• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 70
  • 14
  • 12
  • 7
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 100
  • 22
  • 21
  • 20
  • 20
  • 20
  • 19
  • 18
  • 17
  • 17
  • 17
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Estudo histomorfométrico do efeito da injeção de dexametasona na fase tardia de cicatrização de prega vocal de coelho / Histomorphometric study of chronic wound healing in rabbit vocal fold after steroid injection

Marystella Tomoe Takahashi-Ramos 09 June 2014 (has links)
INTRODUÇÃO: Apesar dos avanços recentes nas técnicas e instrumentos de fonomicrocirurgia, cicatriz de prega vocal é a principal causa de persistência ou recorrência de disfonia após a microcirurgia de laringe. A cicatriz de prega vocal continua sendo um dos maiores desafios da laringologia, uma vez que ainda não existe um tratamento consistentemente eficaz para restaurar a função vocal adequadamente. Muitos cirurgiões fazem uso empírico de injeções de corticosteroides na prega vocal durante a fonomicrocirurgia, na tentativa de evitar ou reduzir a formação de cicatriz, apesar da inexistência de evidências científicas que justifiquem seu uso. Em estudo prévio realizado na Disciplina de Otorrinolaringologia da Faculdade de Medicina da Universidade de São Paulo, a injeção intracordal de corticosteroide intraoperatória levou à redução significativa de deposição de colágeno, sem diferença no número de células inflamatórias, no terceiro e sétimo dia de pós-operatório. Desconhece-se, no entanto, se essas alterações persistem em fases mais tardias da cicatrização da prega vocal. O objetivo deste estudo foi, portanto, investigar a existência de benefícios em longo prazo da injeção intralesional de corticosteroide no processo cicatricial da prega vocal. MÉTODO: catorze coelhos albinos machos da raça New Zealand foram submetidos a incisão em toda extensão das pregas vocais seguida de injeção de dexametasona na prega vocal direita. A prega vocal esquerda não recebeu injeção e serviu como controle. As laringes foram excisadas em dois períodos: sete e 180 dias de pós-operatório. A coloração de hematoxilina-eosina foi utilizada para a análise quantitativa da resposta inflamatória e o método de Picrossírius-polarização para análise quantitativa e descritiva de deposição de colágeno. RESULTADOS: Houve um aumento não significativo na quantidade de células inflamatórias na prega vocal tratada com corticosteroide no grupo sacrificado no 7º dia de pós-operatório. Não foram observadas diferenças significativas na resposta inflamatória entre as pregas vocais do grupo sacrificado no 180º dia de pós-operatório ou quando os grupos sacrificados no 7º e 180º dia foram comparados. Foi observada tendência à redução na deposição de colágeno na prega vocal tratada no 7º dia de pós-operatório, o que não ocorreu na avaliação do 180º dia. Não foram observadas diferenças significativas quando os grupos foram comparados entre si (grupo sacrificado no 7º dia versus grupo sacrificado no 180º dia). As pregas vocais que receberam injeção de dexametasona apresentaram melhor organização e menor espessura das fibras de colágeno do que as pregas vocais controle, tanto na avalição do 7º quanto 180º dia de pós-operatório. CONCLUSÃO: Os resultados deste estudo sugerem que, embora a injeção intracordal de corticosteroide não tenha tido impacto significativo sobre a quantidade de células inflamatórias ou taxa de deposição de colágeno, ela propiciou uma melhor organização e menor espessura das fibras de colágeno na fase crônica da cicatrização / INTRODUCTION: Despite recent advances in phonosurgery techniques and instruments, vocal fold scar is the greatest cause of poor voice outcome following laryngeal surgery. Vocal fold scarring remains one of the most challenging problems in the clinical practice of laryngology, since a consistently effective treatment to restore adequate vocal function has not been established yet. Many surgeons empirically use corticosteroid submucosal injection during phonosurgery in an attempt to prevent scar formation despite the lack of evidence to support its use. In a previous study conducted in the Discipline of Otorhinolaryngology of University of Sao Paulo School of Medicine, intracordal corticosteroid injection immediately after injury led to significantly reduced collagen deposition with no change in number of inflammatory cells at the third e seventh day post-lesion in a rabbit model. It is not known, however, if these findings persist on later phases of wound healing. Thus, the purpose of this study was to investigate the existence of long-term benefits from the use of intracordal corticosteroid injection in the wound healing process of the vocal folds. METHODS: Fourteen male albino New Zealand rabbits underwent bilateral vocal fold incision followed by dexamethasone injection into the right vocal fold. The left vocal fold was not injected and served as control. Larynges were harvested at two time points: seven (group 1) and 180 days (group 2). Hematoxylin-eosin staining was used for quantitative analysis of inflammatory response and Picrosirius polarization method for quantitative and descriptive analysis of collagen deposition. RESULTS: There was a non-significant increase in inflammatory cells in the steroid-treated vocal fold on day 7. No significant differences in the inflammatory response were observed between vocal folds on day 180 or when group 1 was compared with group 2. There was a trend for reduction in collagen deposition in the treated vocal folds on day 7, but no significant difference on day 180. No significant difference was observed when group 1 (day 7) was compared with group 2 (day 180). Collagen fibers were better organized and thinner in the steroid-treated vocal fold in both time points of sacrifice. CONCLUSION: The present results suggest that, although corticosteroid intracordal injection has no significant impact on the number of inflammatory cells or collagen rate deposition, it leads to a better and more organized arrangement of collagen fibers on chronic phase of wound healing _________________________________________
222

Participação das proteínas AS160 e Rab27A na secreção de insulina de ratos controles e insulino-resistentes por dexametasona / Participation of protein AS160 and Rab 27A in insulin secretion in control rats and insulin-resistant by dexamethasone

