141 |
Dynamic dimension reduction for financial applicationsNasekin, Sergey 13 February 2017 (has links)
In den letzten Jahren gab es ein drastisches Wachstum in verfügbaren Finanzdaten. Finanzmärkte haben starke und oft nicht ganz vorhersagbare Änderungen ihrer Dynamik erlebt. Diese Tendenz hat dazu geführt, dass die Methoden der Risikomodellierung sowohl das Problem der hohen Dimensionalität als auch dynamische nicht Gaußsche Strukturen behandeln müssen. Das Ziel dieser Dissertation ist es, Methoden der Risikomodellierung vorzuschlagen, die gleichzeitig Reduzierung der Dimensionalität und dynamische Struktur in drei Anwendungen erlauben: 1) Asset Allocation und Hedging, 2) stochastische Modellierung von multivariaten Prozessen, 2) Messung der systemischen Risiken. Die vorgeschlagenen Methoden demonstrieren gute Ergebnisse im Vergleich mit den existierenden Methoden der Risikomodellierung und führen neue Verfahren zur Erkennung der extremen Risiken und Anomalien auf Finanzmärkten sowie zur deren Management. / Over the recent years, there have been a significant increase in financial data availability. On the other hand, financial markets have experienced sharp and often unforeseen changes in their dynamics. This tendency has caused the need for risk modeling approaches addressing both high dimensionality problem and accustoming for dynamic non Gaussian structure. The primary aim of this dissertation is to propose several risk modeling approaches which allow for simultaneous dimension reduction and dynamic structures in three setups: 1) asset allocation and hedging, 2) stochastic surface modeling and 3) systemic risk determination. Proposed models demonstrate good performance when compared to existing approaches for risk modeling and introduce new flexible ways to detect extreme risks and anomalies on financial markets as well as methods for their modeling and management.
|
142 |
Hierarchical Spatial and Spatio-Temporal Modeling of Massive Datasets, with Application to Global Mapping of CO<sub>2</sub>Katzfuss, Matthias 12 September 2011 (has links)
No description available.
|
143 |
Urban Detection From Hyperspectral Images Using Dimension-Reduction Model and Fusion of Multiple Segmentations Based on Stuctural and Textural FeaturesHe, Jin 09 1900 (has links)
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales. / This master’s thesis presents a new approach to urban area detection and segmentation in hyperspectral images. The proposed method relies on a three-step procedure. First, in order to decrease the computational complexity, an informative three-colour composite image, minimizing as much as possible the loss of information of the spectral content, is computed. To this end, a non-linear dimensionality reduction step, based on two complementary but contradictory criteria of good visualization, namely accuracy and contrast, is achieved for the colour display of each hyperspectral image. In order to discriminate between urban and non-urban areas, the second step consists of extracting some complementary and discriminant features on the resulting (three-band) colour hyperspectral image. To attain this goal, we have extracted a set of features relevant to the description of different aspects of urban areas, which are mainly composed of man-made objects with regular or simple geometrical shapes. We have used simple textural features based on grey-levels, gradient magnitude or grey-level co-occurence matrix statistical parameters combined with structural features based on gradient orientation, and straight segment detection. In order to also reduce the computational complexity and to avoid the so-called “curse of dimensionality” when clustering high-dimensional data, we decided, in the final third step, to classify each individual feature (by a simple K-means clustering procedure) and to combine these multiple low-cost and rough image segmentation results with an efficient fusion model of segmentation maps. The experiments reported in this report demonstrate that the proposed segmentation method is efficient in terms of visual evaluation and performs well compared to existing and automatic detection and segmentation methods of urban areas from hyperspectral images.
|
144 |
Modeling and Analysis of Large-Scale On-Chip InterconnectsFeng, Zhuo 2009 December 1900 (has links)
As IC technologies scale to the nanometer regime, efficient and accurate modeling
and analysis of VLSI systems with billions of transistors and interconnects becomes
increasingly critical and difficult. VLSI systems impacted by the increasingly high
dimensional process-voltage-temperature (PVT) variations demand much more modeling
and analysis efforts than ever before, while the analysis of large scale on-chip
interconnects that requires solving tens of millions of unknowns imposes great challenges
in computer aided design areas. This dissertation presents new methodologies
for addressing the above two important challenging issues for large scale on-chip interconnect
modeling and analysis:
In the past, the standard statistical circuit modeling techniques usually employ
principal component analysis (PCA) and its variants to reduce the parameter
dimensionality. Although widely adopted, these techniques can be very
limited since parameter dimension reduction is achieved by merely considering
the statistical distributions of the controlling parameters but neglecting
the important correspondence between these parameters and the circuit performances
(responses) under modeling. This dissertation presents a variety of
performance-oriented parameter dimension reduction methods that can lead to
more than one order of magnitude parameter reduction for a variety of VLSI
circuit modeling and analysis problems.
The sheer size of present day power/ground distribution networks makes their
analysis and verification tasks extremely runtime and memory inefficient, and
at the same time, limits the extent to which these networks can be optimized.
