• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 28
  • 8
  • Tagged with
  • 69
  • 69
  • 27
  • 26
  • 25
  • 23
  • 22
  • 18
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Méthodes de type Galerkin discontinu d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes non-conformes

Fahs, Hassan 19 December 2008 (has links) (PDF)
Ce travail porte sur le développement d'une méthode Galerkin discontinue (GDDT) d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes non-conformes. On présente tout d'abord une méthode GDDT reposant sur des fonctions de base nodales pour approcher le champ électromagnétique dans un simplexe, un schéma centré pour évaluer les flux numériques aux interfaces entre cellules voisines et un schéma saute-mouton du second ordre pour l'intégration temporelle. De plus, cette méthode autorise l'utilisation de maillages non-conformes présentant un nombre arbitraire de noeuds flottants. La méthode résultante est non-dissipative, stable sous une condition de type CFL, conserve un équivalent discret de l'énergie électromagnétique, et très peu dispersive. Afin de diminuer le coût de calcul de cette méthode, on propose une méthode GDDT de type /hp/, qui combine /h-/raffinement et /p/-enrichissement locaux tout en préservant la stabilité. On réalise ensuite une étude numérique détaillée des méthodes GDDT sur la base d'une série de problèmes de propagation d'ondes en milieux homogène et hétérogène. En particulier, on effectue une comparaison des méthodes Galerkin discontinues conformes et non-conformes en termes de précision, convergence et coûts de calcul.<br />Afin d'améliorer la précision et la vitesse de convergence des méthodes GDDT précédentes, on étudie une famille de schémas saute-mouton d'ordre<br />arbitrairement élevé. Ces schémas temporels nous assurent sur tout maillage la conservation d'un équivalent discret de l'énergie électromagnétique ainsi que la stabilité des méthodes GDDT résultantes sous une condition de type CFL. On réalise aussi une étude de convergence /hp a priori/ ainsi qu'une étude de convergence de l'erreur sur la divergence. Des expériences numériques montrent que pour un maillage donné, le schéma saute-mouton du quatrième ordre est moins coûteux en temps de calcul et plus précis que le schéma saute-mouton du second ordre, en dépit d'une complexité arithmétique accrue.<br />De plus, on obtient une convergence exponentielle avec le schéma saute-mouton du quatrième ordre.
22

High order discretisation by Residual Distribution schemes/ Discrétisation d'ordre élevée par des schémas de distribution de résidus

Villedieu, Nadège A C 30 November 2009 (has links)
These thesis review some recent results on the construction of very high order multidimensional upwind schemes for the solution of steady and unsteady conservation laws on unstructured triangular grids. We also consider the extension to the approximation of solutions to conservation laws containing second order dissipative terms. To build this high order schemes we use a sub-triangulation of the triangular Pk elements where we apply the distribution used for a P1 element. This manuscript is divided in two parts. The first part is dedicated to the design of the high order schemes for scalar equations and focus more on the theoretical design of the schemes. The second part deals with the extension to system of equations, in particular we will compare the performances of 2nd, 3rd and 4th order schemes. The first part is subdivided in four chapters: The aim of the second chapter is to present the multidimensional upwind residual distributive schmes and to explain what was the status of their development at the beginning of this work. The third chapter is dedicated to the first contribution: the design of 3rd and 4th order quasi non-oscillatory schemes. The fourth chapter is composed of two parts: We start by understanding the non-uniformity of the accuracy of the 2nd order schemes for advection-diffusion problem. To solve this issue we use a Finite Element hybridisation. This deep study of the 2nd order scheme is used as a basis to design a 3rd order scheme for advection-diffusion. Finally, in the fifth chapter we extend the high order quasi non-oscillatory schemes to unsteady problems. In the second part, we extend the schemes of the first part to systems of equations as follows: The sixth chapter deals with the extension to steady systems of hyperbolic equations. In particular, we discuss how to solve some issues such as boundary conditions and the discretisation of curved geometries. Then, we look at the performance of 2nd and 3rd order schemes on viscous flow. Finally, we test the space-time schemes on several test cases. In particular, we will test the monotonicity of the space-time non-oscillatory schemes and we apply residual distributive schemes to acoustic problems.
23

Développement d'un outil de simulation du procédé de contrôle non destructif des tubes ferromagnétiques par un capteur à flux de fuite

