• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 41
  • 11
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 93
  • 39
  • 36
  • 32
  • 26
  • 25
  • 22
  • 20
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Experiments on multi-level superconducting qubits and coaxial circuit QED

Peterer, Michael January 2016 (has links)
Superconducting qubits are a promising technology for building a scalable quantum computer. An important architecture employed in the field is called Circuit Quantum Electrodynamics (circuit QED), where such qubits are combined with high quality microwave cavities to study the interaction between artificial atoms and single microwave photons. The ultra-strong coupling achieved in these systems allows for control and readout of the quantum state of qubits to perform quantum information processing. The work on circuit QED performed in this thesis consisted of realizing an experimental setup for qubit experiments in a new laboratory, investigating the coherence and decay of higher energy levels of superconducting transmon qubits and finally demonstrating a novel coaxial form of circuit QED. Designing and building a 3D circuit QED setup involved the following main accomplishments: producing high quality 3D cavities; designing and installing the cryogenic microwave setup as well as the room temperature amplification and data acquisition circuitry; successfully developing a recipe for the fabrication of Josephson junctions; controlling and measuring superconducting 3D transmon qubits at 10mK. Several qubits were fully characterised and have shown coherence times of several microseconds and relaxation times up to 25μs. Superconducting qubits in fact possess higher energy levels that can provide significant computational advantages in quantum information applications. In experiments performed at MIT, preparation and control of the five lowest states of a transmon qubit was demonstrated, followed by an investigation of the phase coherence and decay dynamics of these higher energy levels. The decay was found to proceed mainly sequentially with relaxation times in excess of 20μs for all transitions. A direct measurement of the charge dispersion of these levels was performed to explore their characteristics of dephasing. This experiment was also reproduced on a 3D transmon fabricated and measured in Oxford, where due to a higher effective qubit temperature a multi-level decay model including thermal excitations was developed to explain the observed relaxation dynamics. Finally, a coaxial transmon, which we name the coaxmon, is presented and measured with a coaxial LC readout resonator and input/output coupling ports placed inline along the third dimension. This novel coaxial circuit QED architecture holds great promise for developing a scalable planar grid of qubits to build a quantum computer.
122

Tempos de relaxação e decoerência em ensembles de pontos quânticos / Decoherence and relaxation time in an ensemble of quantum dots

