• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 9
  • 2
  • Tagged with
  • 37
  • 37
  • 37
  • 37
  • 24
  • 20
  • 17
  • 15
  • 13
  • 13
  • 10
  • 10
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Developpement de nouveaux catalyseurs au palladium supporté sur polymères ou nanoparticules de cobalt : application à la formation de liaisons carbone-carbone

Diebold, Carine 12 October 2012 (has links) (PDF)
Les réactions pallado-catalysées permettant la formation de liaisons carbone-carbone trouvent de nombreuses applications en synthèse organique et constituent l'étape clé de la synthèse d'un grand nombre de molécules. La première partie de cette thèse décrit la préparation et l'étude de catalyseurs hétérogènes et réutilisables comportant du palladium supporté sur un polymère portant des groupements phosphinés, polymère dérivé soit d'une résine de Merrifield soit d'une résine Rasta. De très bons résultats ont été obtenus pour leur utilisation dans les couplages croisés de Hiyama, Heck et Suzuki et dans chaque cas la possibilité de réutilisation jusqu'à 4 fois du catalyseur a été vérifiée. Notre travail constitue une des premières utilisations d'un catalyseur réutilisable dans le couplage de Hiyama. Nous avons aussi mis au point des conditions permettant d'effectuer le couplage de Heck en présence d'une quantité infime de palladium. Notre étude sur les résines Rasta constitue la première application de ces supports en pallado-catalyse. La deuxième partie de la thèse décrit l'étude de la préparation de catalyseurs où le palladium serait supporté sur des nanoparticules superparamagnétiques et qui pourraient donc être récupérés de tout milieu réactionnel grâce à un champ magnétique externe. Des nanoparticules de cobalt ont été préparées puis recouvertes de pyrocarbone par dépôt chimique en phase vapeur. Des groupements organiques ont été fixés sur la coque de carbone, ce qui permet l'introduction de ligands phosphinés. La structure de ces particules a été étudiée par microscopie électronique en transmission et leur préparation optimisée en fonction des résultats structuraux.
12

Elaboration de tubes épais de SiC par CVD pour applications thermostructurales

Drieux, Patxi 19 December 2013 (has links) (PDF)
L'objectif de la thèse était de synthétiser des tubes de SiC monolithiques pour améliorer l'étanchéité de la structure composite SiC/SiC d'une gaine de combustible nucléaire. Des revêtements tubulaires de 8 mm de diamètre et quelques centaines de micromètres d'épaisseur ont été produits par dépôt chimique en phase vapeur à pression atmosphérique à partir d'un mélange CH3SiHCl2/H2. Le procédé a été développé de manière à réaliser en continu des tubes de SiC de plusieurs dizaines de centimètres de long. La composition chimique et la microstructure des tubes ont été déterminées par microsonde de Castaing, spectroscopie Raman, DRX et microscopie électronique (MEB, MET). Les propriétés mécaniques des tubes ont été caractérisées par nanoindentation et à travers des essais de compression C-ring. Le comportement thermomécanique a également été étudié. L'étude du procédé comprend une étude thermocinétique, un suivi de la phase gazeuse par IRTF et la modélisation 2D du réacteur.
13

Développement et fabrication de transistors couches minces verticaux en technologie silicium polycristallin basse température

Zhang, Peng 18 December 2012 (has links) (PDF)
This work deals with the development of vertical thin film transistors (VTFTs) via the fabrication processes and the analysis of the electrical characteristics. The low-temperature (T ≤ 600°C) polycrystalline silicon technology is adopted in the fabrication processes. The first step of the work consists in the fabrication and characterization of VTFTs obtained by rotating the lateral thin film transistors (LTFTs) 90°. The feasibility of VTFTs fabrication is validated with an ION/IOFF ratio of about 10³, and it is analyzed that the large overlapping area between source and drain leads to a large off-current IOFF. The second step of the work lies in the partial suppression of the large overlapping area, and therefore, an ION/IOFF ratio of almost 10⁵ is obtained. The third step of the work deals with the proposal of a new VTFT structure that absolutely eliminates the overlapping area. Different improvements have been made on this new VTFT structure, especially by optimization of the following parameters: the active layer thickness, type and thickness of the barrier layer, and the geometric dimension. The optimized transistor highlights an ION/IOFF ratio of higher than 10⁵ with a reduced off-current IOFF, high stability and good reproducibility. P and N-type VTFTs have also been fabricated and showed symmetrical electrical characteristics; they are thus suitable for CMOS-like VTFT applications.
14

Optimisation de multi-matériaux à base de diamant pour la gestion thermique / Diamond-based multimaterials for thermal management applications

