance to the design of such polynuclear assemblies. One of the various attributes of polynuclear metal assemblies is magnetism. Magnetic materials can be constructed by incorporating magnetic moment carriers such as paramagnetic metals(V, Cr, Mn, Fe, Co, Ni, Cu) in presence of bridging ligands. Though, one-atom oxo/hydroxo and two-atom cyanide bridges were of popular choices due to their short distance for transmitting strong magnetic coupling between the paramagnetic metal centers, it has been shown that, three-atom bridging ligands like carboxylate and azide (N3 ) are well-fitted moieties for this purpose since they offer a variety of magnetic interactions depending on their versatile bridging modes. It has been well known that incorporation of anionic bridging ligand in presence of azide anion is a challenging task due to the competition between the 2nd anionic ligand with azide in self-assembly process. Incorporating both azide and carboxylate functionalities, a series of polymeric complexes has been synthesized and conversion of 0D discrete clusters to extended networks with the retention of basic core by fine tuning the ligands has been achieved. Single-crystal to single-crystal transformation has received considerable attention in crystal engineering since it is difficult for crystals to retain single crystallinity after removal of the guest at high temperature. Interestingly single-crystal to single-crystal transformation was observed at high temperature for Co(II) formate-formamide complex and change in dimensionality from 3D to 0D was observed at high temperature for Cr(III) formate-formamide complex. Multiferroic materials are those where both ferroelectricity and ferromagnetism coexist in the same phase. In general the transition metal d-electrons which are essential for magnetism reduce the tendency for off-center ferroelectric distortion. First tetrazole based miltiferroic coordination polymer of Co(II) metal ion in presence of azide has been successfully synthesized whereas its analogous Mn(II) complex showed different structural topology with interesting magnetic behavior. It has been also established in the present study, the important role played by hydrazine ligand to prevent oxidation of paramagnetic Co(II) to diamagnetic Co(III) system with the formation of a metal-inorganic assembly of Co(II) which exhibited spin-canted behavior.

Page generated in 0.083 seconds