Gonzalez Hernandez, Felix Guillermo 10 May 2007 (has links)
Orientador: Gilberto Medeiros Ribeiro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-09T10:48:50Z (GMT). No. of bitstreams: 1 GonzalezHernandez_FelixGuillermo_D.pdf: 12837677 bytes, checksum: 70e82c96ea88ab1de4fa785d908c9af6 (MD5) Previous issue date: 2007 / Resumo: Medidas experimentais foram realizadas para determinar as escalas de tempo de relaxação e decoerência do spin eletrônico como bit quântico. A estrutura dos estados de exciton foi investigada com o objetivo de servir como estados intermediários na manipulação do spin. O sistema utilizado para o estudo de decoerência é um ensemble de pontos quânticos auto-formados semicondutores. Dois temas servem como eixos centrais dos três experimentos desenvolvidos nesta tese: a polarização de spin e o fator g de Landé. No primeiro experimento, ao incluir o efeito do reservatório térmico, foi obtido o grau de polarização do spin (populações dos níveis up e down) para as camadas s e p. O desdobramento dos níveis orbitais em subníveis de spin permitiu obter a magnitude do fator g para estes estados. Mudando a orientação do campo magnético, foram observadas as anisotropias do tensor g e a sua relação com os detalhes do potencial de confinamento. Estas características permitiram inferir o tempo de relaxação T1. A medida da polarização resolvida no tempo foi realizada através de es-pectroscopia óptica de bombeio-prova. Os pulsos de luz e o campo magnético transverso permitem que uma polarização líquida seja inicializada. A rotação de Kerr permitiu observar oscilações desta polarização em torno do campo magnético com freqüência determinada pelo fator g. A perda da coerência de fase do spin resulta no decaimento destas oscilações numa escala de tempo T2. Medidas realizadas num ensemble de spins implicam em que o tempo de decoerência encontra-se limitado pela escala de defasagem T¤2< T2. Uma técnica semelhante à refocalização por spin-eco em experimentos de ressonância magnética nuclear, foi aplicada utilizando pulsos de laser para reverter a defasagem do ensemble. Tanto a possibilidade de medir o sinal de eco como o tempo de decoerência foram medidos como função da temperatura. A estrutura de níveis de exciton e a sua distribuição no ensemble foi estudada também com espectroscopia de bombeio-prova. Foram observados batimentos quânticos entre os níveis de estrutura fina do exciton para sis-temas 0D e 2D limitados pelo tempo de recombinação / Abstract: Experimental measurements were carried out to determine the scales of the relaxation and decoherence time for the electronic spin as quantum bit. The structure of the exciton states was investigated with the objective to serve as intermediate states in the spin manipulation. The system studied for the implementation of the quantum computation is an ensemble of self-assembled semiconductor quantum dots. Two subjects serve as central axes of the three experiments developed in this thesis: the spin polarization and the Landé g-factor. In the first experiment, when including the effect of the thermal reservoir, the degree of spin polarization (populations for the up and down levels) was measured for layers s and p. The splitting of the orbital levels in spin sublevels allowed to get the magnitude of factor g for these states. Changing the orientation of the magnetic field, the g-tensor anisotropies and its relation with the details of the confinement potential had been observed. These characteristics had allowed to infer the relaxation time T1. The time resolved polarization measurement was carried out by optical pump-probe spectroscopy. The pulses of light and the transverse magnetic field allow the initialization of a net polarization. The Kerr rotation allowed to observe oscillations of this polarization around the magnetic field with frequency determined for factor g. The loss of the spin phase coherence results in the decay of these oscillations in a time scale T2. Measurements carried out in an ensemble of spins imply that the decoherence time is limited by the ensemble dephasing time T¤2 < T2. A technique similar to the spin-echo refocalization in nuclear magnetic resonance experiments using laser pulses was applied to reverse the ensemble dephasing. The possibility to measure the echo signal and the decoherence time was measured as a function of the temperature. The structure of exciton levels and its distribution in ensemble were also studied with pump-probe spectroscopy. Quantum beats were observed be-tween the fine structure exciton levels for 0D and 2D systems, yet limited by the recombination time / Doutorado / Física da Matéria Condensada / Doutor em Ciências
123

Étude de la décohérence de paquets d'onde monoélectroniques dans les canaux de bord de l'effet Hall quantique entier / Decoherence of single electron wavepackets in the edge channels of the integer quantum Hall effect