Purificação, Thais Almeida, 1980- 20 August 2018 (has links)
Orientadores: Antonio Carlos Boschiero, Alex Rafacho / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-20T10:53:44Z (GMT). No. of bitstreams: 1 Purificacao_ThaisAlmeida_M.pdf: 1255549 bytes, checksum: 5142cacf6ca932aa0dd1a86b9eef5074 (MD5) Previous issue date: 2012 / Resumo: Administração de glicocorticóides em roedores e humanos aumenta a resistência à insulina (RI). A RI, provocada por dexametasona, leva a hiperinsulinemia por aumento da secreção do hormônio pelas ilhotas pancreáticas. Recentemente, demonstrou-se que a AS160, uma GAP (proteína ativadora de GTPase), participa no tráfego de vesículas em diferentes tipos celulares que, por sua vez, pode ser alterado por dexametasona. Neste trabalho, avaliamos possível participação da AS160 na secreção de insulina em ilhotas de ratos RI por dexametasona, para isto foram avaliadas proteínas envolvidas no processo de secreção; pAS160, Akt e AMPK. Ratos Wistar adultos foram tratados com o glicocorticóide (DEX) com 1mg/kg (ip) de peso corporal, ou salina (CTL), durante 5 dias. Ao final do período de tratamento, os ratos foram submetidos a um Teste de Tolerância à Glicose intraperitoneal (ipGTT) e, após sacrifício, amostras de sangue foram coletadas para dosagem de insulina. As ilhotas pancreáticas foram isoladas por digestão do pâncreas com colagenase. As proteínas insulares foram avaliadas por Western Blot e os genes por RCP-TR. A insulina, contida nas amostras de sangue e nas incubações de ilhotas, foi medida por radioimunoensaio (RIA). A razão pAS160/AS160 foi aumentada nas ilhotas DEX (P<0,05). Nestas ilhotas, resultados semelhantes foram observados para a razão pAkt/Akt (P<0,05). O tratamento com DEX também aumentou a expressão gênica e protéica da Rab27A (P<0,05), contudo, reduziu significativamente sua associação com a AS160 (P<0,05). A associação entre essas duas proteínas foi observada pela primeira vez nas ilhotas neste trabalho. O tratamento com DEX também reduziu as expressões gênica e protéica bem como a fosforilação da AMPK. A secreção de insulina foi maior nas ilhotas DEX comparado à CTL e, em ambas, a secreção foi diminuída pela wortmanina (inibidor da PI3K). Ilhotas de ratos CTL e DEX, tratados com anti-sense anti-AS160, tiveram o conteúdo protéico da AS160 reduzido em ± 80%, comparado ao CTL (P<0,05). Nas ilhotas de ratos CTL knockdown, a secreção de insulina foi maior que nos CTL e, nas ilhotas dos DEX knockdown a secreção foi semelhante às DEX. Concluindo, o aumento da secreção de insulina em ilhotas de ratos RI por dexametasona envolve a participação da AS160 e, essa potencialização parece ser mediada pela via PI3K/Akt. Esse aumento de secreção parece também ser diretamente proporcional ao aumento da dissociação entre a Rab27A e a AS160 / Abstract: It is well known that glucocorticoids induce insulin resistance (IR). It is also known that dexamethasone-induced IR is linked to increased levels of plasma insulin due to higher insulin secretion by pancreatic islets. Recent findings show that the Rab-GTPase AS160 plays a role in the traffic of vesicles in different cells type that, in turn, may be affected by dexamethasone. Here, we evaluated the participation of AS160 in the insulin secretion in islets from dexamethasone treated rats. Adult rats were treated with dexamethasone (DEX) with 1.0 mg/kg, body weight (ip) or saline (CTL) for 5 consecutive days. Insulin resistance was evaluated by intraperitoneal Glucose Tolerance Test (ipGTT). After, the rats were sacrificed and the islets isolated by the digestion of their pancreases with collagenase. Protein was measured by Western- Blot, and insulin by RIA. AS160 expression, phosphorylation, and the pAS160/AS160 ratio were increased in DEX islets (P<0.05). Similar results were observed for Akt (P<0.05). Dexamethasone also increased Rab27a protein and gene expression but significantly reduced its association with AS160. The association between these two proteins was observed in pancreatic islets for the first time in this work. AMPK gene and protein expression as well as phosphorylation were reduced by Dexamethasone (P<0.05). The insulin secretion was higher in DEX compared with CTL islets (P<0.05). Both secretions were reduced by wortmanin. Islets from CTL and DEX rats, treated with anti-sense anti-AS160, showed ± 80% reduction on its expression. The CTL knockdown islets secreted more insulin than CTL and the DEX knockdown secreted similar amount of insulin than DEX islets. In conclusion, these results indicated that AS160 participates in the increased insulin secretion in islets from DEX rats, and this effect seems to be dependent on the activation of the PI3K/Akt pathway. The increase in insulin secretion also depends on the dissociation between Rab27a and AS160 / Mestrado / Fisiologia / Mestre em Biologia Funcional e Molecular
223

Efeito protetor da dexametasona na lesão pulmonar induzida pela ventilação mecânica em ratos wistar

Reis , Fernando Fonseca dos 04 August 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-12T10:40:54Z No. of bitstreams: 1 fernandofonsecadosreis.pdf: 924331 bytes, checksum: 98e7db5298b53ee7d673e1dcf9a8a468 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:13:54Z (GMT) No. of bitstreams: 1 fernandofonsecadosreis.pdf: 924331 bytes, checksum: 98e7db5298b53ee7d673e1dcf9a8a468 (MD5) / Made available in DSpace on 2016-01-25T17:13:54Z (GMT). No. of bitstreams: 1 fernandofonsecadosreis.pdf: 924331 bytes, checksum: 98e7db5298b53ee7d673e1dcf9a8a468 (MD5) Previous issue date: 2015-08-04 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Introdução: A lesão pulmonar induzida pela ventilação (VILI) é caracterizada por uma resposta inflamatória secundária ao stress/strain não fisiológicos impostos aos pulmões durante a ventilação mecânica. Apesar do conhecimento de que após a retirada do estímulo lesivo, os pulmões tendem a se recuperar, os efeitos de medicações anti-inflamatórias nesta recuperação ainda são incertos. Objetivo: Avaliar o efeito da dexametasona nas trocas gasosas, edema, inflamação e histologia pulmonar em diferentes momentos após indução da VILI, em ratos Wistar. Métodos: Os animais foram inicialmente alocados em dois grupos conforme recebessem dexametasona (grupo dexametasona – GD, n=26) ou salina (grupo controle – GC, n=31) intraperitoneal (i.p.). Após 30 minutos, os animais foram ventilados durante 1 hora, para indução da VILI, com os seguintes parâmetros: volume corrente (VT) de 35 ml/Kg, pressão positiva ao final da expiração (PEEP) de 0 cmH2O, frequência respiratória (FR) de 18 /min e fração inspirada de oxigênio (FIO2) de 100%. Em seguida os grupos GD e GC foram alocados para serem eutanasiados em diferentes momentos: 0h, 4h, 24h e 168h após a ventilação lesiva. Antes da eutanásia, eles foram anestesiados e ventilados por 10 minutos (VT de 6 ml/kg, FR de 80 /min, PEEP de 2 cmH2O, FIO2 de 100%), para estabilização e coleta da gasometria. Após a eutanásia, foram analisados o edema pulmonar, a citologia do lavado broncoalveolar (LBA) e a histologia pulmonar. Um grupo sham (GS, n=6), foi ventilado por 10 minutos com os mesmos parâmetros e analisado para comparação com os grupos GD e GC. Resultados: VILI foi observada no GC, o qual apresentou um maior escore de lesão pulmonar aguda comparada com GS em 0h, 4h e 24h (p <0,05). A dexametasona reduziu a injúria pulmonar, e o escore no GD não foi significativamente diferente do GS, e foi menor que no GC 4h e 24h (p < 0,05). A contagem de neutrófilos no LBA aumentou tanto no GC quanto no GD, atingindo pico 4h após VM (p < 0,05). No entanto, a contagem de neutrófilos atingiu menores níveis no GD comparado com GC em 4h e 24h (p < 0,05). A dexametasona também atenuou o prejuízo na oxigenação que foi observado no GC imediatamente após a VM lesiva. Conclusões: Neste modelo experimental, a dexametasona reduziu a inflamação e a lesão pulmonar induzida pela ventilação mecânica com alto VT, resultando em melhor oxigenação após a VILI. Estes resultados reforçam a importância do biotrauma na patogênese da VILI, e a necessidade do estudo de terapias anti-inflamatórias para prevenção e tratamento dessa condição. / Introduction: Ventilator induced lung injury (VILI) is characterized by inflammatory response to a non-physiological stress/strain imposed to the lungs, during mechanical ventilation (MV). Although it is known that, after the removal of the harmful stimulus, the lungs tend to recover, the effects of anti-inflammatory drugs on this recovery is still uncertain. Objectives: To evaluate the effects of dexamethasone on arterial blood gases, edema, inflammation, and lung histology at different times after VILI induction in Wistar rats. Methods: The animals were initially allocated into two groups according to the intraperitoneal administration of dexamethasone (dexamethasone group – DG, n=26), or saline (control group – CG, n=31). After 30 minutes, VILI was induced by one hour of MV with the following settings: tidal volume (VT) of 35 ml/Kg, respiratory rate (RR) of 18 /min, positive end-expiratory pressure (PEEP) of 0 cmH2O, and fraction of inspired oxygen (FIO2) of 100%. Then, the animals in the DG and the CG groups were allocated to be submitted to euthanasia at different times: 0, 4, 24 and 168 hours, after the injurious MV. Before euthanasia, they were anesthetized and ventilated for 10 minutes (VT of 6 ml/kg, RR of 80 /min, PEEP of 2 cmH2O, FIO2 of 100%) for stabilization, and arterial blood gases analysis. After euthanasia, lung edema, total and differential cell count in the bronchoalveolar lavage (BAL) fluid and lung histology were analyzed. A sham group (SG, n=6) was ventilated for 10 minutes with the same settings, and analyzed for comparisons with the CG and DG groups. Results: VILI was observed in the CG, which presented a higher acute lung injury score compared to the SG, at 0h, 4h and 24h (p <0.05). The dexamethasone decreased the lung injury, and the score in the DG was not significantly different from the SG, and was lower than the CG 4h and 24h (p <0.05). BAL neutrophil counts increased both in the CG and in the DG, peaking at 4h after MV (p < 0.05). However, the neutrophil counts reached lower levels in DG, compared to CG at 4h and 24h (p <0.05). Dexamethasone also improved the oxygenation impairment that was seen in the CG immediately after the injurious MV. Conclusions: In this experimental model, dexamethasone decreased the inflammation and the lung injury induced by mechanical ventilation with high VT. These findings highlight the importance of the biotrauma in the VILI pathogenesis, and the necessity of carrying out researches on anti-inflammatory therapies to prevent and treat this condition.
224