Azina, Clio 21 November 2017 (has links)
De nos jours, l'industrie microélectronique utilise des fréquences de fonctionnement plus élevées dans les composants commercialisés. Ces fréquences entraînent des températures de fonctionnement plus élevées et limitent donc l'intégrité et la durée de vie des composants électroniques. Cependant, les besoins actuels nécessitent des dispositifs miniaturisés et de haute densité de puissance. De ce fait, la dissipation thermique dans les composants microélectroniques s’avère capitale. Ainsi, des drains thermiques sont utilisés pour évacuer la chaleur produite par le fonctionnement du composant. Les drains thermiques actuels sont composés de métaux, tels que le cuivre et l’aluminium, présentant des conductivités et des coefficients de dilatation thermiques élevés. Néanmoins, les coefficients de dilatation thermique des différents matériaux présents dans un circuit peuvent induire des contraintes thermo-mécaniques aux interfaces et engendrer une défaillance des composants après plusieurs cycles de fonctionnement. Dans ce contexte, nous proposons de remplacer ces drains métalliques par un système composite à matrice cuivre renforcée par du carbone, sur lequel est déposé un diffuseur thermique sous forme de diamant. Ces composites Cu/C présentent des propriétés thermo-mécaniques adaptatives pouvant palier aux contraintes induites durant l’utilisation des composants. Le transfert optimal des propriétés dans les MMC est souvent compromis par l'absence de liaison chimique interfaciale, en particulier dans les systèmes non réactifs telsque Cu/C. Cependant, pour un assemblage thermiquement efficace, l'interface devrait permettre un bon transfert de charges thermo-mécaniques entre les matériaux. L'objectif de cette étude est de combiner les propriétés exceptionnelles du diamant et les propriétés thermo-mécaniques adaptatives des MMC. Les composites à matrice de cuivre renforcés au carbone sont synthétisés à l'aide d'un processus dit semi-liquide pour obtenir des gradients de composition et des propriétés optimisées d'interface matrice - renfort. Par conséquent, des éléments d'alliage sont insérés dans le matériau pour former des interphases de carbure à l'interface Cu/C. Le film mince de diamant est obtenu par dépôt chimique en phase vapeur assisté par laser. Cette méthode de dépôt permet d’agir sur la qualité du film ainsi que sur l’adhésion avec le substrat composite. Finalement, une importance particulière est portée à l’influence des interfaces sur les propriétés thermiques tant au sein du matériau composite (interface matrice – renfort), qu’au sein de l’assemblage film diamant – MMC.Ces travaux ont été menés dans le cadre d’un accord franco-américain de cotutelle de thèse entre l’Institut de Chimie de la Matière Condensée de l’Université de Bordeaux, en France, et le département d’Ingénierie Electrique de l’Université du Nebraska-Lincoln, aux Etats-Unis. Ils ont été financés, en France, par la Direction Générale de l’Armement (DGA), et par l’équivalent Américain aux Etats-Unis. / Today, the microelectronics industry uses higher functioning frequencies in commercialized components. These frequencies result in higher functioning temperatures and, therefore, limit a component’s integrity and lifetime. Until now, heat-sink materials were composed of metals which exhibit high thermal conductivities (TC). However, these metals often induce large coefficient of thermal expansion (CTE) mismatches between the heat sink and the nonmetallic components of the device. Such differences in CTEs cause thermomechanical stresses at the interfaces and result in component failure after several on/off cycles.To overcome this issue, we suggest replacing the metallic heat sink materials with a heat-spreader (diamond film) deposited on metal matrix composites (MMCs), specifically, carbon-reinforced copper matrices (Cu/C) which exhibit optimized thermomechanical properties. However, proper transfer of properties in MMCs is often compromised by the absence of effective interfaces, especially in nonreactive systems such as Cu/C. Therefore, the creation of a chemical bond is ever more relevant. The goal of this research was to combine the exceptional properties of diamond by means of a thin film and the adaptive thermomechanical properties of MMCs. Carbon-reinforced copper matrix composites were synthesized using an innovative solid-liquid coexistent phase process to achieve designed composition gradients and optimized matrix/reinforcement interface properties. In addition, the lack of chemical affinitybetween Cu and C results in poor thermal efficiency of the composites. Therefore, alloying elements were inserted into the material to form carbide interphases at the Cu/C interface. Their addition enabled the composite’s integrity to be optimized in order to obtain thermally efficient assemblies. The diamond, in the form of a thin layer, was obtained by laser-assisted chemical vapor deposition. This process allowed action on the film’s phase purity and adhesion to the substrate material. Of particular importance was the influence of the interfaces on thermal properties both within the composite material (matrix-reinforcement interface) and within the diamond film-MMC assembly. This work was carried out within the framework of a Franco-American agreement between the Institute of Condensed Matter Chemistry of the University of Bordeaux in France and the Department of Electrical Engineering at the University of Nebraska-Lincoln, in the United States. Funding, in France, was provided by the Direction Générale de l’Armement (DGA), and by the American equivalent in the United States.
15