Freulon, Vincent 24 October 2014 (has links)
Cette thèse est consacrée à l'étude de la décohérence de paquets d'onde mono-électroniques injectés dans un conducteur quantique balistique. Les paquets d'onde sont générés à l'aide d'une capacité mésoscopique, utilisée comme source d'électrons uniques, qui sont émis à la demande dans le canal de bord externe de l'effet Hall quantique entier. Deux telles sources indépendantes et synchronisées sont positionnées sur les bras d'entrée d'une lame séparatrice électronique. La mesure des fluctuations (bruit) du courant dans les bras de sortie permet de caractériser les interférences à deux électrons se produisant sur la lame séparatrice. De cette manière, on réalise l'analogue électronique de l'interféromètre de Hong-Ou-Mandel (HOM). Il apparaît que le contraste de la figure d'interférence dépend de la forme des paquets d'onde injectés. Cette perte de cohérence est imputée au couplage capacitif, dû à l'interaction coulombienne, entre le canal de bord externe et les autres canaux de bord co-propageants, qui constituent un environnement contrôlé pour le canal externe. Afin de valider cette hypothèse, une seconde expérience est réalisée. La capacité mésoscopique y est utilisée dans un autre régime de fonctionnement, dans lequel elle permet de générer une excitation collective de la densité de charge du canal externe, appelée magnéto-plasmon de bord. En caractérisant la propagation du magneto-plasmon de bord en fonction de la fréquence d'excitation, on peut sonder l'interaction Coulombienne entre deux canaux de bord. Ces mesures montrent que cette interaction est responsable de l'apparition de deux modes propres de la propagation : un mode "chargé" rapide et un mode "neutre" lent. Elles permettent de caractériser quantitativement la vitesse de propagation du mode neutre. Les résultats de cette seconde expérience sont ensuite utilisés pour établir que la perte de contraste, observée dans l'expérience HOM, est essentiellement due à l'interaction entre canaux de bord. Ce couplage est responsable de la destruction des quasi-particules injectées par la source, un électron se séparant (ou fonctionnalisant) en deux pulses de charge e/2 au fil de sa propagation. Durant le processus de fractionnalisation, l'état généré dans le canal de bord externe s'intrique avec son environnement (canaux de bord co-propageants) entraînant la réduction du contraste dans l'expérience HOM. Ces observations ouvrent la voie à de nouvelles expériences plus complexes telles que la tomographie de l'état du paquet d'onde sur la lame séparatrice (pour valider complètement le scénario de destruction des quasi-particules) ou la protection de la cohérence de l'état dans le canal de bord externe. / This manuscript is devoted to the study of the decoherence of single electronic wavepackets injected in a balistic quantum conductor. The single electrons are emitted on-demand using a mesoscopic capacitor in the outer edge channel of the integer quantum Hall effect. Two independent and synchronized sources are located on the input arms of an electronic beam-splitter. The measurement of the current fluctuations (noise) in the output arms allows for the characterization of two-electron interferences occuring on the beam-splitter. This realizes the electronic analog of the Hong-Ou-Mandel (HOM) interferometer. It appears that the contrast of the interference pattern depends on the shape of the emitted wavepackets. This loss of electronic coherence is caused by the capacitive coupling, due to the Coulomb interaction, between the outer edge channel and the other channels, which constitute a controlled environment for the outer channel. In order to validate this scenario, a second experiment has been realized. The mesoscopic capacitor is used in a different regime, in which it generates a collective charge density wave called edge magnetoplasmon. By characterizing the propagation of the edge magnetoplasmon as a function of frequency, one can probe the Coulomb interaction between the channels. The measurements show that this interaction is responsible for the appearance of two propagating eigenmodes: a fast charge mode and a slow neutral mode, and provide the determination of the slow mode velocity. The results of this second experiment are then used to establish that the reduction of the contrast observed in the HOM experiment is caused by this interchannel interaction. It is responsible for the destruction of the quasiparticles emitted by the source which fractionalize in charge pulses of charge e/2 along propagation. During the fractionalization process, the state generated in the outer channel gets entangled with the environment (other channels), hence reducing the contrast in the HOM experiment. More complex experiments, such as the tomography of the emitted electornic wavepacket to validate the full decoherence scenario, or the implementation of decoherence protection schemes can be envisioned in the future.
124