Stabilisierung des Stoffwechsels bei Milchkühen im peripartalen Zeitraum

Leidel, Ines 02 February 2016 (has links)
Einleitung: Bei Milchkühen häufen sich Erkrankungen in der Frühlaktation. Sie gehören zu den wichtigsten Ursachen frühzeitiger Merzung und damit der aktuell unbefriedigenden Nutzungsdauer. Ziele der Untersuchungen: Ziel dieser Arbeit war es, den Stoffwechsel von Milchkühen in der kritischen Übergangszeit vom Trockenstehen zur Laktation (Transitphase) durch drei verschiedene prophylaktische Maßnahmen zu stabilisieren: mittels Huminsäuren Belastungen aus dem Darm einschließlich Endotoxinen zu mindern, mit einem Ammoniumpropionat-Propylenglykol- Gemisch die Energieversorgung zu verbessern sowie mit Dexamethason-21-isonicotinat die Stoffwechselfunktion der Leber zu fördern sowie gleichzeitig Entzündungsprozesse infolge der Kalbung zu hemmen. Materialien und Methoden: Die Untersuchungen wurden in einem sächsischen Bestand an 312 Kühen der Rasse „Holstein Friesian“ randomisiert innerhalb eines Jahres durchgeführt. An jeweils 78 Kühe wurden 300 ml Ammoniumpropionat-Propylenglykol-Gemisch(C3) täglich vom 14. Tag ante partum (a.p.) bis zum 14. Tag post partum (p.p.) oral verabreicht; ebenfalls oral wurden 100 g Huminsäure-Fertigpräparat (HS-FP) bzw. 50 g Huminsäuren-Rohstoff (HS-RS) im selben Zeitraum appliziert, und Dexamethason-21-isonicotinat (DEXA21) wurde einmalig am 1. Tag p.p. intramuskulär in der Dosierung 0,02 mg/kg Körpermasse verabreicht. 78 unbehandelte Kühe dienten als Kontrollgruppe. Die Auswirkungen dieser Maßnahmen auf Gesundheit, Leistung und Stoffwechsel wurden durch klinische Untersuchungen, durch Blutkontrollen am 14. Tag a.p., am 3. und 28. Tag p.p. (Leukozyten, freie Fettsäuren [FFS], Bilirubin, ß-0H-Butyrat[BHB], Glucose, Cholesterol, Creatinkinase [CK], Aspartat-Amino-Transferase [ASAT], Glutamat-Dehydrogenase [GLDH], gamma-Glutaryl-Transferase [GGT], Protein, Albumin, Mg, Fe, Ca, anorganisches Phosphat [Pi], Na, K) sowie durch die Erfassung von Gesundheitsstatus, Milchleistung und Fruchtbarkeit zu bestimmten Zeitpunkten geprüft. Ergebnisse: Die verschiedenen prophylaktischen Maßnahmen hatten keinen signifikanten Einfluss auf Fruchtbarkeits- und Gesundheitsparameter. Bei den absoluten und fettkorrigierten Milchmengen konnten ebenfalls keine statistisch gesicherten Unterschiede zwischen den Versuchsgruppen und der Kontrollgruppe festgestellt werden. Der Milcheiweißgehalt von C3 28 d p.p. sowie der Milchfettgehalt von DEXA21 und C3 100 d p.p. waren signifikant erhöht. Die Ergebnisse der Blutuntersuchungen ergaben hauptsächlich am 3., aber auch am 28. Tag p.p. gesicherte Unterschiede bei wichtigen Stoffwechselparametern wie Glucose, Cholesterol, Bilirubin, Protein, Albumin, Ca, Fe und CK. Die einmalige Gabe von Dexamethason-21-isonicotinat am 1. Tag p.p. hatte den besten Einfluss auf den Leber- und Energiestoffwechsel. In dieser Gruppe waren am 3. Tag p.p. die Glucose-, Bilirubin-, Cholesterol-, Protein, Ca- und Fe-Konzentrationen sowohl gegenüber der KG wie auch gegenüber allen anderen Versuchsgruppen signifikant günstiger. Für die Albumin- und Na-Konzentrationen sowie die CK-Aktivität traf das gegenüber der Kontroll- sowie der C3-Gruppe zu. Der Einsatz der Wirkstoffe mit HS-RS, HS-FP sowie C3 führte ebenfalls zu positiven Effekten auf die Leistung und den Stoffwechsel gegenüber der Kontrollgruppe, jedoch ließen sich diese nur in wenigen Fällen statistisch sichern. Schlussfolgerungen: Die Applikation von Dexamethason-21-isonicotinat einen Tag p.p. stabilisiert signifikant den Stoffwechsel von Kühen nach dem Partus. Gleichartige Effekte auf Milch- und Fruchtbarkeitsleitung sowie die Morbidität konnten nicht gesichert nachgewiesen werden. Für Huminsäure-Rohstoff, Huminsäure-Fertigpräparat sowie Ammoniumpropionat-Propylenglykol-Gemisch waren solche Effekte tendenziell erkennbar, statistisch aber nicht zu sichern. Auch wenn besonders mit Dexamethason-21-isonicotinat der Stoffwechsel in Belastungssituationen kurzfristig stabilisiert werden kann, müssen generell Haltung und Fütterung analysiert sowie Mängel beseitigt werden.:Inhaltsverzeichnis Inhaltsverzeichnis .I Abkürzungsverzeichnis IV 1 Einleitung .......................................................................................... 1 2 Literaturübersicht ............................................................................. 3 2.1 Stoffwechsel der Milchkuh im geburtsnahen Zeitraum ....................... 3 2.2 Bovine Ketose .................................................................................... 5 2.3 Fettmobilisationssyndrom ................................................................... 7 2.4 Möglichkeiten der Stabilisierung des Stoffwechsels der Milchkuh im geburtsnahen Zeitraum ...................................................................... 9 2.4.1 Allgemeines zur Stoffwechselstabilisierung ........................................ 9 2.4.2 Energiereiche C3-Verbindungen ...................................................... 11 2.4.2.1 Propionat .......................................................................................... 12 2.4.2.2 Propylenglykol .................................................................................. 14 2.4.2.3 Ammoniumpropionat-Propylenglykol-Gemisch ................................ 15 2.4.3 Huminsäuren .................................................................................... 16 2.4.3.1 Einsatz, Vorkommen, Aufbau ........................................................... 16 2.4.3.2 Effekte .............................................................................................. 16 2.4.3.3 Wirkungsweise im Organismus ........................................................ 17 2.4.3.4 Anwendungen in der Veterinärmedizin ............................................. 18 2.4.3.5 Huminsäurenpräparate ..................................................................... 20 2.4.4 Glukokortikoide................................................................................. 21 2.4.4.1 Aufbau .............................................................................................. 21 2.4.4.2 Wirkungsweise ................................................................................. 21 2.4.4.3 Effekte .............................................................................................. 22 2.4.4.4 Dexamethason-21-isonicotinat ......................................................... 25 3 Tiere, Material und Methoden ........................................................ 27 3.1 Untersuchte Tiere, Betrieb, Fütterung .............................................. 27 3.2 Versuchsanordnung, Gruppeneinteilung .......................................... 28 3.3 Entnahme, Aufbereitung und Aufbewahrung der Blutproben ........... 30 3.4 Bestimmung der Blutparameter, Referenzbereiche ......................... 31 3.4.1 Bestimmung der Leistungs-, Gesundheits- und Fruchtbarkeitsparameter .................................................................. 33 3.5 Statistische Prüfung der ermittelten Daten ....................................... 35 4 Ergebnisse ...................................................................................... 36 4.1 Methodische Aspekte ....................................................................... 36 4.1.1 Wertung der Untersuchungsergebnisse kranker und selektierter Kühe ................................................................................................ 36 4.1.2 Akzeptanz der verabreichten Futterzusatzstoffe .............................. 37 4.2 Klinische Befunde ............................................................................. 38 4.3 Leistungsparameter .......................................................................... 41 4.3.1 Milchleistung .................................................................................... 41 4.3.2 Fruchtbarkeit .................................................................................... 44 4.4 Labordiagnostische Parameter......................................................... 45 4.4.1 Energie-Fett-Leberstoffwechsel ....................................................... 45 4.4.1.1 Glucose ............................................................................................ 45 4.4.1.2 Cholesterol ....................................................................................... 47 4.4.1.3 Bilirubin ............................................................................................ 48 4.4.1.4 Beta-Hydroxy-Butyrat ....................................................................... 49 4.4.1.5 Freie Fettsäuren ............................................................................... 50 4.4.1.6 Aspartat-Amino-Transferase ............................................................ 51 4.4.1.7 Gamma-Glutamyl-Transferase ......................................................... 52 4.4.1.8 Glutamat-Dehydrogenase ................................................................ 53 4.4.2 Eiweißstoffwechsel ........................................................................... 54 4.4.2.1 Gesamtprotein .................................................................................. 54 4.4.2.2 Albumin ............................................................................................ 55 4.4.3 Mineralstoff- und Spurenelementstoffwechsel .................................. 56 4.4.3.1 Natrium ............................................................................................. 56 4.4.3.2 Kalium .............................................................................................. 57 4.4.3.3 Calcium ............................................................................................ 58 4.4.3.4 anorganisches Phosphat .................................................................. 59 4.4.3.5 Magnesium ....................................................................................... 60 4.4.3.6 Eisen ................................................................................................ 61 4.4.4 Muskelstoffwechsel .......................................................................... 62 4.4.4.1 Kreatinkinase ................................................................................... 62 4.4.5 Leukozyten ....................................................................................... 63 5 Diskussion ...................................................................................... 64 5.1 Klinische Parameter ......................................................................... 64 5.1.1 Morbidität ......................................................................................... 64 5.1.2 Milchleistung .................................................................................... 67 5.1.3 Fruchtbarkeit .................................................................................... 70 5.2 Klinisch-chemische Parameter, Stoffwechsel ................................... 71 5.2.1 Wirkung von Huminsäuren auf den Stoffwechsel ............................. 71 5.2.2 Wirkung einer energiereichen C3-Verbindung auf den Stoffwechsel 71 5.2.3 Wirkung von Dexamethason-21-isonicotinat auf den Stoffwechsel .. 74 6 Zusammenfassung ......................................................................... 