Croissance confinée de nanofils de silicium à application solaire photovoltaïque / Confined silicon nanowire growh for low cost photovoltaics

Dupré, Ludovic 24 October 2013 (has links)
Les nanofils de silicium présentent un fort potentiel d'intégration, et leur utilisation dans des dispositifs électroniques tels que des cellules solaires photovoltaïques ne peut se faire que si leur élaboration et leurs propriétés structurales sont maitrisées. Nous présentons dans cette thèse une méthode de fabrication de matrices de nanofils de silicium par croissance catalysée par l'or ou le cuivre en dépôt chimique en phase vapeur et faisant appel à des matrices de guidage de la croissance en alumine nanoporeuse. Cette technique permet notamment la croissance d'assemblées de nanofils ultra-denses (1.10^{10} nanofils/cm²) sur substrat non préférentiel ou d'hétérostructures comme des nanofils de germanium sur substrat de silicium. Grâce à la diffraction des rayons X nous montrons ensuite que les nanofils produits sont de très bonne qualité structurale malgré leur substrat non préférentiel et la présence d'une légère déformation de leur maille cristalline. Le contrôle de la déformation cristalline de nanofils de germanium est par ailleurs démontré en encapsulant les nanofils dans une coquille de nitrure de silicium. De nouveaux éléments de réflexion sont également rapportés concernant la contamination des nanofils de silicium par le catalyseur de leur croissance. Enfin l'intégration des nanofils de silicium dans des dispositifs solaires photovoltaïques est démontré en faisant appel à des jonctions PN radiales entre le coeur et la coquille des nanofils. / Silicon nanowires are promising objects but their integration in electronic devices such as photvoltaic solar cells relies on the ability to control their production and tailor their structural properties. In this thesis we present a method to produce nanowire matrices using a gold or copper catalysed growth process by chemical vapor deposition and using a nanoporous alumina growth template. This method enables the fabrication of ultra-dense nanowire arrays (1.10^{10} nanowires/cm²) on non preferential substrate or heterostructures such as germanium nanowires on silicon substrate. Using X-ray diffraction we also show that the structural quality of the template grown nanowires is very good in spite of their non preferential substrate and the presence of a small cristalline lattice strain. The control of germanium nanowires strain is also demonstrated by embeding them in a silicon nitride shell. Besides, new results are presented concerning the catalyst contamination of silicon nanowires. Silicon nanowires integration in photovoltaic devices is eventually demonstrated using a radial geometry for the PN junction between the core and the shell of the nanowires.
16

Modélisation des plasmas micro-ondes utilisés pour le dépôt de diamant intrinsèque ou dopé au bore / Modeling of microwave plasma used for deposition of intinsic diamond or boron doped