Given today?s commodity graphics processing units (GPUs) that can deliver
more than 500 GFlops (Flops: floating point operations per second). computing
power and 100GB/s memory bandwidth, which are more than 10X greater
than offered by modern day general-purpose quad-core microprocessors, it is
very desirable to convert the impressive GPU computing power to usable design
automation tools for VLSI verification. In this dissertation, for the first time, we
show how to exploit recent massively parallel single-instruction multiple-thread
(SIMT) based graphics processing unit (GPU) platforms to tackle power grid
analysis with very promising performance. Our GPU based network analyzer
is capable of solving tens of millions of power grid nodes in just a few seconds.
Additionally, with the above GPU based simulation framework, more challenging
three-dimensional full-chip thermal analysis can be solved in a much more
efficient way than ever before.
|
145 |
Three Essays on Application of Semiparametric Regression: Partially Linear Mixed Effects Model and Index Model / Drei Aufsätze über Anwendung der Semiparametrischen Regression: Teilweise Lineares Gemischtes Modell und Index ModellOhinata, Ren 03 May 2012 (has links)
No description available.
|
146 |
Optimization principles and constraints shaping visual cortical architecture / Optimierungsprinzipien und Zwangsbedingungen zur Modellierung der funktionalen Architektur des visuellen KortexKeil, Wolfgang 24 April 2012 (has links)
No description available.
|
147 |
Urban Detection From Hyperspectral Images Using Dimension-Reduction Model and Fusion of Multiple Segmentations Based on Stuctural and Textural FeaturesHe, Jin 09 1900 (has links)
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales. / This master’s thesis presents a new approach to urban area detection and segmentation in hyperspectral images. The proposed method relies on a three-step procedure. First, in order to decrease the computational complexity, an informative three-colour composite image, minimizing as much as possible the loss of information of the spectral content, is computed. To this end, a non-linear dimensionality reduction step, based on two complementary but contradictory criteria of good visualization, namely accuracy and contrast, is achieved for the colour display of each hyperspectral image. In order to discriminate between urban and non-urban areas, the second step consists of extracting some complementary and discriminant features on the resulting (three-band) colour hyperspectral image. To attain this goal, we have extracted a set of features relevant to the description of different aspects of urban areas, which are mainly composed of man-made objects with regular or simple geometrical shapes. We have used simple textural features based on grey-levels, gradient magnitude or grey-level co-occurence matrix statistical parameters combined with structural features based on gradient orientation, and straight segment detection. In order to also reduce the computational complexity and to avoid the so-called “curse of dimensionality” when clustering high-dimensional data, we decided, in the final third step, to classify each individual feature (by a simple K-means clustering procedure) and to combine these multiple low-cost and rough image segmentation results with an efficient fusion model of segmentation maps. The experiments reported in this report demonstrate that the proposed segmentation method is efficient in terms of visual evaluation and performs well compared to existing and automatic detection and segmentation methods of urban areas from hyperspectral images.
|
148 |
Réduction de dimension de sac de mots visuels grâce à l’analyse formelle de concepts / Dimension reduction on bag of visual words with formal concept analysisDao, Ngoc Bich 23 June 2017 (has links)
La réduction des informations redondantes et/ou non-pertinentes dans la description de données est une étape importante dans plusieurs domaines scientifiques comme les statistiques, la vision par ordinateur, la fouille de données ou l’apprentissage automatique. Dans ce manuscrit, nous abordons la réduction de la taille des signatures des images par une méthode issue de l’Analyse Formelle de Concepts (AFC), qui repose sur la structure du treillis des concepts et la théorie des treillis. Les modèles de sac de mots visuels consistent à décrire une image sous forme d’un ensemble de mots visuels obtenus par clustering. La réduction de la taille des signatures des images consiste donc à sélectionner certains de ces mots visuels. Dans cette thèse, nous proposons deux algorithmes de sélection d’attributs (mots visuels) qui sont utilisables pour l’apprentissage supervisé ou non. Le premier algorithme, RedAttSansPerte, ne retient que les attributs qui correspondent aux irréductibles du treillis. En effet, le théorème fondamental de la théorie des treillis garantit que la structure du treillis des concepts est maintenue en ne conservant que les irréductibles. Notre algorithme utilise un graphe d’attributs, le graphe de précédence, où deux attributs sont en relation lorsque les ensembles d’objets à qui ils appartiennent sont inclus l’un dans l’autre. Nous montrons par des expérimentations que la réduction par l’algorithme RedAttsSansPerte permet de diminuer le nombre d’attributs tout en conservant de bonnes performances de classification. Le deuxième algorithme, RedAttsFloue, est une extension de l’algorithme RedAttsSansPerte. Il repose sur une version approximative du graphe de précédence. Il s’agit de supprimer les attributs selon le même principe que l’algorithme précédent, mais en utilisant ce graphe flou. Un seuil de flexibilité élevé du graphe flou entraîne mécaniquement une perte d’information