83 7 Summary ......................................................................................... 85 8 Literaturverzeichnis ....................................................................... 87 / Problem: In dairy cattle diseases are common in early lactation. They are among the main causes of early culling and the current unsatisfactory productive life. Objective: The aim of this work was to stabilize metabolism of dairy cows in the critical transition period from standing dry to lactation by three different prophylactic applications: using humic acids to minimize strain from the gut including endotoxins, using ammonium propionate mixed with propylene glycol to improve energy supply and dexamethasone-21-isonicotinate to promote metabolic function of the liver and at the same time to inhibit inflammatory processes following parturition. Experimental design: The studies were performed in a Saxon dairy farm on 312 cows of the „Holstein Friesian\" breed, randomly performed within one year. 78 cows were administered orally 300 ml ammonium propionate mixed with propylene glycol (C3) daily from 14 days before parturition (a.p.) to 14 days after parturition (p.p.), another 78 cows 100 g of a humic acid drug (HS-FP) or 50 g of humic acid raw material (HS-RS) were administered orally in the same period and dexamethasone-21-isonicotinate (DEXA21) was applied intramuscularly to another 78 cows on the first day p.p. in a dose of 0.02 mg/kg body weight. 78 untreated cows were used as control group. The impact of these administrations on health, performance and metabolism has been measured by clinical examinations and blood tests on 14. day a.p., on 3. and 28. day p.p. (Leukocytes, free fatty acids [ FFS ], bilirubin, beta-0H-butyrate [BHB] , glucose, cholesterol, creatine kinase [CK], aspartate aminotransferase [AST], glutamate dehydrogenase [GLDH], gamma glutaryl transferase [GGT], protein, albumin, Mg, Fe, Ca, inorganic phosphate [Pi] , Na, K) and was verified by detection of health status, milk yield and fertility. Results: The different prophylactic administrations had no significant effect on fertility and health parameters. The absolute and fat- corrected milk yields also showed no statistically reliable differences between experimental groups and control group. Milk protein content in C3 28 days p.p. and milk fat content in DEXA21 and C3 100 days p.p. were significantly increased. Blood control results showed mainly on 3. and 28. day p.p. important differences in metabolic parameters, such as glucose, cholesterol, bilirubin, protein, albumin, Ca, Fe and CK, which are statistically secured. A single dose of dexamethasone-21- isonicotinate on first day p.p. had the best effect on liver and energy metabolism. Three days p.p. glucose, bilirubin, cholesterol, protein, Ca and Fe concentrations performed significantly better in DEXA21 group compared both to control group and all other treatment groups. For albumin and Na concentrations and CK activity that was true with respect to control and C3 group. The use of a humic acid drug, humic acid raw material and ammonium propionate mixed with propylene glycol had positive impact on performance and metabolism compared with control group too, but could be statistically secured in only a few cases. Conclusions: The application of dexamethasone-21-isonicotinate at the first day p.p. significantly stabilizes metabolism in cows after parturition. Similar effects on milk yield and fertility as well as morbidity could not be observed. For humic acid drug, humic acid raw material and ammonium propionate mixed with propylene glycol such effects tended to be recognizable, but cannot be statistically secured. Metabolism can be stabilized in short term stress situations with dexamethasone-21-isonicotinate, general care and feeding must be analyzed and deficiencies have to be eliminated.:Inhaltsverzeichnis Inhaltsverzeichnis .I Abkürzungsverzeichnis IV 1 Einleitung .......................................................................................... 1 2 Literaturübersicht ............................................................................. 3 2.1 Stoffwechsel der Milchkuh im geburtsnahen Zeitraum ....................... 3 2.2 Bovine Ketose .................................................................................... 5 2.3 Fettmobilisationssyndrom ................................................................... 7 2.4 Möglichkeiten der Stabilisierung des Stoffwechsels der Milchkuh im geburtsnahen Zeitraum ...................................................................... 9 2.4.1 Allgemeines zur Stoffwechselstabilisierung ........................................ 9 2.4.2 Energiereiche C3-Verbindungen ...................................................... 11 2.4.2.1 Propionat .......................................................................................... 12 2.4.2.2 Propylenglykol .................................................................................. 14 2.4.2.3 Ammoniumpropionat-Propylenglykol-Gemisch ................................ 15 2.4.3 Huminsäuren .................................................................................... 16 2.4.3.1 Einsatz, Vorkommen, Aufbau ........................................................... 16 2.4.3.2 Effekte .............................................................................................. 16 2.4.3.3 Wirkungsweise im Organismus ........................................................ 17 2.4.3.4 Anwendungen in der Veterinärmedizin ............................................. 18 2.4.3.5 Huminsäurenpräparate ..................................................................... 20 2.4.4 Glukokortikoide................................................................................. 21 2.4.4.1 Aufbau .............................................................................................. 21 2.4.4.2 Wirkungsweise ................................................................................. 21 2.4.4.3 Effekte .............................................................................................. 22 2.4.4.4 Dexamethason-21-isonicotinat ......................................................... 25 3 Tiere, Material und Methoden ........................................................ 27 3.1 Untersuchte Tiere, Betrieb, Fütterung .............................................. 27 3.2 Versuchsanordnung, Gruppeneinteilung .......................................... 28 3.3 Entnahme, Aufbereitung und Aufbewahrung der Blutproben ........... 30 3.4 Bestimmung der Blutparameter, Referenzbereiche ......................... 31 3.4.1 Bestimmung der Leistungs-, Gesundheits- und Fruchtbarkeitsparameter .................................................................. 33 3.5 Statistische Prüfung der ermittelten Daten ....................................... 35 4 Ergebnisse ...................................................................................... 36 4.1 Methodische Aspekte ....................................................................... 36 4.1.1 Wertung der Untersuchungsergebnisse kranker und selektierter Kühe ................................................................................................ 36 4.1.2 Akzeptanz der verabreichten Futterzusatzstoffe .............................. 37 4.2 Klinische Befunde ............................................................................. 38 4.3 Leistungsparameter .......................................................................... 41 4.3.1 Milchleistung .................................................................................... 41 4.3.2 Fruchtbarkeit .................................................................................... 44 4.4 Labordiagnostische Parameter......................................................... 45 4.4.1 Energie-Fett-Leberstoffwechsel ....................................................... 45 4.4.1.1 Glucose ............................................................................................ 45 4.4.1.2 Cholesterol ....................................................................................... 47 4.4.1.3 Bilirubin ............................................................................................ 48 4.4.1.4 Beta-Hydroxy-Butyrat ....................................................................... 49 4.4.1.5 Freie Fettsäuren ............................................................................... 50 4.4.1.6 Aspartat-Amino-Transferase ............................................................ 51 4.4.1.7 Gamma-Glutamyl-Transferase ......................................................... 52 4.4.1.8 Glutamat-Dehydrogenase ................................................................ 53 4.4.2 Eiweißstoffwechsel ........................................................................... 54 4.4.2.1 Gesamtprotein .................................................................................. 54 4.4.2.2 Albumin ............................................................................................ 55 4.4.3 Mineralstoff- und Spurenelementstoffwechsel .................................. 56 4.4.3.1 Natrium ............................................................................................. 56 4.4.3.2 Kalium .............................................................................................. 57 4.4.3.3 Calcium ............................................................................................ 58 4.4.3.4 anorganisches Phosphat .................................................................. 59 4.4.3.5 Magnesium ....................................................................................... 60 4.4.3.6 Eisen ................................................................................................ 61 4.4.4 Muskelstoffwechsel .......................................................................... 62 4.4.4.1 Kreatinkinase ................................................................................... 62 4.4.5 Leukozyten ....................................................................................... 63 5 Diskussion ...................................................................................... 64 5.1 Klinische Parameter ......................................................................... 64 5.1.1 Morbidität ......................................................................................... 64 5.1.2 Milchleistung .................................................................................... 67 5.1.3 Fruchtbarkeit .................................................................................... 70 5.2 Klinisch-chemische Parameter, Stoffwechsel ................................... 71 5.2.1 Wirkung von Huminsäuren auf den Stoffwechsel ............................. 71 5.2.2 Wirkung einer energiereichen C3-Verbindung auf den Stoffwechsel 71 5.2.3 Wirkung von Dexamethason-21-isonicotinat auf den Stoffwechsel .. 74 6 Zusammenfassung ......................................................................... 83 7 Summary ......................................................................................... 85 8 Literaturverzeichnis ....................................................................... 87
225