Salem, Rania 18 May 2015 (has links)
Cette thèse porte sur la modélisation des plasmas micro-ondes en mélanges H2/CH4 et H2/CH4/B2H6, utilisés pour le dépôt de diamant intrinsèque et de diamant dopé au bore. L'objectif est d'établir des modèles de cinétique chimique afin de décrire la phase gazeuse et d'appréhender les limitations des modèles physiques nécessaires à l'étude des plasmas H2/CH4 et H2/CH4/B2H6 fonctionnant à haute densité de puissance (haute pression / haute puissance). L'étude repose sur une approche numérique à travers plusieurs modèles physique (1D et 2D) et chimiques qui permet la description physico-chimique de la phase plasma en fonction de nombreux paramètres expérimentaux (pression, puissance, composition du gaz). Une comparaison des résultats numériques a été effectuée systématiquement avec des mesures de densités intégrées radialement réalisées par TDLAS et OES pour les espèces CH4, CH3, C2H2, C2H4, C2H6, B2H6 et B. Cette comparaison a pour objectif la validation des modèles physiques et des schémas cinétiques. Des écarts significatifs entre le modèle et l'expérience ont révélé une limitation intrinsèque à l'utilisation d'une approche ID radiale pour décrire les propriétés du plasma pour les conditions de haute densité de puissance. L'utilisation d'un modèle 2D fluide conçu à partir du logiciel ANSYS Fluent propose une meilleure description des phénomènes de transport mais ne permet pas de prendre en compte les processus électroniques. L'analyse de la composition chimique des plasmas micro-onde H2/CH4, H2/B2/H6 et H2/CH4/ B2H6 a montré une limitation des schémas cinétiques décrivant ces mélanges par une large gamme de conditions opératoires. En particulier les mécanismes C/B de ces modèles ne reproduisent pas la forte influence observée expérimentalement de l'addition de méthane sur le bore atomique. Enfin une étude numérique sur la distribution spatiale des espèces borées à poximité de la surface est confrontée à des résultats expérimentaux sur le dopage de diamant en fonction de différents paramètres du procédé. / This thesis deals with modelling of high power density microware plasmas of H2/CH4 and H2/CH4/B2H6 mixtures used for growing intrinsic and boron-doped diamond films. The aim of this work is to establish chemical kinetic schemes in order to describe the gas phase composition and to manage limitations of physical models of high power density H2/CH4 and H2/CH4/B2H6 plasmas. This investigation relies on a numerical approach using different physical models (ID and 2D) as well as chemical models according to differents experimental parameters (pressures, power, gas composition). Comparisons are carried out with integrated densities of CH4, CH3, C2H2, C2H4, C2H6, B2H6 and B measured by TDLAS and OES in order to validate the models. Significant discrepancies highlight limitation of ID approach for high power density whereas the use of a 2D fluid model (Fluent based) proposes better description of transport phenomena. The chemical analysis of H2/CH4, H2/B2H6 and H2/CH4/B2H6 MW plasmas also shows a limitation of the current kinetic schemes for a wide range of operating conditions. In particular C/B mechanisms do not reproduce the strong influence of methane addition on B. At least, a numerical study of spatial composition of boron species near the substrate is compared to experimental results on doping efficiency.
17

Study of the nucleation mechanism of carbon nanotubes by field emission techniques / Etude du mécanisme de nucléation des nanotubes de carbone par techniques d'émission de champ

Moors, Matthieu 28 June 2010 (has links)
The present work is focused on the nucleation and growth mechanism of carbon nanotubes (CNT) that we have studied through different field emission techniques (FEM, FIM and atom-probe (PFDMS)). Reaction conditions associated with the CVD synthesis method were modeled inside the microscope aiming at studying nucleation phenomena at high resolution. The interaction between different metals (Fe, Co, Ni, conditioned as sharp tips) and gases (acetylene, ethylene and ethanol) was analyzed operando at high temperatures (500–900K), with the aim of reproducing growth conditions during the imaging process.<p>Ni was, in the end, the only metal studied, due to the poor quality of images acquired from Co and Fe. Aimed at reproducing the conditioning step of the catalyst often observed in CVD protocols, a first study showed that the crystal adopts a polyhedral morphology at the working temperature (873K) in an hydrogen atmosphere or under Ultra-High-Vacuum conditions, by the extension of dense crystal planes like {111} or {100}. The presence of hydrogen in the chamber does not seem to present any influence on the final crystal morphology at temperatures above 600K.<p>When exposed to a carbon-containing gas, nickel crystals present two distinct behaviors following the temperature region that is explored. At temperatures below ~623K, exposing Ni to ethylene or acetylene leads to the formation of a stable and poorly structured nickel carbide layer. The superficiality of this carbide is proven by the ease of its physical (by increasing the electrical field) or chemical (exposure to hydrogen or oxygen) evacuation. These three treatments initiate a clean-off phenomenon that evacuates the carbide layer. Reproducing these experiments in the atom-probe confirmed the carbidic nature of the surface as NiCy compounds were collected.<p>At temperatures above 623K, the carbide layer (formed by exposing Ni to the same gases) becomes unstable. Its formation is related to a transition period that precedes the nucleation of graphenes on the surface. The Ni crystal undergoes a massive morphological transformation when acetylene is introduced in the chamber at 873K. This phenomenon is induced by the presence of carbon on the surface which adsorbs so strongly on step sites that it provokes their creation. Carbon also induces a considerable enhancement of Ni atoms mobility that allows for this transition to occur. Once the new morphology is attained, nucleation of graphenes is observed to start on the extended and carbon-enriched step-containing crystal planes. By reproducing these experiments in the atom-probe, a high surface concentration of carbon dimers and trimers was observed. A kinetic study of their formation was thus achieved and showed that they were formed on the surface by the recombination of Cad. Their potential role as building-blocks of the CNT growth process (which had previously been proposed following theoretical considerations) is thus suggested on the basis of experimental results for the first time.<p>Two critical surface concentrations are highlighted in the present work. The first one is needed for the formation of carbon dimers and trimers and the second one has to be attained, during the morphological transformation, before the onset of graphene nucleation, probably providing a sufficient growth rate of the graphitic nuclei and allowing them to attain their critical size before their decomposition.<p>Finally, the observation of rotational circular patterns, most probably related to carbon nanotubes, suggests that CNT growth (and not only graphene nucleation) occurred episodically in our conditions, confirming the validity of our model.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
18

