701 |
Quantenpunktbasiertes spektroskopisches Lineal mit Terbium-Komplexen als Donoren für optische FRET-Multiplexmessungen / Quantum-dot based spectroscopic ruler with terbium-complexes as donors for multiplexed optical FRET measurementsMorgner, Frank January 2012 (has links)
Der Förster-Resonanzenergietransfer (FRET) liefert einen wichtigen Beitrag bei der Untersuchung kleinskaliger biologischer Systeme und Prozesse. Möglich wird dies durch die r-6-Abhängigkeit des FRET, die es erlaubt Abstände und strukturelle Änderungen weit unterhalb der Beugungsgrenze des Lichts mit hoher Sensitivität und geringem Aufwand zu bestimmen. Die besonderen photophysikalischen Eigenschaften von Terbiumkomplexen (LTC) und Quantenpunkten (QD) machen sie zu geeigneten Kandidaten für hochsensitive und störungsarme Multiplex-Abstandsmessungen in biologischen Systemen und Prozessen. Die Abstandsbestimmungen setzen jedoch eine genaueste Kenntnis des Mechanismus des Energietransfers von LTC auf QD ebenso voraus, wie das Wissen um Größe und Gestalt letzterer. Quantenpunkte haben im Vergleich zu biologischen Strukturen ähnliche Dimensionen und können nicht als punktförmig betrachtet werden, wie es bei einfacheren Farbstoffen möglich ist. Durch ihre Form kommt es zu einer Abstandsverteilung innerhalb des Donor-Akzeptorsystems. Dies beeinflusst den Energietransfer und damit die experimentellen Ergebnisse. In dieser Arbeit wurde der Energietransfer von LTC auf QD untersucht, um zu einer Aussage hinsichtlich des Mechanismus der Energieübertragung und der dabei zu berücksichtigenden photophysikalischen und strukturellen Parameter von LTC und QD zu gelangen. Mit der Annahme einer Abstandsverteilung sollten die Größen der Quantenpunkte bestimmt und der Einfluss von Form und Gestalt auf den Energietransfer betrachtet werden. Die notwendigen theoretischen und praktischen Grundlagen wurden eingangs dargestellt. Daran schlossen sich Messungen zur photophysikalischen Charakterisierung der Donoren und Akzeptoren an, die Grundlage der Berechnung der FRET-Parameter waren. Die Förster-Radien zeigten die für den FRET von LTC auf QD typischen extrem hohen Werte von bis zu 11 nm. Zeitaufgelöste Messungen der FRET-induzierten Lumineszenz der Donoren und Akzeptoren in den beiden biomolekularen Modellsystemen Zink-Histidin und Biotin-Streptavidin beschlossen den praktischen Teil. Als Donor wurde Lumi4Tb gebunden an ein Peptid bzw. Streptavidin genutzt, Akzeptoren waren fünf verschiedene, kommerziell erhältliche Quantenpunkte mit Carboxyl- bzw. Biotinfunktionalisierung. Bei allen Donor-Akzeptor-Paarungen konnte FRET beobachtet und ausgewertet werden. Es konnte gezeigt werden, dass die gesamte Emission des Terbiums zum Energietransfer beiträgt und der Orientierungsfaktor ² den Wert 2/3 annimmt. Die Charakterisierung der Bindungsverhältnisse innerhalb der FRET-Paare von LTC und QD über Verteilungsfunktionen bietet über die Form der Verteilungskurve die Möglichkeit Aussagen über die Gestalt der FRET-Partner zu treffen. So war es möglich, die mittlere Form der Quantenpunkte als Sphäre zu bestimmen. Dies entsprach, insbesondere bei den in z-Richtung des Kristallgitters elongierten Quantenpunkten, nicht den Erwartungen. Dieser Befund ermöglicht daher bei zukünftigen Messungen eine Verbesserung der Genauigkeit bei Abstandsbestimmungen mit Quantenpunkten. Neben der Ermittlung der die FRET-Verteilung bestimmenden Gestalt der Quantenpunkte konnte im Rahmen dieser Arbeit anhand vergleichender Messungen die Dicke der Polymerhülle der