Der Weißbüschelaffe (Callithrix jacchus) und das Metabolische Syndrom: Einfluss von Geschlecht und pränataler Programmierung

Holzner, Alexandra 11 October 2016 (has links)
Das Metabolische Syndrom (MetSyn) ist gekennzeichnet durch eine Kombination verschiedener kardiovaskulärer Risikofaktoren: Glukoseintoleranz, Adipositas, Dyslipidämie sowie arterielle Hypertonie. Es gilt beim Menschen als eine der Hauptursachen für Herzkreislauferkrankungen und befindet sich weltweit auf enormem Vormarsch. Die Weichen für die Erkrankung werden zum Teil schon vor der Geburt durch eine veränderte Umwelt in utero gestellt. So können Stress oder eine Glukokortikoidbehandlung während der Schwangerschaft zu einem veränderten Phänotyp des Embryos/Fetus führen - mit Konsequenzen für das gesamte spätere Leben. Dieses Phänomen wird als pränatale Programmierung bezeichnet. Neben diesen epigenetischen Effekten spielen u. a. auch geschlechtsabhängige Faktoren eine Rolle für das Risiko, am MetSyn zu erkranken. Die vorliegende Arbeit befasst sich mit den Auswirkungen einer Glukokortikoidbehandlung in der frühen Trächtigkeit sowie dem Einfluss des Geschlechts auf kardiovaskuläre Risikofaktoren im Erwachsenenalter. Als Modelltier für die Studie wurde der Weißbüschelaffe eingesetzt. In einem 2002 stattgefundenen Vorversuch im Deutschen Primatenzentrum in Göttingen wurde tragenden Tieren (F0) eine Woche lang täglich oral Dexamethason verabreicht. Dieses synthetische Glukokortikoid kann die Plazentaschranke passieren. Die drei folgenden in Leipzig gehaltenen Generationen DexF1/2/3W (weibliche Tiere, n = 4/6/2) und DexF2/3M (männliche Tiere, n = 2/4) gingen in die Untersuchung ein. Tiere, die keine Nachkommen der F0-Generation darstellten, bildeten jeweils eine weibliche (ControlW, n = 11) und eine männliche (ControlM, n = 15) Kontrollgruppe und wurden ebenfalls herangezogen, um die Auswirkungen des Geschlechts auf die untersuchten Parameter zu ermitteln. Es wurde ein oraler Glukosetoleranztest (OGTT) durchgeführt (inklusive der Erfassung der Insulinwerte), der Quantitative Insulin Sensitivity Check Index (QUICKI – Maß für die Insulinsensitivität) berechnet sowie Lipidstoffwechselparameter bestimmt. Außerdem fanden wöchentlich Erfassungen des Körpergewichts statt. In mehreren Sitzungen pro Tier wurde der Blutdruck gemessen. Die statistische Auswertung erfolgte mittels Mann-Whitney-U-Test für unabhängige Stichproben. Unterschiede mit einer Irrtumswahrscheinlichkeit p ≤ 0,05 wurden als signifikant angesehen. Im OGTT wies DexF1W im Vergleich zu ControlW 120 Minuten nach oraler Glukoseapplikation eine signifikant niedrigere Insulinkonzentration auf. Da nach 30 und 120 Minuten auch die Glukosekonzentration signifikant erniedrigt war, ist jedoch nicht von einer klinischen Relevanz auszugehen. Weitere Auswirkungen der Dexamethasonapplikation auf die F1- bis F3-Generation konnten nicht beobachtet werden. Beim Vergleich der weiblichen und männlichen Nachkommen unbehandelter Weißbüschelaffen fiel auf, dass weibliche Tiere signifikant höhere Insulinkonzentrationen und damit eine signifikant größere Insulin-AUC (Fläche unter der Kurve) im OGTT zeigten. Ihr QUICKI war signifikant niedriger. Hyperinsulinämie und niedriger QUICKI stellen Symptome einer gestörten Glukoseregulation dar. Die weiblichen Tiere zeigten außerdem eine signifikante Erhöhung hinsichtlich Körpergewicht, VLDL-Triglycerid- und folglich Plasmatriglyceridkonzentrationen. Ihre HDL-Cholesterolwerte waren signifikant niedriger. Diese Kombination einer Hypertriglyceridämie mit niedrigem HDL-Cholesterol wird als atherogene Dyslipidämie bezeichnet. Eine gestörte Glukosehomöostase, eine Adipositas sowie eine atherogene Dyslipidämie stellen kardiovaskuläre Risikofaktoren und wichtige Komponenten des MetSyn dar. Zusammenfassend lässt sich sagen, dass beim Weißbüschelaffen eine Glukokortikoidbehandlung während der frühen Trächtigkeit nicht zum MetSyn der F1- bis F3-Generationen im Erwachsenenalter führte. Hingegen ergab die Untersuchung auf ein geschlechtsabhängiges Erkrankungsrisiko eine eindeutige Prädisposition bei den weiblichen Tieren. Die zu Grunde liegenden Mechanismen dieses Phänomens bleiben Gegenstand weiterer Untersuchungen. / The metabolic syndrome (MetSyn) consists of a cluster of metabolic disorders, characterized by glucose intolerance, obesity, dyslipidemia and hypertension. In humans, it is a major cause for cardiovascular disease. Its worldwide prevalence is increasing. The way for the disease can be paved even before birth. An adverse intrauterine environment due to prenatal stress or an iatrogenic overexposure of the fetus to glucocorticoids can lead to an altered phenotype with consequences for later life. This phenomenon is called prenatal programming. In addition gender specific factors play a leading role for the risk of developing MetSyn. The aim of the present study was to investigate the influence of a glucocorticoid application in early pregnancy and gender on cardiovascular risk factors in adulthood. The common marmoset was used as model species. In a preliminary experiment (2002) at the german primate centre (Göttingen) animals (F0) were orally treated with dexamethasone for one week during early pregnancy. Dexamethasone is a synthetic glucocorticoid that can pass the placental barrier. The following three generation offspring, reared in Leipzig, DexF1/2/3W (female animal, n = 4/6/2) and DexF2/3M (male animal, n = 2/4) were regarded. Animals that were no descendants of the F0 generation built a female (ControlW, n = 11) and a male (ControlM, n = 15) control group and were also regarded for gender-specific risk for MetSyn. An oral glucose tolerance test (OGTT) was carried out (including measurements of insulin concentration), the Quantitative Insulin Sensitivity Check Index (QUICKI – measure of insulin sensitivity) was calculated and parameters of lipid metabolism were investigated. Furthermore, all animals were weighed weekly and blood pressure was monitored at a series of meetings. Statistical analysis was performed by Mann-Whitney-U-Test for independent samples. The level of significance was defined at p ≤ 0.05. DexF1W in comparison to ControlW had a significantly lower insulin concentration 120 minutes after glucose application in the OGTT and a significantly lower glucose concentration 30 and 120 minutes after reaching the sugar solution. These findings did not seem to be clinically relevant. Apart from that, no consequences could be determined in the F1-3 generation offspring after dexamethasone treatment in pregnancy. Regarding gender comparison of untreated common marmosets, female animals had significantly higher insulin concentrations in OGTT and therefore a significantly greater insulin AUC (area under the curve). QUICKI was significantly lower. Hyperinsulinemia and a low QUICKI are symptoms of an impaired glucose regulation. Furthermore, the female animals showed an increase in body weight, VLDL triglycerides and therefore total triglycerides. HDL cholesterol was significantly lower. Hypertriglyceridemia in combination with low HDL cholesterol is called atherogenic dyslipidemia. A disturbed glucose homeostasis, obesity and an atherogenic dyslipidemia are cardiovascular risk factors and important components of MetSyn. In summary, dexamethasone applied in early pregnancy did not lead to metabolic syndrome in the F1-F3 generation offspring of common marmoset in adulthood. However, the female gender was associated with a higher risk of developing the disease. The underlying mechanisms require further investigation.
226

