• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 29
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in Ribonucleotide Reductase Ia

Nick, Thomas Udo 29 June 2015 (has links)
No description available.
82

Functional analysis of IGFBP-2 overexpression in mouse liver myofibroblasts: Therapeutic implication for liver fibrogenesis / Funktionelle Analyse der IGFBP-2 Ueberexpression in Lebermyofibroblasten bei Maeusen: Therapeutische Vorschlaege bei Liberfibrogenese

Pannem, Rajeswara Rao 30 October 2007 (has links)
No description available.
83

Evaluation of storage conditions on DNA used for forensic STR analysis

Beach, Lisa Renae January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Short tandem repeat (STR) analysis is currently the most common method for processing biological forensic evidence. STRs are highly polymorphic and allow for a strong statistical power of discrimination when comparing deoxyribonucleic acid (DNA) samples. Since sample testing and court proceedings occur months, if not years apart, samples must be stored appropriately in the event additional testing is needed. There are generally accepted methods to store DNA extracts long-term; however, one universally recognized method does not exist. The goal of this project was to examine various methods of storage and make recommendations for a universal storage method that maintained DNA integrity over time. Four variables were evaluated: storage buffer, storage temperature, initial storage concentration and the effects of repeated freeze-thaw cycles. DNA quantity was assessed using real-time polymerase chain reaction and DNA quality was evaluated using STR genotyping. Overall, the Tris-EDTA (TE) buffer outperformed nuclease free water as a long-term storage buffer for DNA extracts. Stock tubes stabilized concentration better than single use aliquots when eluted with TE while tube type was not significant when water was the buffer. For samples stored in TE, temperature had no effect on DNA integrity over time, but samples stored in water were largely affected at room temperature. Additionally, the greater the initial DNA concentration, the less likely it was to degrade in water. As a result of this research, DNA extracts from forensic samples should be stored long-term in TE buffer with a minimum concentration of 0.1 ng/μL. When water is the buffer, frozen storage is recommended.
84

The Molecular Mechanism of Break Induced Replication

Ayyar, Sandeep 14 February 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / DNA double strand break (DSB) is one of the most threatening of all types of DNA damages as it leads to a complete breakage of the chromosome. The cell has evolved several mechanisms to repair DSBs, one of which is break-induced replication (BIR). BIR repair of DSBs occurs through invasion of one end of the broken chromosome into a homologous template followed by processive replication of DNA from the donor molecule. BIR is a key cellular process and is implicated in the restart of collapsed replication forks and several chromosomal instabilities. Recently, our lab demonstrated that the fidelity of DNA synthesis associated with BIR in yeast Saccharomyces Cerevisiae is extremely low. The level of frameshift mutations associated with BIR is 1000-fold higher as compared to normal DNA replication. This work demonstrates that BIR stimulates base substitution mutations, which comprise 90% of all point mutations, making them 400-1400 times more frequent than during S-phase DNA replication. We show that DNA Polymerase δ proofreading corrects many of the base substitutions in BIR. Further, we demonstrate that Pif1, a 5’-3’ DNA helicase, is responsible for making BIR efficient and also highly mutagenic. Pif1p is responsible for the majority of BIR mutagenesis not only close to the DSB site, where BIR is less stable but also at chromosomal regions far away from the DSB break site, where BIR is fast, processive and stable. This work further reveals that, at positions close to the DSB, BIR mutagenesis in the absence of Pif1 depends on Rev3, the catalytic subunit of translesion DNA Polymerase ζ. We observe that mutations promoted by Pol ζ are often complex and propose that they are generated by a Pol ζ- led template switching mechanism. These complex mutations were also found to be frequently associated with gross chromosomal rearrangements. Finally we demonstrate that BIR is carried out by unusual conservative mode of DNA synthesis. Based on this study, we speculate that the unusual mode of DNA synthesis associated with BIR leads to various kinds of genomic instability including mutations and chromosomal rearrangements.
85

Probing the Chemistry and Enzymology of Translesion DNA Synthesis: Applications in Developing a Novel “Theranostic” Agent against Leukemia

Motea, Edward A. 31 January 2012 (has links)
No description available.
86

High-field EPR and ENDOR spectroscopy for proton-coupled electron transfer investigations in E.coli ribonucleotide reductase / Hochfeld EPR und ENDOR Untersuchungen für den Protonen gekoppelten Elektronentransfer in der E.coli Ribonukleotidreduktase