QD bestimmt und so gezeigt werden, dass FRET-Paare aus lumineszenten Terbiumkomplexen und Quantenpunkten in der Lage sind, Abstände im Nano- bis Sub-Nanometerbereich aufzulösen. / Förster resonance energy transfer (FRET) plays an important role in the study of small-scale biological systems and processes. This is made possible by the r-6-dependence of FRET, which allows for determination of distances and structural changes far below the diffraction limit of light with high sensitivity and low costs. The unique photophysical properties of terbium complexes (LTC) and quantum dots (QDs) make them suitable candidates for high-sensitivity, low-noise multiplex distance measurements in biological systems and processes. Estimating distances with these FRET-pairs requires a precise knowledge of the mechanism of energy transfer from LTC to QD as well as the knowledge of size and shape of the latter. Quantum dots have, compared to biological structures, similar dimensions and therefore can not be considered as point-like, as it is possible with smaller dyes. Due to their shape, there is a distance distribution within the donor-acceptor system. This influences the energy transfer and hence the experimental results. In this work, the energy transfer from LTC to QD was examined to come to a conclusion regarding the mechanism of energy transfer and the photophysical and structural parameters of LTC and QD to be considered. The adoption of a FRET-distance distribution due to a size distribution of quantum dots should yield to a size estimation of the nanoparticles as well as a conclusion of the influence of shape and form on energy transfer. The necessary theoretical and practical principles were described at the outset of this work. This description of the basic concepts was followed by the photophysical characterization of the donors and acceptors and the calculation of FRET parameters. The calculated Förster radii were typical for the FRET from LTC to QD and showed extremely high values of up to 11 nm. Time-resolved measurements of the FRET-induced luminescence of donors and acceptors in two biomolecular model binding systems namely zinc-histidine and biotin-streptavidin binding rounded the practical part. FRET-donors used were commercially available Lumi4Tb complexes bound to streptavidin or a peptide, respectively. As FRET-acceptors five different commercially available quantum dots with carboxyl- or biotin-functionalisation were used. For all donor-acceptor pairs FRET could be observed and evaluated. It could be shown that the whole emission of terbium contributes to energy transfer. Furthermore the orientation factor ² was estimated to have a value of 2/3 when using LTC as FRET-donors and QD as FRET-acceptors. The characterization of the bonding within the FRET pairs of LTC and QD with distribution functions allows for statements about the shape of the FRET partners via shape of the distribution curves. It was possible to determine the average shape of the quantum dots as a sphere. This outcome was, especially for (in z-direction of the crystal lattice) elongated quantum dots, in the contrary to the expectations. This finding therefore allows for improving the accuracy of distance determinations with quantum dots. Based on comparative measurements it was also possible to determine the thickness of the polymer shell of the QD demonstrating that FRET pairs of luminescent terbium complexes and quantum dots are capable of determining distances in the nanometer to sub-nanometer range.