Effet de l'intrication brouillée sur la téléportation quantique

Coiteux-Roy, Xavier 12 1900 (has links)
La téléportation quantique promet d'être centrale à de nombreuses applications du futur tels la cryptographique quantique et l'ordinateur quantique. Comme toute mise en œuvre physique s'accompagne inévitablement d'imperfections expérimentales, on étudie la téléportation dans un contexte où la ressource quantique, c'est-à-dire l'intrication, que l'on consomme est brouillée. Pour ce faire, on introduit en premier lieu le formalisme de l'informatique quantique. En seconde partie, on approche les protocoles de téléportation quantique standard, de téléportation avec relais quantiques et de téléportation multi-ports. Notre analyse de la téléportation standard et de la téléportation multi-ports poursuit trois objectifs principaux. Le premier est de comparer l'emploi d'un canal brouillé pour la téléportation d'un état quantique avec l'utilisation de ce même canal pour l'envoi direct de l'état. On trouve ainsi les conditions pour lesquelles les deux protocoles de transmission sont équivalents. Le second but est d'observer le caractère non-local de l'intrication brouillée en regardant quand et comment Alice peut réduire le bruit chez elle à un bruit exclusivement chez Bob. En troisième, on quantifie par une borne inférieure la qualité d'un canal de téléportation en réduisant l'effet de toute intrication brouillée à celui d'un bruit de Pauli à un seul paramètre. On accomplit cette tâche en effaçant au moment approprié l'information classique superflue et en appliquant la wernerisation. Finalement, on analyse la composition de bruits de Pauli et l'effet du taux d'effacement sur la téléportation avec relais quantiques pour mieux comprendre comment se combinent les effets de l'intrication brouillée dans un réseau de téléportation quantique. La suite logique est d'établir des protocoles plus robustes de téléportation quantique qui prennent en compte l'effet de l'intrication brouillée. / Quantum teleportation will be a centerpiece of practical quantum cryptography and quantum computing in a soon to be future. As no physical implementation is perfect, we study quantum teleportation in the context of impaired quantum resources which we call noisy entanglement. In a first part, we introduce how quantum mechanics is formalized by quantum information theory. In the second part, we study standard quantum teleportation, in both the absence and presence of quantum repeaters, as well as port-based teleportation. Our analysis of standard quantum teleportation and port-based teleportation follows three main directions. The first goal is to compare the use of a noisy channel for teleportation to the one of the same channel for direct transmission. We thus find the conditions under which the two cases are equivalent. Our second objective is to observe the non-local properties of noisy entanglement by finding when and how Alice can blame Bob for her noise. Thirdly, we quantify, in the worst-case scenario, the quality of a teleportation channel by reducing the effect of any noisy entanglement to the one of a one-parameter Pauli channel that can be interpreted as a depolarizing channel in most instances. We achieve this task by erasing unneeded classical information at the appropriate time and by twirling either the entanglement or the teleported state. Finally, we analyze the composition of Pauli noises and the impact of the erasure channel parameter on the protocol of teleportation with quantum repeaters. We thus aim to understand how the effects of noisy entanglement cumulate in a teleportation network. The next logical step is to create robust teleportation schemes that take into account the effects of noisy entanglement.
125

Transverse electron beam dynamics in the beam loading regime

Köhler, Alexander 11 July 2019 (has links)
GeV electron bunches accelerated on a centimeter scale device exemplify the extraordinary advances of laser-plasma acceleration. The combination of high charges from optimized injection schemes and intrinsic femtosecond short bunch duration yields kiloampere peak currents. Further enhancing the current while reducing the energy spread will pave the way for future application, e.g. the driver for compact secondary radiation sources such as high-field THz, high-brightness x-ray or gamma-ray sources. One essential key for beam transport to a specific application is an electron bunch with high quality beam parameters such as low energy spread as well as small divergence and spot size. The inherent micrometer size at the plasma exit is typically sufficient for an efficient coupling into a conventional beamline. However, energy spread and beam divergence require optimization before the beam can be transported efficiently. Induced by the high peak current, the beam loading regime can be used in order to achieve optimized beam parameters for beam transport. / In this thesis, the impact of beam loading on the transverse electron dynamic is systematically studied by investigating betatron radiation and electron beam divergence. For this reason, the bubble regime with self-truncated ionization injection (STII) is applied to set up a nanocoulomb-class laser wakefield accelerator. The accelerator is driven by 150TW laser pulses from the DRACO high power laser system. A supersonic gas jet provides a 3mm long acceleration medium with electron densities from 3 × 10^18 cm^−3 to 5 × 10^18 cm^−3. The STII scheme together with the employed setup yields highly reproducible injections with bunch charges of up to 0.5 nC. The recorded betatron radius at the accelerator exit is about one micron and reveals that the beam size stays at the same value. The optimal beam loading, which is observed at around 250 pC to 300 pC, leads to the minimum energy spread of ~40MeV and a 20% smaller divergence. It is demonstrated that an incomplete betatron phase mixing due to the small energy spread can explain the experimentally observed minimum beam divergence.
126

On Quantum Simulators and Adiabatic Quantum Algorithms

Mostame, Sarah 28 November 2008 (has links)
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small – which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover’s search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.
127