The Effect of Chemotherapy Treatment on Bone Marrow Mesenchymal Stromal Cell Adipocyte Differentiation / Effekten av cellgiftsbehandling på mesenkymala stromacellers förmåga att differentiera till fettceller

Andersson, Hanna January 2021 (has links)
I ett försök att förstå orsakerna bakom de kardio-, metaboliska- och muskuloskeletala sjukdomar hos barn som överlevt akut lymfatisk leukemi (ALL) har vi studerat den adipogena differentieringen hos mesenkymala stromaceller från benmärg (BM MSCs). Det komplexa nätverket av faktorer som påverkar adipogenes är hittills inte helt kartlagt. Därför är vårt övergripande mål att få en bättre förståelse för den cellulära och molekylära grunden bakom utvecklingen av dessa tillstånd hos ALL-överlevare. Vi undersökte om behandling av BM MSC in vitro med cancerläkemedel, Doxorubicin och Dexamethason, kan påverka differentieringen mot adipogenes. BM MSCs analyserades med avseende på lipidackumulering, genuttryck och adipokinproduktion. Vår hypotes kunde inte bekräftas. Inga lipidackumuleringar kunde detekteras i cellerna. Vid analys av genuttryck av de adipogena transkriptionsfaktorerna PPARγ och C/EBPα sågs vissa förändringar; men på grund av brist på biologiska replikat kunde inga statistiska analyser tillämpas på resultaten. Slutligen sågs en liten ökning i den inflammation- och adipogenes-associerade cytokinen IL-6, medan cytokinerna IL-8 och TNF-a inte gick att detektera alls. / In an effort to understand the cause of late onset cardiac, metabolic, and musculoskeletal conditions in paediatric acute lymphoblastic leukaemia (ALL) survivors, the adipogenic differentiation of bone marrow (BM) mesenchymal stromal cells (MSCs) has been studied. There is a complex network of factors influencing adipogenesis, which to date is not completely understood. Hence, the overall aim is to better understand the cellular and molecular basis behind the development of these conditions in survivors. To this end, we asked whether treating BM MSCs in vitro with cancer drugs, Doxorubicin and Dexamethasone, will initiate a skewed differentiation towards adipogenesis. BM MSCs were analysed with respect to lipid accumulation, gene expression, and adipokine production. In general, our hypothesis was not confirmed. No lipid accumulations were detected in the cells. In analysis of gene expression of the adipogenic transcription factors PPARγ and C/EBPα, certain changes were seen; however, due to lack of biological replicates, no statistical analyses could be applied to the results. Lastly, the inflammation and adipogenesis associated cytokine IL-6 displayed a slight increase, whereas the cytokines IL-8 and TNF-α were undetectable.
227

Einfluss von Stress in der Schwangerschaft auf den Fettstoffwechsel weiblicher Folgegenerationen am Primatenmodell Weißbüschelaffe (Callithrix jacchus)