|
702 |
Exciton-phonon coupling in single quantum dots with different barriersDufåker, Daniel, Mereni, L. O., Karlsson, Fredrik K., Dimastrodonato, V., Juska, G., Holtz, Per-Olof, Pelucchi, E. January 2011 (has links)
The coupling between longitudinal-optical (LO) phonons and neutral excitons in two different kinds of InGaAs pyramidal quantum dots embedded in either AlGaAs or GaAs barriers is experimentally examined. We find a slightly weaker exciton-LO-phonon coupling and increased linewidth of the phonon replicas for the quantum dots with GaAs barriers compared to the ones with AlGaAs barriers. These results, combined with the fact that the LO-phonon energy of the exciton is the same for both kinds of dots, are taken as evidence that the excitons mainly couple to LO-phonons within the QDs. / Original Publication:Daniel Dufåker, L. O. Mereni, Fredrik K. Karlsson, V. Dimastrodonato, G. Juska, Per-Olof Holtz and E. Pelucchi, Exciton-phonon coupling in single quantum dots with different barriers, 2011, Applied Physics Letters, (98), 25, 251911.http://dx.doi.org/10.1063/1.3600781Copyright: American Institute of Physicshttp://www.aip.org/
|
703 |
Investigating the biological impacts of nanoengineered materials in Caenorhabditis elegans and in vitroContreras, Elizabeth 05 June 2013 (has links)
In nematode Caenorhabditis elegans, the chronic and multi-generational toxicological effects of commercially relevant engineered nanoparticles (ENPs), such as quantum dots (QDs) and silver (AgNP) caused significant changes in a number of physiological endpoints. The increased water-solubility of ENPs in commercial products, for example, makes them increasingly bioavailable to terrestrial organisms exposed to pollution and waste in the soil. Since 2008, attention to the toxicology of nanomaterials in C. elegans continues to grow. Quantitative data on multiple physiological endpoints paired with metal analysis show the uptake of QDs and AgNPs, and their effects on nematode fitness. First, C. elegans were exposed for four generations through feeding to amphiphilic polymer coated CdSe/ZnS (core-shell QDs), CdSe (core QDs), and different sizes of AgNPs. These ENPs were readily ingested. QDs were qualitatively imaged in the digestive tract using a fluorescence microscopy and their and AgNP uptake quantitatively measured using ICP-MS. Each generation was analyzed for changes in lifespan, reproduction, growth and motility using an automated computer vision system. Core-shell QDs had little impact on C. elegans due to its metal shell coating. In contrast, core QDs lacked a metal shell coating, which caused significant changes to nematode physiology. In the same way, at high concentrations of 100 ppm, AgNP caused the most adverse effect to lifespan and reproduction related to particle size, but its adverse effect to motility had no correlation to particle size. Using C. elegans as an animal model allowed for a better understanding of the negative impacts of ENPs than with cytotoxicity tests. Lastly, to test the toxicity of water-dispersed fullerene (nanoC60) using human dermal fibroblast cells, this thesis investigated a suite of assays and methods in order to establish a standard set of cytotoxicity tests. Ten assays and methods assessed nanoC60 samples of different purities to show differences in cytotoxic effects. Washed samples of fullerenes, with negligible traces of THF and other impurities, rendered the solution nontoxic. Even when exposed to UV-irradiation, washed nanoC60 were not photosensitized and did not cause cellular death. This work characterizes ENPs and investigates their impact in C. elegans and cells to assess toxicity risks to the environment and to human health.
|
704 |
Quantum Circuit Based on Electron Spins in Semiconductor Quantum DotsHsieh, Chang-Yu 07 March 2012 (has links)
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field.
With these theoretical tools and fully characterized TQDMs, we propose the following applications:
1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits.
2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase.
3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge.
In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.
|
705 |
Quantum Circuit Based on Electron Spins in Semiconductor Quantum DotsHsieh, Chang-Yu 07 March 2012 (has links)
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field.
With these theoretical tools and fully characterized TQDMs, we propose the following applications:
1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits.
2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase.
3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge.
In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.