Croissance directe de graphène par dépôt chimique en phase vapeur sur carbure de silicium et nitrures d'éléments III / Direct growth of graphene by chemical vapor deposition on silicon carbide and III-nitrides

Dagher, Roy 22 September 2017 (has links)
Le graphène est un matériau bidimensionnel appartenant à la famille des allotropes du carbone. Il consiste en une couche atomique restant stable grâce à des liaisons chimiques fortes dans le plan entre les atomes de carbone. C'est un semi-conducteur sans bande interdite (gap) avec une dispersion d'énergie linéaire près des points de Dirac, ce qui facilite le transport balistique des porteurs de charge. De plus, tout comme n'importe quel semi-conducteur, il est possible de contrôler ses propriétés électriques sous l'influence d'un champ électrique externe, ce qui permet de modifier la densité de porteurs et leur type (électrons ou trous). Le graphène peut être élaboré par différentes techniques, mais nous avons considéré la croissance directe sur le carbure de silicium (SiC) par dépôt chimique en phase vapeur (CVD) avec une source de carbone externe, technique développée dans notre laboratoire depuis 2010. Cette approche est attrayante car elle permet de contrôler les propriétés du graphène en modifiant les paramètres de croissance. Notre objectif dans ce manuscrit est de donner une idée plus approfondie de cette technique de croissance et d'étudier son potentiel pour la croissance du graphène. À cette fin, nous avons discuté en détail de différents aspects de la croissance, en commençant par des simulations thermodynamiques pour comprendre la chimie gouvernant cette méthode. Nous avons également étudié l'influence des différents paramètres de croissance sur la formation du graphène et sur ses propriétés, tels que le temps de croissance, le débit de propane et d'autres paramètres. Cependant, nous nous sommes principalement concentrés sur deux paramètres majeurs : la quantité d'hydrogène dans le mélange gazeux, surtout que la croissance se fait sous hydrogène et argon, et la désorientation du substrat. Nos recherches ont révélé que la structure du graphène peut être modifiée en fonction de la proportion de l’hydrogène dans le mélange des gaz utilisé pour la croissance. Pour une faible proportion d’hydrogène, la croissance du graphène est associée à une reconstruction d'interface de (6√3×6√3), alors que pour une proportion élevée d’hydrogène, la couche de graphène est désordonnée dans le plan. Ces observations sont liées à l'intercalation de l'hydrogène à l'interface entre la couche de graphène et le substrat SiC, ce qui peut favoriser ou interdire la formation de la reconstruction (6√3×6√3) comme nous l'avons discuté dans le manuscrit. On s'attend à ce que la présence des deux structures de graphène ait un effet sur la contrainte dans la couche de graphène. Pour cette raison, nous avons discuté en détail les origines de la contrainte dans le graphène et tenté de corréler l'intercalation de l'hydrogène à l’interface avec la contrainte. Aussi, nous avons montré que l'angle de désorientation du substrat a une influence directe sur la croissance du graphène, affectant principalement la morphologie mais également la contrainte dans la couche du graphène. Enfin, nous avons pu produire du graphène de haute qualité, tout en démontrant la possibilité de contrôler ses propriétés électriques avec les conditions de croissance. Dans la deuxième partie de ce travail, nous avons étendu notre étude à la croissance du graphène sur les semi-conducteurs de type nitrures d’éléments III et en particulier le nitrure d’aluminium (AlN) massif ainsi que des couches hétéroépitaxiées d’AlN/SiC et AlN/Saphir, ce qui ouvre de nouvelles opportunités pour des applications innovantes. La croissance du graphène a été précédée d'une étude de recuit sur les différents échantillons d’AlN, dans le but d'améliorer leur qualité de surface, mais aussi pour tester leur stabilité à la