Buchwald, Ulrike 04 December 2012 (has links)
Wie für viele andere Zivilisationskrankheiten werden auch für Atherosklerose und dadurch verursachte Erkrankungen wie Herzinfarkt oder Schlaganfall die Weichen mitunter schon vor der Geburt gestellt. Pränatale oder fetale Programmierung heißt der Mechanismus, durch den negative Umweltbedingungen während der Schwangerschaft, allen voran der Einfluss von Stresshormonen, auf die Entwicklung des Fetus wirken und die Prädisposition für spätere Erkrankungen schaffen können (SCHWAB 2009, SECKL 2001). Ziel der vorliegenden Arbeit war es, die Auswirkungen von Stress während der Schwangerschaft auf den Fettstoffwechsel der Nachkommen unter besonderer Berücksichtigung bekannter Herz-Kreislauf-Risikofaktoren zu untersuchen. Zu diesem Zweck wurde 28 Weißbüschelaffen (F0) während der Trächtigkeit eine Woche lang täglich Dexamethason (DEX) – ein synthetisches Glucocorticoid (GC), welches die Plazentaschranke passieren kann (TEGETHOFF et al. 2009) – oral verabreicht (BEINDORFF et al. 2006, EINSPANIER et al. 2006c). Die drei weiblichen Folgegenerationen DEX F1 (n = 5), DEX F2 (n = 6) und DEX F3 (n = 3) dieser Tiere wurden untersucht, wobei sich die Medikamentengabe auf die F0-Generation beschränkte und alle weiteren Trächtigkeiten ungestört verliefen. Im Alter von 3,3 bis 5,6 Jahren (DEX F1) bzw. von Geburt an bis 1,5 Jahre (DEX F2, DEX F3) wurden die Tiere wöchentlich gewogen. In Blutproben wurden einerseits Fettsäuren (FS), andererseits Cholesterol (CHOL), Triglyceride (TG) und Lipoproteine gemessen, wobei zwei Methoden – enzymatische Analyse nach Ultrazentrifugation und direkter Assay – zum Einsatz kamen. Alle Resultate wurden denen gesunder Kontrolltiere ähnlichen Alters (n = 12) gegenübergestellt. Die Körpermasse unterschied sich zu keinem Zeitpunkt signifikant zwischen den Nachkommen der mit DEX behandelten Tiere und den Kontrollgruppen. Entweder gab es keinen programmierten Effekt auf das Gewicht oder er wurde durch individuelle Schwankungen, möglicherweise verstärkt durch erhöhte Stressempfindlichkeit oder Hyperaktivität der DEX-Nachkommen (FRENCH et al. 2004, SCHWAB 2009) und damit einhergehende Tendenz zur Gewichtsabnahme (KAPLAN und SHELMIDINE 2010) maskiert. Beide Methoden zur Untersuchung des Lipoproteinprofils erschienen für Weißbüschelaffen geeignet und können für zukünftige Untersuchungen empfohlen werden. Bei den Kontrollgruppen fiel auf, dass ältere Tiere u. a. signifikant mehr LDL- und VLDL-CHOL, aber signifikant weniger HDL-TG und n3-FS hatten als jüngere, was auf ein wie beim Menschen mit dem Alter steigendes Herz-Kreislauf-Risiko (CARLSSON et al. 2010) schließen lässt. Sowohl DEX F2 als auch DEX F3 wiesen signifikant höhere Konzentrationen von LDL-CHOL, signifikant niedrigere Werte von HDL-TG, mehr Gesamt-CHOL sowie einen höheren Quotienten CHOL : HDL-CHOL im Blutplasma auf als die Kontrolltiere. Diese Parameter gehören zu den in der humanmedizinischen Diagnostik genutzten Herz-Kreislauf-Risikofaktoren und die Veränderungen weisen auf eine erhöhte Auftrittswahrscheinlichkeit kardiovaskulärer Erkrankungen hin (KANNEL et al. 1994, LUSIS et al. 2004, NCEP 2002). Zusätzlich fielen bei DEX F1, DEX F2 und DEX F3 im Vergleich zu den Kontrollen signifikant erniedrigte Gehalte an n3-FS auf, die u. a. für ihre antiphlogistische und kardioprotektive Wirkung bekannt sind (ALONSO et al. 2003, CALDER 2004, KINSELLA et al. 1990). Pränatale GC-Behandlung rief demzufolge über Veränderungen im Fettstoffwechsel ein erhöhtes Risiko für Herz-Kreislauf-Erkrankungen bei ihren weiblichen Nachkommen F1 bis F3 hervor. Dies lässt auf epigenetische Effekte schließen, welche in weiterführenden Untersuchungen genauer erforscht werden sollten.:Abkürzungsverzeichnis 1 Einleitung 1 2 Literaturübersicht 4 2.1 Fettstoffwechsel 4 2.2 Atherosklerose 7 2.3 Stress in der Schwangerschaft 9 2.4 Der Weißbüschelaffe (Callithrix jacchus) 15 3 Tiere, Material und Methoden 17 3.1 Tiere 17 3.1.1 Vorangegangener Versuch in Göttingen – Pränataler Stress 17 3.1.1.1 Material und Methoden 17 3.1.1.2 Ergebnisse 18 3.1.2 Versuchsgruppen 19 3.1.3 Haltung 20 3.1.4 Ernährung 21 3.1.5 Geburtenkontrolle 22 3.2 Datensammlung 23 3.2.1 Körpergewicht 23 3.2.2 Blutparameter des Fettstoffwechsels 23 3.2.2.1 Probengewinnung 24 3.2.2.2 Lipoproteinanalyse 25 3.2.2.3 Fettsäureanalyse 26 3.3 Statistische Auswertung 27 4 Ergebnisse 28 4.1 Körpergewicht 28 4.2 Blutparameter des Fettstoffwechsels 30 4.2.1 Vergleich der Methoden MU und MD 36 4.2.2 CONTROL YOUNG im Alter von 9 und 19 Monaten 36 4.2.3 Altersabhängigkeit der Parameter bei gesunden Kontrolltieren37 4.2.4 Einfluss pränataler DEX-Gabe auf die Nachkommen F1 bis F3 38 4.2.4.1 Lipoproteine 38 4.2.4.2 Fettsäuren 40 5 Diskussion 41 5.1 Versuchsaufbau 41 5.2 Ergebnisse: Körpergewicht 43 5.3 Ergebnisse: Blutparameter des Fettstoffwechsels 45 5.4 Fazit 47 6 Zusammenfassung 48 7 Summary 50 8 Literaturverzeichnis 52 9 Anhang I 9.1 Buchwald U, Teupser D, Kuehnel F, Grohmann J, Schmieder N, Beindorff N, Schlumbohm C, Fuhrmann H, Einspanier A. Prenatal stress programs lipid metabolism enhancing cardiovascular risk in the female F1, F2, and F3 generation in the primate model common marmoset (Callithrix jacchus). J Med Primatol. 2012;41:231-40. doi: 10.1111/j.1600-0684.2012.00551.x. [Zeitschriftenartikel] I 9.2 Buchwald U, Gassdorf F, Grohmann J, Teupser D, Habla C, Einspanier A. Prenatal dexamethasone application influences parameters of lipid metabolism in the female F2 and F3 generation of common marmoset monkeys (Callithrix jacchus). New Paradigms in Laboratory Animal Science. 2010;33. [Abstract zu einem Vortrag] XXIII 9.3 Buchwald U, Kühnel F, Grohmann J, Teupser D, Einspanier A. Intrauterine Stresshormone beeinflussen den Fettstoffwechsel weiblicher Nachkommen des Weißbüschelaffen (Callithrix jacchus). Leipzig Research Festival for Life Sciences. 2010;220. ISBN 978-3-9810760-6-6. [Abstract zu einem Poster] XXV Danksagung / As for many other civilization diseases, the way for atherosclerosis and hence heart attack and stroke can be paved even before birth. The mechanism by which negative environmental circumstances, first of all the influence of stress hormones, can alter the development of the fetus and cause a predisposition for diseases later in life is called prenatal or fetal programming (SCHWAB 2009, SECKL 2001). The aim of the present study was to investigate the consequences of stress during pregnancy on lipid metabolism of the offspring with special regard to known cardiovascular risk factors. Therefore, 28 common marmosets (F0) were given dexamethasone (DEX) – a synthetic glucocorticoid (GC) with the ability to pass the placenta easily (TEGETHOFF et al. 2009) – orally, once daily for one week during gestation (BEINDORFF et al. 2006, EINSPANIER et al. 2006c). The three female filial generations DEX F1 (n = 5), DEX F2 (n = 6) and DEX F3 (n = 3) of those monkeys were investigated. Only the F0 generation was treated with DEX, while all of the following pregnancies remained undisturbed. At the age of 3.3 up to 5.6 years (DEX F1) and from birth until 1.5 years (DEX F2, DEX F3), respectively, the animals were weighed weekly. Blood samples were analyzed on the one hand for fatty acids (FA), on the other hand for cholesterol (CHOL), triglycerides (TG) and lipoproteins using two different methods – enzymatic analysis after ultracentrifugation and direct assay. All results were compared to those of healthy controls of similar age (n = 12). Body mass of the offspring of dams prenatally treated with DEX was not significantly different from that of the controls at any point of time. Either there was no programming effect on weight or it was masked by individual fluctuations, maybe potentiated by hyperactivity or a higher sensitivity to stress of the DEX offspring (FRENCH et al. 2004, SCHWAB 2009) and hence a tendency to loose weight (KAPLAN and SHELMIDINE 2010). Both methods for lipoprotein analysis seemed to be suitable for the common marmoset and can be recommended for future investigations. In the controls, older animals showed significantly more LDL and VLDL CHOL, but significantly less HDL TG and n3 FA than younger ones, which points out to a cardiovascular risk rising with age as in humans (CARLSSON et al. 2010). DEX F2 and DEX F3 had significantly higher concentrations of LDL CHOL, significantly lower levels of HDL TG, more total CHOL and a higher ratio of CHOL : HDL CHOL in blood plasma than the controls. Those parameters are well-known human medicine cardiovascular risk factors and the aberrations detected indicate a higher probability of developing cardiovascular diseases (KANNEL et al. 1994, LUSIS et al. 2004, NCEP 2002). Additionally, compared to the controls, all DEX generations F1 to F3 showed significantly lower levels of n3 FA, which are known for their antiinflammatory and cardioprotective effects amongst others (ALONSO et al. 2003, CALDER 2004, KINSELLA et al. 1990). Consequently, prenatal treatment with GC caused an increased risk for cardiovascular diseases in the female offspring F1 up to F3 via alteration of lipid metabolism. This points out to epigenetic effects, which require further investigation.:Abkürzungsverzeichnis 1 Einleitung 1 2 Literaturübersicht 4 2.1 Fettstoffwechsel 4 2.2 Atherosklerose 7 2.3 Stress in der Schwangerschaft 9 2.4 Der Weißbüschelaffe (Callithrix jacchus) 15 3 Tiere, Material und Methoden 17 3.1 Tiere 17 3.1.1 Vorangegangener Versuch in Göttingen – Pränataler Stress 17 3.1.1.1 Material und Methoden 17 3.1.1.2 Ergebnisse 18 3.1.2 Versuchsgruppen 19 3.1.3 Haltung 20 3.1.4 Ernährung 21 3.1.5 Geburtenkontrolle 22 3.2 Datensammlung 23 3.2.1 Körpergewicht 23 3.2.2 Blutparameter des Fettstoffwechsels 23 3.2.2.1 Probengewinnung 24 3.2.2.2 Lipoproteinanalyse 25 3.2.2.3 Fettsäureanalyse 26 3.3 Statistische Auswertung 27 4 Ergebnisse 28 4.1 Körpergewicht 28 4.2 Blutparameter des Fettstoffwechsels 30 4.2.1 Vergleich der Methoden MU und MD 36 4.2.2 CONTROL YOUNG im Alter von 9 und 19 Monaten 36 4.2.3 Altersabhängigkeit der Parameter bei gesunden Kontrolltieren37 4.2.4 Einfluss pränataler DEX-Gabe auf die Nachkommen F1 bis F3 38 4.2.4.1 Lipoproteine 38 4.2.4.2 Fettsäuren 40 5 Diskussion 41 5.1 Versuchsaufbau 41 5.2 Ergebnisse: Körpergewicht 43 5.3 Ergebnisse: Blutparameter des Fettstoffwechsels 45 5.4 Fazit 47 6 Zusammenfassung 48 7 Summary 50 8 Literaturverzeichnis 52 9 Anhang I 9.1 Buchwald U, Teupser D, Kuehnel F, Grohmann J, Schmieder N, Beindorff N, Schlumbohm C, Fuhrmann H, Einspanier A. Prenatal stress programs lipid metabolism enhancing cardiovascular risk in the female F1, F2, and F3 generation in the primate model common marmoset (Callithrix jacchus). J Med Primatol. 2012;41:231-40. doi: 10.1111/j.1600-0684.2012.00551.x. [Zeitschriftenartikel] I 9.2 Buchwald U, Gassdorf F, Grohmann J, Teupser D, Habla C, Einspanier A. Prenatal dexamethasone application influences parameters of lipid metabolism in the female F2 and F3 generation of common marmoset monkeys (Callithrix jacchus). New Paradigms in Laboratory Animal Science. 2010;33. [Abstract zu einem Vortrag] XXIII 9.3 Buchwald U, Kühnel F, Grohmann J, Teupser D, Einspanier A. Intrauterine Stresshormone beeinflussen den Fettstoffwechsel weiblicher Nachkommen des Weißbüschelaffen (Callithrix jacchus). Leipzig Research Festival for Life Sciences. 2010;220. ISBN 978-3-9810760-6-6. [Abstract zu einem Poster] XXV Danksagung
228