Implementing two-qubit gates along paths on the Schmidt sphere

Johansson Saarijärvi, Max January 2022 (has links)
Qubits (quantum bits) are what runs quantum computers, like a bit in classical computers. Quantum gates are used to operate on qubits in order to change their states. As such they are what ”programmes” a quantum computer. An unfortunate side effect of quantum physics is that coupling a quantum system (like our qubits) to an outside environment will lead to a certain loss of information. Reducing this decoherence effect is thus vital for the function of a quantum computer. Geometric quantum computation is a method for creating error robust quantum gates by using so called geometric phases which are solely reliant on the geometry of the evolution of the system. The purpose of this project has been to develop physical schemes of geometric entangling two-qubit gates along the Schmidt sphere, a geometric construct appearing in two-qubit systems. Essentially the overall aim has been to develop new schemes for implementing robust entangling quantum gates solely by means of interactions intrinsic to the computational systems. In order to create this gate four mutually orthogonal states were defined which together spanned the two-qubit state space. Two of the states were given time dependent variables containing a total of two angles,which were used to parameterize the Schmidt sphere. By designing an evolution for these angles that traced out a cyclical evolution along geodesic lines a quantum gate with exclusively geometric phases could be created. This gate was dubbed the ”Schmidt gate” and could be shown to be entangling by analyzing a change in the concurrence of a two qubit system. Two Hamiltonians were also defined which when acted upon the predefined system of states would give rise to the aforementioned evolution on the Schmidt sphere. The project was successful in creating an entangling quantum gate which could be shown by looking at difference in the concurrence of the input and output state of a two-qubit system passing through the gate.
128

The Collapse of Decoherence : Can Decoherence Theory Solve The Problems of Measurement?

Herlin, Karl January 2023 (has links)
In this review study, we ask ourselves if decoherence theory can solve the problems of measurement in quantum mechanics. After an introduction to decoherence theory, we present the problem of preferred basis, the problem of non-observability of interference and the problem of definite outcomes. We present Zurek's theory of environment induced superselection rules and find that the problem of preferred basis and the problem of non-observability of interference can be solved through decoherence theory, but not the problem of outcomes, if we accept the eigenstate-eigenvalue link and the Born statistical interpretation. We reveal that these two concepts are essential in the Copenhagen interpretations of quantum mechanics, and give an account for von Neumann's and Wigner's conscious collapse interpretation as well as a detailed description of Bohr's and Heisenberg's interpretation. We discuss how Bohr's and Heisenberg's interpretation relates to decoherence with a special emphasis on the irreducibility of classical concepts as interpreted by Don Howard. During the discussion, we critique Wigner's use of the word "consciousness" as opposed to von Neumann's use, as well as Howard's decisively ontological approach to Bohr through an antithetical Kantian approach. We conclude by stating that decoherence theory cannot decisively solve the problem of definite outcomes of quantum mechanics, even when considering it in relation to the Copenhagen interpretation.
129