température nécessaire pour la croissance du graphène. Bien que le film d’AlN ait été incapable de résister à la température élevée dans certains cas, une amélioration de la qualité cristalline a été détectée, attribuée à l'effet de recuit. / Graphene is a two-dimensional material belonging to the family of carbon allotropes, consisting of a stable single atomic layer owing to strong in-plane chemical bonds between carbon atoms. It can be identified as a gapless semiconductor with a linear energy dispersion near the Dirac points, which facilitates ballistic carrier transport. In addition, similarly to any semiconductor, it is possible to control its electrical properties under the influence of an external electric field, resulting in the tuning of its carrier density and doping type, i.e. electrons or holes. Graphene can be elaborated by different techniques and approaches. In this present work, we have considered the direct growth on silicon carbide (SiC) by chemical vapor deposition (CVD) with an external carbon source. This approach which has started to be developed in our laboratory since 2010 is very promising since it allows to control the graphene properties by manipulating the growth parameters. Our objective in this manuscript is to give further insights into this growth technique and to study its potential for the growth of graphene. For this purpose, we have discussed in details different aspects of the growth, starting with thermodynamic simulations to understand the chemistry behind our distinct growth approach. We have also investigated the influence of the different growth parameters, such as the growth time, the propane flow rate and other parameters on the growth of graphene and its properties. However, we mainly focused on two major factors: the hydrogen amount in the gas mixture, especially since the growth is carried out under hydrogen and argon, and the substrate’s miscut angle. Our investigations revealed that the graphene structure can be altered depending on the hydrogen percentage in the gas mixture considered for the growth. For low hydrogen percentage, the graphene growth is associated with a (6√3×6√3) interface reconstruction, whereas for high hydrogen percentage, the graphene layer is dominated by in-plane rotational disorder. These observations are related to the hydrogen intercalation at the interface between the graphene layer and the SiC substrate, which can allow or prohibit the formation of the (6√3×6√3) interface reconstruction as we have discussed thoroughly in this manuscript. The presence of two graphene structures was expected to impact the strain within the graphene layer. For this reason, we have discussed in details the origins of the strain in graphene and attempted to correlate the hydrogen intercalation at the interface to the strain amount. Furthermore, the substrate’s miscut angle was also found to have a direct influence on the growth of graphene, mainly affecting the morphology but also the strain within the graphene layer. In light of the different studies and results, we were able to combine the ideal growth parameters to produce state-of-the art graphene, while demonstrating the possibility of tuning its electrical properties with the growth conditions. In a second part of this work, we extended our study to the growth of graphene on III-nitrides semiconductors. We have considered substrates and templates such as bulk aluminum nitride (AlN), AlN/SiC and AlN/sapphire, which opens new opportunities for innovative applications. The growth of graphene was preceded by an annealing study on the different AlN substrates, in an attempt to enhance their surface quality, but also to test their stability at the temperatures necessary for the growth of graphene. Although the AlN film was found to be unable to withstand the high temperature in some cases, an enhancement of the crystalline quality was detected, attributed to the annealing effect.
19