Fnaiech, Emna-Amira 04 June 2012 (has links) (PDF)
Le principe du contrôle par flux de fuite magnétique (Magnetic Flux Leakage MFL) consiste à aimanter la pièce à contrôler par un champ magnétique et à détecter à l'aide d'un capteur magnétique les fuites des lignes du champ qui résultent de la présence d'un défaut dans la pièce. Dans le but d'améliorer les performances d'un dispositif de détection, le CEA et la société Vallourec collaborent pour développer un modèle numérique dédié au contrôle virtuel des défauts longitudinaux dans les tubes ferromagnétiques. Le dispositif expérimental comprend un circuit magnétique tournant à une vitesse constante autour du tube qui défile. Dans le cadre de cette thèse, on débute le problème de la modélisation sans tenir compte des effets de la vitesse de rotation, il s'agit donc de résoudre un problème d'électromagnétisme en régime magnétostatique.Pour résoudre ce problème, on propose de comparer une approche semi-analytique basée sur le formalisme des équations intégrales (EI) et une approche purement numérique utilisant les éléments finis (EF).Dans la première partie de cette thèse, après avoir établi le formalisme théorique par EI, un premier modèle considérant des matériaux ferromagnétiques à perméabilité magnétique constante (régime linéaire) a été mis en œuvre en 2D. Ce modèle a été appliqué pour un exemple de système extrait de la littérature et validé numériquement par une comparaison des résultats EI/EF. Pour une meilleure détection, il est opportun de saturer magnétiquement la pièce. Le matériau ferromagnétique est alors caractérisé par une courbe B(H) non-linéaire. Par conséquent, la deuxième partie de la thèse a été consacrée à la mise en œuvre du modèle en régime non linéaire qui tient compte de cette caractéristique.Différentes méthodes de discrétisation ont été étudiées afin de réduire le nombre d'inconnues et le temps de calcul. L'originalité de la thèse réside dans l'utilisation des fonctions d'interpolation d'ordre élevé (polynôme de Legendre) pour une discrétisation des équations intégrales par une approche de type Galerkin. Les premiers essais de validation numérique de ce modèle ont été effectués sur un système MFL simplifié. Des premiers essais de validation expérimentale pour des données obtenues par EF ont été effectués en deux phases : La première a consisté à vérifier le distribution du champ magnétique pour un tube sain et en régime magnétostatique. La deuxième phase a consisté à calculer la réponse d'un défaut dans le tube ferromagnétique en tenant en compte les effets éventuels de la rotation du circuit magnétique par rapport au tube.
24

Calculs éléments finis paramétrés à l'aide des dérivées d'ordre élevé, Applications à l'électromagnétisme

Nguyen, Thanh Nam 09 September 1998 (has links) (PDF)
Au cours de ce travail, une implantation de la méthode d'analyse de sensibilité d'ordre élevé a été réalisée au sein de la méthode des éléments finis (MEF). Tout d'abord nous avons posé ta base théorique des développements: la MEF classique et surtout la méthode de dérivées d'ordre élevé qui engendre les résultats sous la forme de développements de Taylor par rapport aux paramètres de conception. En s'appuyant sur la structure typique d'un code de calculs EF, nous avons développé ensuite les modules d'un calcul "paramétré": la paramétrisation géométrique, la dérivation du maillage et la résolution paramétrée. L'originalité de cette implantation consiste dans une nouvelle organisation des calculs de dérivées qui sont basés notamment sur les opérations symboliques. Pour valider des étapes de calculs, plusieurs exemples ont été présentés. Enfin, les applications possibles des résultats paramétrés sont évoquées, entre autres, une procédure pour définir le modèle analytique équivalent de dispositifs électromagnétiques a été proposée. Notons que plusieurs problèmes de réalisation informatique ont été mise en évidence et résolus, ce qui représente un gros investissement en programmation. Des nombreuses perspectives sont ouvertes par cette approche, le travail mériterait donc d'être poursuivi.
25

Modélisation et simulation numérique d'un piano par modèles physiques.