全身イメージング質量分析法を用いたデキサメタゾン投与によるマウス胸腺を主軸とする免疫代謝変動の解明 / ゼンシン イメージング シツリョウ ブンセキホウ オ モチイタ デキサメタゾン トウヨ ニヨル マウス キョウセン オ シュジク トスル メンエキ タイシャ ヘンドウ ノ カイメイ

辻 雄大, Yudai Tsuji 22 March 2022 (has links)
博士(理学) / Doctor of Philosophy in Science / 同志社大学 / Doshisha University
229

The Effect of Chemotherapy Treatment on Bone Marrow Mesenchymal Stromal Cell Adipocyte Differentiation / Effekten av cellgiftsbehandling på mesenkymala stromacellers förmåga att differentiera till fettceller

Andersson, Hanna January 2021 (has links)
I ett försök att förstå orsakerna bakom de kardio-, metaboliska- och muskuloskeletala sjukdomar hos barn som överlevt akut lymfatisk leukemi (ALL) har vi studerat den adipogena differentieringen hos mesenkymala stromaceller från benmärg (BM MSCs). Det komplexa nätverket av faktorer som påverkar adipogenes är hittills inte helt kartlagt. Därför är vårt övergripande mål att få en bättre förståelse för den cellulära och molekylära grunden bakom utvecklingen av dessa tillstånd hos ALL-överlevare. Vi undersökte om behandling av BM MSC in vitro med cancerläkemedel, Doxorubicin och Dexamethason, kan påverka differentieringen mot adipogenes. BM MSCs analyserades med avseende på lipidackumulering, genuttryck och adipokinproduktion. Vår hypotes kunde inte bekräftas. Inga lipidackumuleringar kunde detekteras i cellerna. Vid analys av genuttryck av de adipogena transkriptionsfaktorerna PPARγ och C/EBPα sågs vissa förändringar; men på grund av brist på biologiska replikat kunde inga statistiska analyser tillämpas på resultaten. Slutligen sågs en liten ökning i den inflammation- och adipogenes-associerade cytokinen IL-6, medan cytokinerna IL-8 och TNF-a inte gick att detektera alls. / In an effort to understand the cause of late onset cardiac, metabolic, and musculoskeletal conditions in paediatric acute lymphoblastic leukaemia (ALL) survivors, the adipogenic differentiation of bone marrow (BM) mesenchymal stromal cells (MSCs) has been studied. There is a complex network of factors influencing adipogenesis, which to date is not completely understood. Hence, the overall aim is to better understand the cellular and molecular basis behind the development of these conditions in survivors. To this end, we asked whether treating BM MSCs in vitro with cancer drugs, Doxorubicin and Dexamethasone, will initiate a skewed differentiation towards adipogenesis. BM MSCs were analysed with respect to lipid accumulation, gene expression, and adipokine production. In general, our hypothesis was not confirmed. No lipid accumulations were detected in the cells. In analysis of gene expression of the adipogenic transcription factors PPARγ and C/EBPα, certain changes were seen; however, due to lack of biological replicates, no statistical analyses could be applied to the results. Lastly, the inflammation and adipogenesis associated cytokine IL-6 displayed a slight increase, whereas the cytokines IL-8 and TNF-α were undetectable.
230

Comparative efficacy of three common treatments for equine recurrent airway obstruction

Lee, Laura Caryn 17 August 2009 (has links)
Objective - evaluate horses with acute airway obstruction using three treatment regimens: tapering doses of dexamethasone (DEX), environmental modification (ENV), and a combination of both treatments (DEX + ENV) by analyzing clinical parameters, pulmonary function testing, bronchoalveolar lavage fluid (BALF) cytology and BALF cell expression of the cytokines IFN-? and IL-4 Animals - 6 horses with recurrent airway obstruction (RAO) Procedures - Clinical examination, pulmonary function test, and collection of BALF prior to treatment and during 22 day treatment period Hypothesis - Alterations in clinical parameters, pulmonary function and airway inflammation in acute equine RAO will return to remission values by treating with DEX, ENV or DEX + ENV Results - All horses demonstrated clinical disease, reduced pulmonary dynamic compliance (Cdyn) and an increased maximum change in pleural pressures (?Pplmax) when in a challenge environment. All treatments improved clinical parameters, ?Pplmax and Cdyn. BALF cytology during an RAO crisis demonstrated neutrophilic inflammation. ENV or DEX + ENV resulted in a significant decrease in airway neutrophilia that was maintained throughout the treatment period. In contrast, treatment with DEX caused a reduction in airway neutrophilia initially followed by a rebound neutrophilia as the period between administrations of dexamethasone (0.05mg/kg) was increased to 72 hours. The rebound neutrophilia was not accompanied by equivalent deterioration in clinical parameters or pulmonary function. Conclusions - Environmental modification is important in the management of RAO horses. Treatment of clinical RAO with a decreasing dosage protocol of corticosteroids in the absence of environmental modification results in the persistence of airway inflammation without recrudescence of clinical disease. / Master of Science

Page generated in 0.0353 seconds