Dépôt d'un film mince métallique sur un liquide par le procédé d'évaporation sous vide : une nouvelle méthode pour réaliser le miroir liquide lunaire

Seddiki, Omar 17 April 2018 (has links)
Le présent travail de recherche a commencé lorsque le projet de télescope à miroir liquide pour un observatoire lunaire a reçu le soutien du NIAC (NASA Institute for Advanced Concepts), un organisme qui appuie des projets qui sont novateurs dans le domaine de la technologie spatiale susceptibles d'être intégrés aux programmes de l'agence spatiale américaine (NASA). Les conditions sur le sol lunaire, spécifiquement le vide conséquent à l'absence d'atmosphère, nous ont amené à opter pour la technique d'évaporation sous vide. Dans ce procédé, le métal, l'argent dans notre cas, est chauffé sous vide dans une source. La vapeur résultante s'échappe de la source et va se condenser sur le liquide substrat. Une étape importante a été franchie lorsque j'ai réussi à déposer un film d'argent, de bonne qualité de surface et de réflectivité, sur un liquide ionique hydrophile (les expériences que j'ai menées jusqu'ici, montrent que les dépôts ont réussi uniquement sur les liquides hydrophiles). Grâce aux caractéristiques physiques et chimiques exceptionnelles de cette classe de liquide, la faisabilité du projet d'un télescope sur la lune a été démontrée en trouvant le liquide qui pouvait être utilisé dans l'environnement lunaire. La nucléation et la croissance du film métallique sur le substrat liquide sont gouvernés par les énergies de surface du film et du liquide. Comme l'énergie de surface du film métallique est supérieure à celle du substrat liquide, le principe de minimisation de l'énergie de surface impose que le film se forme à partir d'agrégats qui vont s'agrandir au cours de sa croissance. Tout l'enjeu ici est de pouvoir minimiser la croissance des agrégats pour diminuer la granularité du film résultant. Pour cela il faut maximiser la densité de nucléation, ainsi le film sera formé à partir d'agrégats de petite taille présents en très grands nombres sur la surface. Par ailleurs, l'analyse par absorption atomique a révélé que lors de l'évaporation de l'argent, une partie des atomes du métal diffusait à travers la surface pour finir dans le volume du liquide. Cette diffusion contribue à appauvrir la surface du liquide des atomes d'argent et ainsi diminue le nombre d'agrégats stables sur celle-ci. Il en résulte alors une diminution de la densité de nucléation. Pour augmenter la densité de nucléation, il faut contrecarrer la diffusion à travers la surface. Une approche que j'ai utilisée consistait à évaporer une couche intermédiaire de chrome ou d'aluminium, deux métaux plus réactifs que l'argent, pour réaliser une membrane métallique sur le liquide. Par la suite et voyant que l'efficacité de la couche intermédiaire métallique à empêcher la diffusion de l'argent était limitée, à cause des énergies de surface élevées des métaux qui la formaient, j'ai entrepris d'évaporer sous vide un matériau non métallique pour réaliser la couche intermédiaire. Le film d'argent évaporé sur la membrane non métallique ainsi formée avait une réflectivité qui dépassait 90%. Ce qui montre que la diffusion à travers la surface contribuait à minimiser la qualité des films produits. Tous ces aspects de mon travail de recherche à savoir : évaporation sous vide d'un métal sur un liquide, sur une couche intermédiaire métallique (chrome ou aluminium) ou sur une couche intermédiaire non métallique (polymère et autres) seront vus en détail dans le présent document. J'ai aussi exposé tout au long de ce dernier mes observations faites lors de mes nombreuses expériences d'évaporation, les difficultés auxquelles j'ai fait face lors de celles-ci et lors de la caractérisation des résultats ainsi que les solutions que j'ai envisagées ; cela dans la perspective que le présent document puisse servir comme point de départ à toute personne qui aura à poursuivre le présent travail de recherche. / This research started when the "liquid mirror telescope" project for a lunar observatory received support from the NIAC (NASA Institute for Advanced Concepts), an organization that supports projects that are innovative in the field of space technology and have a high potential to be integrated into the programs of the U.S. space agency (NASA). Conditions on the lunar surface and specifically the vacuum which results from the lack of atmosphere, have led us to choose the technique of vacuum evaporation. In this process, metal, silver in our case, is heated in a source under vacuum. The resultant vapour leaves the source and reaches the liquid substrate where it condenses. An important issue has been resolved when I have successfully deposited a silver film of good surface quality and reflectivity on a hydrophilic ionic liquid (the experiments I have conducted so far show that the deposition has succeeded only on the hydrophilic liquid). Due to physical and chemical characteristics of this unique class of liquid, the feasibility of a telescope on the moon has been demonstrated by finding the liquid that could be used in the lunar environment. The nucleation and growth of a metal film on the liquid substrate is governed by the surface energies of the film and the liquid. Since the surface energy of the metal film is greater than that of the liquid substrate, the principle of surface energy minimization imposes that the film forms from aggregates. These aggregates grow in size as the film grows. The challenge here is to minimize the growth of aggregates to reduce the granularity of the resulting film. To achieve this, we must maximize the density of nucleation. Thus, the film will be formed from aggregates of small size present in very large numbers on the surface. Furthermore, the analysis by atomic absorption revealed that, during the evaporation of silver, a part of silver atoms diffuses through the surface and ends up in the liquid volume. This diffusion contributes to reducing the amount of silver atoms on the liquid surface and consequently to decrease the number of stable aggregates on the surface. It follows then a drop in the nucleation density. To increase the nucleation density, one must prevent the diffusion through the surface. To do so, the first mean I used was evaporating an intermediate layer of chromium or aluminum, two metals more reactive than silver, to produce a metallic membrane on the liquid. However, the efficiency of the intermediate metallic layer to prevent the diffusion of silver was not sufficient. This was due to the high surface energies of the metals which form the layer. Therefore, in order to improve its efficiency, I began to use a non-metallic material for making the intermediate layer. The silver film deposited on the non-metallic membrane thus formed had a reflectivity that exceeds 90%. This shows that the diffusion through the surface reduces the quality of the produced films. All those aspects of my research : vacuum evaporation of a metal on a liquid, on a metallic intermediate layer (chromium or aluminum), or on a non-metallic intermediate layer (polymer and others) will be seen in detail in this document. I also exposed throughout the latter the observations I made during my many evaporation experiences, the difficulties I faced during the experiments and the characterization of the results and the solutions that I adopted. This in view that this thesis can serve as basis for any person who will continue this research work.
20