Gravitational Decoherence in Macroscopic Quantum Systems

Engelhardt Önne, Niklas January 2023 (has links)
The problem of how quantum mechanics gives rise to classicality has been debated for more than a century. A commonly proposed solution is decoherence, i.e. the gradual decay of superpositions in open quantum systems due to their inevitable interaction with their environment. However, the ability of decoherence to account for all aspects of the classical world is often questioned. A recently proposed model suggests that decoherence can occur even in isolated composite systems subject to gravitational time dilation, something which has sparked a debate. In this thesis we attempt to identify the precise role of decoherence in the quantum-to-classical transition (QTCT) and then use the result to analyze the validity of the newly proposed time dilation-induced decoherence mechanism. We find that the problem of the QTCT can be divided into two parts and that decoherence solves the first of these whereas the second is unsolvable without fundamental modifications to quantum theory. Moreover, we argue that the effect is fundamentally frame-dependent and we find a general formula for the rate of decoherence of macroscopic superpositions in the case where both the system and observer use Rindler coordinates. The result suggests that the frame-dependence may be utilized to increase the strength of the effect in experimental settings. Finally, the possibilities of experimental verification are discussed and we argue that recent advances in quantum measurement techniques in gravitational-wave observatories may enable tests of gravitational decoherence in the near future, finally providing an empirical glimpse into the resolution of one of the most critical debates in all of physics. / Huruvida kvantfysiken kan ge uppkomst till den klassiska fysiken på stora skalor är ett problem som diskuterats under mer än ett århundrade. En föreslagen lösning är dekoherens, alltså det gradvisa sönderfallet av superpositioner i öppna kvantsystem på grund av den oundvikliga interaktionen med deras omgivning. Dekoherensens förmåga att förklara alla delar av den klassiska världen ifrågasätts emellertid fortfarande. De senaste åren har en ny effekt uppmärksammats som tyder på att dekoherens även kan uppstå i isolerade kompositsystem under påverkan av gravitationell tidsdilatation, något som orsakat en debatt i litteraturen. I detta arbete försöker vi identifiera dekoherensens roll i övergången från det kvantmekaniska till det klassiska, och vi använder sedan resultatet för att analysera den ovannämnda gravitationella dekoherensmekanismen. Det allmänna problemet med övergången från kvantfysik till klassisk fysik delas upp i två delar, och vi visar att dekoherens löser den första delen; den andra delen visar sig vara olösbar utan fundamentala förändringar av kvantfysikens ramverk. Vidare visas den gravitationella dekoherenseffekten vara observatörsberoende och vi härleder en allmän formel för takten med vilken makroskopiska superpositioner sönderfaller i de fall då både systemet och observatören använder Rindlerkoordinater. Resultaten tyder på att observatörsberoendet eventuellt kan utnyttjas för att öka effektens styrka i experimentalla sammanhang. Slutligen diskuteras möjligheter att experimentellt verifiera effekten; vi argumenterar för att nya genombrott inom kvantmätteknik i gravitationsvågsobservatorium kan möjliggöra tester av gravitationell dekoherens inom en snar framtid, vilket skulle ge oss en första empirisk inblick i lösningen till en av fysikens mest kritiska debatter.
130

Coherent transfer between electron and nuclear spin qubits and their decoherence properties

Brown, Richard Matthew January 2012 (has links)
Conventional computing faces a huge technical challenge as traditional transistors will soon reach their size limitations. This will halt progress in reaching faster processing speeds and to overcome this problem, require an entirely new approach. Quantum computing (QC) is a natural solution offering a route to miniaturisation by, for example, storing information in electron or nuclear spin states, whilst harnessing the power of quantum physics to perform certain calculations exponentially faster than its classical counterpart. However, QCs face many difficulties, such as, protecting the quantum-bit (qubit) from the environment and its irreversible loss through the process of decoherence. Hybrid systems provide a route to harnessing the benefits of multiple degrees of freedom through the coherent transfer of quantum information between them. In this thesis I show coherent qubit transfer between electron and nuclear spin states in a <sup>15</sup>N@C<sub>60</sub> molecular system (comprising a nitrogen atom encapsulated in a carbon cage) and a solid state system, using phosphorous donors in silicon (Si:P). The propagation uses a series of resonant mi- crowave and radiofrequency pulses and is shown with a two-way fidelity of around 90% for an arbitrary qubit state. The transfer allows quantum information to be held in the nuclear spin for up to 3 orders of magnitude longer than in the electron spin, producing a <sup>15</sup>N@C<sub>60</sub> and Si:P ‘quantum memory’ of up to 130 ms and 1.75 s, respectively. I show electron and nuclear spin relaxation (T<sub>1</sub>), in both systems, is dominated by a two-phonon process resonant with an excited state, with a constant electron/nuclear T<sub>1</sub> ratio. The thesis further investigates the decoherence and relaxation properties of metal atoms encapsulated in a carbon cage, termed metallofullerenes, discovering that exceptionally long electron spin decoherence times are possible, such that these can be considered a viable QC candidate.

Page generated in 0.0171 seconds