Argirevic, Tomislav 17 November 2011 (has links)
No description available.
87

The influence of the Ku80 carboxy-terminus on activation of the DNA-dependent protein kinase and DNA repair is dependent on the structure of DNA cofactors

Woods, Derek S. 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In mammalian cells DNA double strand breaks (DSBs) are highly variable with respect to sequence and structure all of which are recognized by the DNA- dependent protein kinase (DNA-PK), a critical component for the resolution of these breaks. Previously studies have shown that DNA-PK does not respond the same way to all DSBs but how DNA-PK senses differences in DNA substrate sequence and structure is unknown. Here we explore the enzymatic mechanism by which DNA-PK is activated by various DNA substrates. We provide evidence that recognition of DNA structural variations occur through distinct protein-protein interactions between the carboxy terminal (C-terminal) region of Ku80 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Discrimination of terminal DNA sequences, on the other hand, occurs independently of Ku 80 C-terminal interactions and results exclusively from DNA-PKcs interactions with the DNA. We also show that sequence differences in DNA termini can drastically influence DNA repair through altered DNA-PK activation. Our results indicate that even subtle differences in DNA substrates influence DNA-PK activation and ultimately Non-homologous End Joining (NHEJ) efficiency.
88

Developing small molecule inhibitors targeting Replication Protein A for platinum-based combination therapy

Mishra, Akaash K. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / All platinum (Pt)-based chemotherapeutics exert their efficacy primarily via the formation of DNA adducts which interfere with DNA replication, transcription and cell division and ultimately induce cell death. Repair and tolerance of Pt-DNA lesions by nucleotide excision repair and homologous recombination (HR) can substantially reduce the effectiveness of the Pt therapy. Inhibition of these repair pathways, therefore, holds the potential to sensitize cancer cells to Pt treatment and increase clinical efficacy. Replication Protein A (RPA) plays essential roles in both NER and HR, along with its role in DNA replication and DNA damage checkpoint activation. Each of these functions requires RPA binding to single-stranded DNA (ssDNA). We synthesized structural analogs of our previously reported RPA inhibitor TDRL-505, determined the structure activity relationships and evaluated their efficacy in tissue culture models of epithelial ovarian cancer (EOC) and non-small cell lung cancer (NSCLC). These data led us to the identification of TDRL-551, which exhibited a greater than 2-fold increase in in vitro and cellular activity. TDRL-551 showed synergy with Pt in tissue culture models of EOC and in vivo efficacy, as a single agent and in combination with platinum, in a NSCLC xenograft model. These data demonstrate the utility of RPA inhibition in EOC and NSCLC and the potential in developing novel anticancer therapeutics that target RPA-DNA interactions.
89