Étude et développement de dépôts d'allylamine assistés par plasma basse pression spécifiques aux stents coronariens recouverts

Gallino, Enrico 16 April 2018 (has links)
Les stents coronariens sont des dispositifs médicaux, généralement fabriqués en acier inoxydable 316L, utilisés pour traiter des maladies cardiovasculaires comme l’athérosclérose. Les stents recouverts ou à relargage contrôlé de médicaments sont des solutions prometteuses pour réduire les phénomènes de resténose. Ce travail a pour objectif le développement d’un procédé plasma basse pression capable de déposer une couche de polymère permettant de protéger la surface des stents contre l’agressivité du milieu physiologique. L’allylamine est choisie comme précurseur moléculaire pour assurer un taux élevé de fonctions amines primaires. Ces fonctions pourront être utilisées, successivement, pour l’immobilisation de molécules bioactives afin d’augmenter la biocompatibilité des stents. Les dépôts sont effectués sur des substrats d’acier inoxydable 316L en utilisant un réacteur plasma basse pression (70 kHz). Les différentes techniques d’analyse de surface utilisées (angle de contact, XPS, FTIR-ATR) montrent que les variations de puissance de la décharge et du temps de traitement ne modifient pas significativement la composition chimique de surface des dépôts. Cependant, grâce à une technique de dérivation chimique nous avons mis en évidence une meilleure sélectivité vis-à-vis des fonctions amines primaires pour les couches déposées à faibles valeurs de puissance. En effet, des analyses in-situ de la phase plasmagène (spectrométrie de masse, spectroscopie d’émission optique) révèlent qu’une augmentation de la puissance de la décharge conduit à l’augmentation de son caractère énergétique et, ainsi, à l’augmentation du taux de fragmentation du précurseur. La stabilité des revêtements au lavage dans l’eau de-ionisée a été aussi évaluée. Les dépôts obtenus pour une puissance de la décharge de 2W présentent le meilleur compromis entre rétention des fonctions amines primaires et stabilité. Enfin, nous avons évalué les propriétés d’adhérence des couches après déformation plastique en utilisant le « small punch test », permettant de reproduire les conditions qu’on retrouve lorsque les stents sont déployés dans les artères. Les dépôts présentent des propriétés adéquates de cohésion et d’adhérence au substrat pour répondre à la déformation sans se fissurer et/ou délaminer. Ces résultats montrent que les couches d’allylamine déposées par procédé plasma basse pression présentent des caractéristiques prometteuses afin d’être utilisées comme revêtement performant pour les stents coronariens. / Coronary stents are metallic devices, mainly made of 316L stainless steel (316L SS) used for the treatment of cardiovascular disease such as atherosclerosis. In order to reduce the restenosis rate of bare metal stents, coated stents and drug eluting stents were developed. The aim of this study is to develop a process to isolate metallic surface from the biological environment by depositing a thin plasma polymerized allylamine (PPAA) film on the metallic surface. Allylamine has been chosen as molecular precursor to insure high retention of primary amino groups which can be used, afterwards, to graft biomolecules to improve the biocompatibility of the devices. PPAA films were deposited on flat electropolished 316L SS samples in a low pressure plasma reactor (70 kHz). The different surface analytical methods (water contact angle, XPS, FTIR-ATR) showed that surface chemical composition of the coatings was not significantly influenced by variation of plasma power discharge and treatment time. However, chemical derivatization has shown that high selectivity towards primary amino-groups could be obtained using low discharge power values. In fact, in-situ diagnostic analysis of the plasma discharge, performed by mass spectrometry and optical emission spectroscopy, revealed the increase of the energetic character of the discharge as a function of discharge power that leads to higher fragmentation of the precursor. The coating stability in de-ionised (D.I.) water has been also investigated. We have found an optimum of stability for films deposited at a power of 2 W. For this optimized condition, we have the best trade-off between selectivity and stability upon immersion in D.I. water. In order to mimic stent expansion conditions, a “small punch test” has been used to investigate the adhesive properties of the coating. According to XPS analysis, no significative modification of the chemical composition of the coating was induced by plastic deformation. No cracks, delamination or failures of the coating were observed by FE-SEM indicating that the coating presents sufficient interfacial adhesion and cohesion to resist to plastic deformation. For these reasons, PPAA films presents promising features to be applied as a coating for coronary stents.

Page generated in 0.0863 seconds