Chabassier, Juliette 12 March 2012 (has links) (PDF)
Cette étude porte sur la modélisation et la simulation numérique d'un piano, en domaine temporel, par modèles phy- siques. Nous souhaitons rendre compte du comportement vibratoire et acoustique du piano, en prenant en compte les éléments principaux qui contribuent à la production du son. La table d'harmonie est modélisée par une équation bidimensionnelle de plaque épaisse, le système de Reissner Mindlin, pour un matériau orthotrope et hétérogène, dont l'amortissement dépend de la fréquence. Grâce aux équations de la vibroacoustique, la table rayonne dans l'air, dans lequel on souhaite calculer le champ acoustique complet autour de la ceinture du piano, que l'on suppose rigide. La table d'harmonie est d'autre part sollicitée par les cordes, à travers le chevalet où elles présentent un léger angle par rapport au plan horizontal. Chaque corde est modélisée par un système d'équations monodimensionnelles amorties dans lequel on prend en compte non seulement les ondes transversales excitées par le marteau, mais aussi la raideur à travers les ondes de cisaillement, ainsi que le couplage avec les ondes longi- tudinales provenant de la prise en compte des non linéarités géométriques. Le marteau est lancé avec une vitesse initiale vers un chœur de cordes, contre lequel il s'écrase avant d'être repoussé par les cordes. La force d'interaction dépend de façon non linéaire de l'écrasement du marteau.Le modèle complet de piano, que l'on souhaite résoudre numériquement, consiste donc en un système couplé d'équations aux dérivées partielles, dont chacune revêt des difficultés de nature différente : la corde est régie par un système d'équations non linéaires, la table d'harmonie est soumise à un amortissement dépendant de la fréquence, la propagation acoustique requiert un très grand nombre d'inconnues; auxquelles s'ajoute la difficulté inhérente aux couplages. D'une part, la stabilité numérique du schéma discret peut être compromise par la présence d'équations non linéaires et de nombreux couplages. Une méthode efficace pour garantir cette stabilité a priori est de construire un schéma qui conserve, ou dissipe, un équivalent discret de l'énergie physique d'un pas de temps au suivant. Une contribution majeure de ce travail a été de développer des schémas préservant une énergie discrète pour une classe de systèmes non linéaires dans laquelle s'inscrit le modèle de corde. D'autre part, afin d'augmenter l'efficacité de la méthode et de réduire le coût des calculs numériques, il est souhaitable de mettre à jour de façon découplée les inconnues liées aux différentes parties du problème, sur lesquelles la discrétisation en temps est faite de façon différente, afin de s'adapter aux spécificités de chacune. L'introduction de multiplicateurs de Lagrange nous permet de réaliser ce découplage artificiel grâce à des compléments de Schur adaptés. L'utilisation du code de calcul en situation réaliste montre le potentiel d'une telle modélisation d'un piano complet en domaine temporel. Au delà de très bien reproduire les mesures, il est possible d'étudier l'influence de certains phénomènes physiques (corde raide, non linéaire), de la géométrie ou encore des matériaux utilisés sur le comportement vibratoire général du piano, et sur le son en particulier. L'enrichissement spectral, ainsi que l'apparition des " partiels fantômes " et du précurseur non linéaire sont clairement mis en évidence pour les grandes amplitudes de jeu, soulignant l'intérêt de notre approche dans la compréhension du fonctionnement de l'instrument.
26

Méthodes d'éléments finis d'ordre élevé pour la simulation numérique de la propagation d'ondes

Jund, Sébastien 28 November 2007 (has links) (PDF)
Le but de cette thèse est la construction de schémas numériques pour la simulation de phénomènes de propagation d'ondes acoustiques et électromagnétiques basés sur des discrétisations en espace par éléments finis conformes, ces schémas ayant pour vocation à être d'ordre arbitrairement élevé et aussi efficaces que possible. Dans le cadre de l'équation des ondes scalaire nous reprenons le problème de la condensation de la matrice de masse issue des éléments finis de Lagrange (cf. Cohen-Joly-Tordjmann) pour en décrire un algorithme de construction général. Cet algorithme nous a permis de déterminer un nouvel élément fini avec condensation de masse de type $P_6$. Nous présentons aussi une nouvelle approche permettant une condensation partielle de la matrice de masse. Dans le cadre de la propagation d'ondes électromagnétiques modélisée par les équations de Maxwell, nous présentons une méthode de couplage conforme d'éléments finis d'arête rectangulaires (avec condensation de la matrice de masse) et triangulaires, permettant d'optimiser le profil de la matrice de masse (et donc d'en optimiser l'inversion) pour les simulations dans des domaines à géométrie complexe. Nous présentons aussi une discrétisation en temps d'ordre arbitrairement élevé, basée sur une procédure de type Cauchy-Kowalewski, que l'on a stabilisée. Toutes les discrétisations présentées ont été implémentées, testées de manière exhaustive et leur efficacité a été comparée, dans une série de tests numériques, à celle des discrétisations couramment utilisées pour ce type d'applications telles que les discrétisations en espace par éléments finis de Lagrange standards, et les discrétisations symplectiques ou de Runge-Kutta en temps
27

Production et caractérisation d'impulsions attosecondes VUV par génération d'harmoniques d'ordre élevé.