Regulation des Zellzyklus durch das Maus- und Ratten-Zytomegalievirus

Neuwirth, Anke 29 November 2005 (has links)
Das humane Zytomegalievirus, ist ein ubiquitäres Pathogen, welches akute und persistierende Infektionen verursacht. Bei immunsupprimierten Patienten kann das Virus zu schweren Erkrankungen, wie Hepatitis, Pneumonie und bei kongenitaler Infektion außerdem zu Schädigungen des ZNS führen. HCMV blockiert die Zellproliferation durch einen Arrest am G1/S-Übergang des Zellzyklus, andererseits wird aber gleichzeitig die Expression S-Phase spezifischer Gene aktiviert. Teilweise lässt sich dies durch eine Virus vermittelte spezifische Inhibition der zellulären DNA-Repliaktion sowie durch eine massive Deregulation Zyklin-assozzierter Kinasen erklären. Zellkulturexperimente deuten darauf hin, dass die Zellzyklusalterationen wichtige Voraussetzungen für eine erfolgreiche Virusreplikation darstellen. Es ist hingegen nicht bekannt, welche Relevanz sie für die Virusvermehrung in vivo und das pathologische Erscheinungsbild im erkrankten Organismus besitzen. Diese Frage kann nur in einem Tiermodell sinnvoll angegangen werden. Aufgrund der Wirtsspezifität der Zytomegalieviren, ist man dabei auf die Verwendung der jeweiligen artspezifischen CMV angewiesen. Murines CMV (MCMV) und Ratten-CMV (RCMV) sind dabei die bislang bestuntersuchtesten Systeme. Das Anliegen dieser Arbeit war es zu prüfen, inwieweit die für HCMV beschriebenen Zellzyklusregulationen in MCMV und RCMV auf Zellkulturbasis konserviert sind. Es konnte gezeigt werden, dass sowohl RCMV als auch MCMV einen antiproliferativen Effekt auf infizierte Zellen besitzen und ebenso wie HCMV zu einem Zellzyklusarrest führen. Nager-Zytomegalieviren können Zellen auch in der G2-Phase arretieren und in dieser Zellzyklusphase auch effizient replizieren können. Die Infektion mit Nager-CMV führt außerdem auf breiter Basis zur Veränderung Zyklin-assoziierter Kinaseaktivitäten. Allen Zytomegalieviren ist die Hemmung der zellulären DNA-Synthese am G1/S-Übergang durch die Inhibition des replication licensing, dem Beginn der DNA-Synthese gemein. Durch diese vergleichende Studie wird einerseits deutlich, dass wesentliche funktionelle Schritte der Zellzyklusregulation zwischen den Zytomegalieviren konserviert sind, aber andererseits die zu Grunde liegenden molekularen Mechanismen zum Teil deutlich variieren. / Human Cytomegalovirus (HCMV) is an ubiquitous, species-specific beta-herpesvirus that, like other herpesviruses, can establish lifelong latency following primary infection. HCMV infection becomes virulent only in immunocompromised patients such as premature infants, transplant recipients and AIDS patients where the virus causes severe disease like hepatitis, pneumonitis and retinitis. Congenital infection produces birth defects, most commonly hearing loss. To develop rational-based strategies for prevention and treatment of HCMV infection, it is crucial to understand the interactions between the virus and its host cell that support the establishment and progression of the virus replicative cycle. In general, herpesviruses are known to replicate most efficiently in the absence of cellular DNA synthesis. What is more, they have evolved mechanisms to avoid the cell´s DNA replication phase by blocking cell cycle progression outside S phase. HCMV has been shown to specifically inhibit the onset of cellular DNA synthesis resulting in cells arrested with a G1 DNA content. Towards a better understanding of CMV-mediated cell cycle alterations in vivo, we tested murine and rat CMV (MCMV/RCMV), being common animal models for CMV infection, for their influence on the host cell cycle. It was found that both MCMV and RCMV exhibit a strong anti-proliferative capacity on immortalised and primary embryonic fibroblasts after lytic infection. This results from specific cell cycle blocks in G1 and G2 as demonstrated by flow cytometry analysis. The G1 arrest is at least in part caused by a specific inhibition of cellular DNA synthesis and involves both the formation and activation of the cells’ DNA replication machinery. Interestingly, and in contrast to HCMV, the replicative cycle of rodent CMVs started from G2 as efficiently as from G1. Whilst the cell cycle arrest is accompanied by a broad induction of cyclin-cdk2 and cyclin-cdk1 activity, cyclin D1-cdk4/6 activity is selectively suppressed in MCMV and RCMV infected cells. Thus, given that both rodent and human CMVs are anti-proliferative and arrest cell cycle progression we found a surprising divergence of some of the underlying mechanisms. Therefore, any question put forward to a rodent CMV model involving cell cycle regulation has to be well defined in order to extrapolate meaningful information for the human system.
90

Cascades of genetic instability resulting from compromised break-induced replication

Vasan, Soumini January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Break-induced replication (BIR) is a mechanism to repair double-strand breaks (DSBs) that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs). An important type of genomic rearrangement specifically linked to BIR is half crossovers (HCs), which result from fusions between parts of recombining chromosomes. Because HC formation produces a fused molecule as well as a broken chromosome fragment, these events could be highly destabilizing. Here I demonstrate that HC formation results from the interruption of BIR caused by a defective replisome or premature onset of mitosis. Additionally, I document the existence of half crossover instability cascades (HCC) that resemble cycles of non-reciprocal translocations (NRTs) previously described in human tumors. I postulate that HCs represent a potent source of genetic destabilization with significant consequences that mimic those observed in human diseases, including cancer.

Page generated in 0.1001 seconds