et de ce fait une baisse de performance de la classification. Nous montrons par des expérimentations que la réduction par l’algorithme RedAttsFloue permet de diminuer davantage l’ensemble des attributs sans diminuer de manière significative les performances de classification. / In several scientific fields such as statistics, computer vision and machine learning, redundant and/or irrelevant information reduction in the data description (dimension reduction) is an important step. This process contains two different categories : feature extraction and feature selection, of which feature selection in unsupervised learning is hitherto an open question. In this manuscript, we discussed about feature selection on image datasets using the Formal Concept Analysis (FCA), with focus on lattice structure and lattice theory. The images in a dataset were described as a set of visual words by the bag of visual words model. Two algorithms were proposed in this thesis to select relevant features and they can be used in both unsupervised learning and supervised learning. The first algorithm was the RedAttSansPerte, which based on lattice structure and lattice theory, to ensure its ability to remove redundant features using the precedence graph. The formal definition of precedence graph was given in this thesis. We also demonstrated their properties and the relationship between this graph and the AC-poset. Results from experiments indicated that the RedAttsSansPerte algorithm reduced the size of feature set while maintaining their performance against the evaluation by classification. Secondly, the RedAttsFloue algorithm, an extension of the RedAttsSansPerte algorithm, was also proposed. This extension used the fuzzy precedence graph. The formal definition and the properties of this graph were demonstrated in this manuscript. The RedAttsFloue algorithm removed redundant and irrelevant features while retaining relevant information according to the flexibility threshold of the fuzzy precedence graph. The quality of relevant information was evaluated by the classification. The RedAttsFloue algorithm is suggested to be more robust than the RedAttsSansPerte algorithm in terms of reduction.
|
149 |
Inference for stationary functional time series: dimension reduction and regressionKidzinski, Lukasz 24 October 2014 (has links)
Les progrès continus dans les techniques du stockage et de la collection des données permettent d'observer et d'enregistrer des processus d’une façon presque continue. Des exemples incluent des données climatiques, des valeurs de transactions financières, des modèles des niveaux de pollution, etc. Pour analyser ces processus, nous avons besoin des outils statistiques appropriés. Une technique très connue est l'analyse de données fonctionnelles (ADF).<p><p>L'objectif principal de ce projet de doctorat est d'analyser la dépendance temporelle de l’ADF. Cette dépendance se produit, par exemple, si les données sont constituées à partir d'un processus en temps continu qui a été découpé en segments, les jours par exemple. Nous sommes alors dans le cadre des séries temporelles fonctionnelles.<p><p>La première partie de la thèse concerne la régression linéaire fonctionnelle, une extension de la régression multivariée. Nous avons découvert une méthode, basé sur les données, pour choisir la dimension de l’estimateur. Contrairement aux résultats existants, cette méthode n’exige pas d'assomptions invérifiables. <p><p>Dans la deuxième partie, on analyse les modèles linéaires fonctionnels dynamiques (MLFD), afin d'étendre les modèles linéaires, déjà reconnu, dans un cadre de la dépendance temporelle. Nous obtenons des estimateurs et des tests statistiques par des méthodes d’analyse harmonique. Nous nous inspirons par des idées de Brillinger qui a étudié ces models dans un contexte d’espaces vectoriels. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
150 |
Modélisation statistique de tenseurs d'ordre supérieur en imagerie par résonance magnétique de diffusion / Statistical modelling of high order tensors in diffusion weighted magnetic resonance imagingGkamas, Theodosios 29 September 2015 (has links)
L'IRMd est un moyen non invasif permettant d'étudier in vivo la structure des fibres nerveuses du cerveau. Dans cette thèse, nous modélisons des données IRMd à l'aide de tenseurs d'ordre 4 (T4). Les problèmes de comparaison de groupes ou d'individu avec un groupe normal sont abordés, et résolus à l'aide d'analyses statistiques sur les T4s. Les approches utilisent des réductions non linéaires de dimension, et bénéficient des métriques non euclidiennes pour les T4s. Les statistiques sont calculées dans l'espace réduit, et permettent de quantifier la dissimilarité entre le groupe (ou l'individu) d'intérêt et le groupe de référence. Les approches proposées sont appliquées à la neuromyélite optique et aux patients atteints de locked in syndrome. Les conclusions tirées sont cohérentes avec les connaissances médicales actuelles. / DW-MRI is a non-invasive way to study in vivo the structure of nerve fibers in the brain. In this thesis, fourth order tensors (T4) were used to model DW-MRI data. In addition, the problems of group comparison or individual against a normal group were discussed and solved using statistical analysis on T4s. The approaches use nonlinear dimensional reductions, assisted by non-Euclidean metrics for T4s. The statistics are calculated in the reduced space and allow us to quantify the dissimilarity between the group (or the individual) of interest and the reference group. The proposed approaches are applied to neuromyelitis optica and patients with locked in syndrome. The derived conclusions are consistent with the current medical knowledge.
|
Page generated in 0.0307 seconds