Zair, Amelle 03 July 2006 (has links) (PDF)
La génération d'harmoniques d'ordre élevé (HHG), qui dans le domaine temporel se traduit par l'émission d'un train d'impulsion VUV attoseconde (1as =10-18s), a connu un grand intérêt scientifique depuis une dizaine d'années. Cette source constitue en effet un bon candidat pour la mise en oeuvre d'expériences pompe sonde visant à observer la dynamique électronique au coeur même des atomes et des molécules. <br />Au CELIA, nous avons implémenté une technique de post-compression qui nous a permi de comprimer nos impulsions laser IR de 40 fs à 9 fs (1fs=10-15s). Ces impulsions sont ensuite utilisée pour confiner la HHG. Étant donné que le processus de HHG est efficace uniquement si les impulsions IR génératrices sont polarisées linéairement, nous avons créé une porte dans le profil temporel de nos impulsions sub-10fs où la polarisation est linéaire pendant une durée inferieure à la durée de l'impulsion IR génératrice. Ceci nous permet de confiner la HHG en dessous d'un demi-cycle optique IR. Cette technique de porte d'ellipticité, complètement caractérisée dans cette thèse, nous a permis de confiner la HHG jusqu'à l'émission d'une à deux impulsions attosecondes. Afin de caractériser le profil temporel du train d'impulsions attosecondes, nous avons également implémenté un interféromètre à deux couleurs qui nous a permit de mesurer la phase harmonique et de reconstruire nos trains d'impulsions attosecondes.
28

Contributions à la simulation numérique en élastodynamique : découplage des ondes P et S, modèles asymptotiques pour la traversée de couches minces

Burel, Aliénor 04 July 2014 (has links) (PDF)
Cette thèse porte sur la modélisation des ondes élastodynamiques dans deux situations particulières qui pénalisent les méthodes numériques utilisées pour simuler ces phénomènes. Dans la première partie, on se place dans le cas où les ondes de pression (ondes P) se propagent à une vitesse beaucoup plus grande que celle des ondes de cisaillement (ondes S). Les modèles numériques utilisés habituellement pour traiter cette configuration sont pénalisés par la plus petite vitesse qui dicte le choix du pas du schéma. Nous proposons ici un schéma qui découple numériquement, dans le volume, les ondes P et les ondes S, pour deux types de conditions de bord en utilisant la décomposition du déplacement en potentiels de Lamé, en deux dimensions. Les conditions aux limites de Dirichlet homogènes, qui sont des conditions essentielles pour la formulation classique en déplacement, deviennent des conditions naturelles, mais non standard, pour la formulation en potentiels qui se présente comme un système de deux équations d'ondes couplées par les conditions aux limites. Cette formulation préserve une énergie équivalente à l'énergie élastodynamique. Nous construisons un schéma éléments finis en espace et utilisons un thêta-schéma en temps sur les termes de bord afin de ne pas pénaliser la CFL et mener à une condition sur le pas de temps indépendante des termes de couplage au bord. Ce schéma préserve une énergie discrète. Le cas des conditions de surface libre mène à des instabilités. Nous les avons traitées comme des perturbations des conditions de Dirichlet, ce qui permet d'obtenir de bons résultats dans le domaine fréquentiel mais donne naissance à de sévères instabilités après discrétisation en temps. La seconde partie de la thèse est consacrée à la construction, l'analyse et la validation de conditions de transmission effectives (CTE) à travers une couche mince de matériau homogène et isotrope d'épaisseur constante h. Ici, la finesse de la couche affecte les schémas explicites usuels car le maillage de la couche avec des éléments suffisamment petits entraîne une diminution analogue du pas de temps critique via la condition CFL, tandis que l'on espère avec les CTE obtenir un pas de temps indépendant de l'épaisseur de la couche. Une analyse complète du cas de la bande mince rectiligne est donnée en deux et trois dimensions. Les conditions obtenues sont stables via la conservation d'une énergie et l'ordre de l'erreur d'approximation par rapport à l'épaisseur de la couche pour les conditions d'ordre 2 est de O(h^3). Des résultats numériques sont présentés pour les configurations bi et tridimensionnelles, ils valident les résultats de stabilité, d'estimation d'erreur et de conditions de stabilité de schémas en temps proposés, qui sont des modifications du schéma explicite utilisé en l'absence de couche mince. Enfin, le traitement d'une couche curviligne est effectué dans le cas bidimensionnel. Sa stabilité est à nouveau vérifiée par conservation d'énergie et des résultats numériques sont également présentés.
29

Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes

Montagnier, Julien 01 July 2010 (has links) (PDF)
La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de traiter les champs proches dans le cas de géométries complexes, et il est nécessaire d'utiliser les outils de CFD (" Computational Fluid Dynamics ") plus adaptés, mais plus coûteux. Afin de simuler les écoulements atmosphériques avec dispersion de polluants, les modèles CFD doivent modéliser correctement d'une part, les effets de flottabilité, et d'autre part les effets de la turbulence. Plusieurs approches existent, notamment dans la prise en compte des effets de flottabilité et la modélisation de la turbulence, et nécessitent des méthodes numériques adaptées aux spécificités mathématiques de chacune d'entre elles, ainsi que des schémas numériques précis pour ne pas polluer la modélisation. Une formulation d'ordre élevé en volumes finis, sur maillages non structurés, parallélisée, est proposée pour simuler les écoulements atmosphériques avec dispersion de polluants. L'utilisation de schémas d'ordre élevé doit permettre d'une part de réduire le nombre de cellules et diminuer les temps de simulation pour atteindre une précision donnée, et d'autre part de mieux contrôler la viscosité numérique des schémas en vue de simulations LES (Large Eddy Simulation), pour lesquelles la viscosité numérique des schémas peut masquer les effets de la modélisation. Deux schémas d'ordre élevé ont été étudiés et implémentés dans un solveur 3D Navier Stokes incompressible sur des maillages volumes finis non structurés. Nous avons développé un premier schéma d'ordre élevé, correspondant à un schéma Padé volumes finis, et nous avons étendu le schéma de reconstruction polynomiale de Carpentier (2000) aux écoulements incompressibles. Les propriétés numériques des différents schémas implémentés dans le même code de calcul sont étudiées sur différents cas tests bi-dimensionnels (calcul de flux convectifs et diffusifs sur une solution a-priori, convection d'une tâche gaussienne, décroissance d'un vortex de Taylor et cavité entraînée) et tri-dimensionnel (écoulement autour d'un obstacle cubique). Une attention particulière a été portée à l'étude de la précision et du traitement des conditions limites. L'implémentation proposée du schéma polynomial permet d'approcher, pour un maillage identique, les temps de simulation obtenus avec un schéma décentré classique d'ordre 2, mais avec une précision supérieure. Le schéma compact donne la meilleure précision. En utilisant une méthode de Jacobi sans calcul implicite de la matrice pour calculer le gradient, le temps de simulation devient intéressant uniquement lorsque la précision requise est importante. Une alternative est la résolution du système linéaire par une méthode multigrille algébrique. Cette méthode diminue considérablement le temps de calcul du gradient et le schéma Padé devient performant même pour des maillages grossiers. Enfin, pour réduire les temps de simulation, la parallélisation des schémas d'ordre élevé est réalisée par une décomposition en sous domaines. L'assemblage des flux s'effectue naturellement et différents solveurs proposés par les librairies PETSC et HYPRE (solveur multigrille algébrique et méthode de Krylov préconditionnée) permettent de résoudre les systèmes linéaires issus de notre problème.
30

Analyse mathématique et numérique de problèmes d'ondes apparaissant dans les plasmas magnétiques

Imbert-Gérard, Lise-Marie 09 September 2013 (has links) (PDF)
Cette thèse étudie les aspects mathématiques et numériques de phénomènes d'ondes dans les plasmas magnétiques. La réflectométrie, une technique de sonde des plasmas de fusion, est modélisée par les équations de Maxwell. Le tenseur de permittivité présente dans ce modèle des valeurs propres ainsi que des termes diagonaux qui s'annulent. La relation de dispersion met en évidence deux phénomènes cruciaux : coupures et résonances, lorsque le nombre d'onde s'annule ou tend vers l'infini. La partie I rassemble les résultats numériques. La grande nouveauté réside dans la définition d'une solution résonante. En effet, à cause des coefficients s'annulant continument en changeant de signe, la solution peut être singulière, i.e. avoir une composante non intégrable. Cependant, grâce au principe d'absorption limite, une solution résonante est explicitement définie comme la limite de solutions intégrables du problème régularisé. L'expression théorique de la singularité est validée par des tests numériques du passage à la limite. La partie II concerne l'approximation numérique. Elle comprend la mise en place d'une nouvelle méthode numérique adaptée aux coefficients réguliers. Celle-ci est basée sur la formulation variationnelle Ultra Faible mais nécessite des fonctions de base spécifiques, construites comme approximations locales du problème adjoint. L'analyse de convergence est effectuée en dimension un, en dimension deux la construction des fonctions de base et leur propriété d'interpolation sont détaillées. La méthode d'ordre élevé obtenue permet de simuler le phénomène de coupure tandis que simuler le phénomène de résonance en dimension deux reste un défi.

Page generated in 0.3059 seconds