|
706 |
Theory of Electronic and Optical Properties of NanostructuresHewageegana, Prabath 18 November 2008 (has links)
"There is plenty of room at the bottom." This bold and prophetic statement from Nobel laureate Richard Feynman back in 1950s at Cal Tech launched the Nano Age and predicted, quite accurately, the explosion in nanoscience and nanotechnology. Now this is a fast developing area in both science and technology. Many think this would bring the greatest technological revolution in the history of mankind. To understand electronic and optical properties of nanostructures, the following problems have been studied. In particular, intensity of mid-infrared light transmitted through a metallic diffraction grating has been theoretically studied. It has been shown that for s-polarized light the enhancement of the transmitted light is much stronger than for p-polarized light. By tuning the parameters of the diffraction grating enhancement can be increased by a few orders of magnitude. The spatial distribution of the transmitted light is highly nonuniform with very sharp peaks, which have the spatial widths about 10 nm. Furthermore, under the ultra fast response in nanostructures, the following two related goals have been proved: (a) the two-photon coherent control allows one to dynamically control electron emission from randomly rough surfaces, which is localized within a few nanometers. (b) the photoelectron emission from metal nanostructures in the strong-field (quasistationary) regime allows coherent control with extremely high contrast, suitable for nanoelectronics applications. To investigate the electron transport properties of two dimensional carbon called graphene, a localization of an electron in a graphene quantum dot with a sharp boundary has been considered. It has been found that if the parameters of the confinement potential satisfy a special condition then the electron can be strongly localized in such quantum dot. Also the energy spectra of an electron in a graphene quantum ring has been analyzed. Furthermore, it has been shown that in a double dot system some energy states becomes strongly localized with an infinite trapping time. Such states are achieved only at one value of the inter-dot separation. Also a periodic array of quantum dots in graphene have been considered. In this case the states with infinitely large trapping time are realized at all values of inter-dot separation smaller than some critical value.
|
707 |
Growth and characterization of Ge quantum dots on SiGe-based multilayer structures / Tillväxt och karaktärisering av Ge kvantprickar på SiGe-baserade multilager strukturerFrisk, Andreas January 2009 (has links)
Thermistor material can be used to fabricate un-cooled IR detectors their figure of merit is the Temperature Coefficient of Resistance (TCR). Ge dots in Si can act as a thermistor material and they have a theoretical TCR higher than for SiGe layers but they suffer from intermixing of Si into the Ge dots. Ge dots were grown on unstrained or strained Si layers and relaxed or strained SiGe layers at temperatures of 550 and 600°C by reduced pressure chemical vapor deposition (RPCVD). Both single and multilayer structures where grown and characterized. To achieve a strong signal in a thermal detector a uniform shape and size distribution of the dots is desired. In this thesis work, an endeavor has been to grow uniform Ge dots with small standard deviation of their size. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to characterize the size and shape distribution of Ge dots. Ge contents measured with Raman spectroscopy are higher at lower growth temperatures. Simulation of TCR for the most uniform sample grown at 600°C give 4.43%/K compared to 3.85%/K for samples grown at 650°C in a previous thesis work. Strained surfaces increases dot sizes and make dots align in crosshatched pattern resulting in smaller density, this effect increases with increasing strain. Strain from buried layers of Ge dots in a multilayer structure make dots align vertically. This alignment of Ge dots was very sensitive to the thickness of the Si barrier layer. The diameter of dots increase for each period in a multilayer structure. When dots are capped by a Si layer at the temperature of 600°C intermixing of Si into the Ge dot occurs and the dot height decrease.
|
708 |
Magneto-optical studies of optical spin injection in InAs quantum dot structuresPo-Hsiang, Wang January 2012 (has links)
Optical spin injection in InAs/GaAs quantum dots (QDs) structures under cryogenic temperature has been investigated in this work using continuous-wave optical orientation spectroscopy. Circularly polarized luminescence from trions in the QDs was used as a measure for the degree of spin polarization of the carriers in the QD ground states. The efficiency of spin conservation of the carriers during the injection process into the QDs and also the influence of the nuclear spins in the QDs were studied both under zero and external magnetic field. It was shown in zero magnetic field that the spin states were less conserved during the injection process for correlated excitons and hot free carriers. While under the external magnetic field, measurements were done in Faraday configuration. Confined electron motion yielding the quantized Landau levels in the InGaAs wetting layer (WL) and lifting of the Landau level spin degeneracy was observed. Also possible spin thermalization in the InGaAs WL during spin injection process was found. Finally, the quench of hyperfine induced spin relaxation by dynamic nuclear polarization (DNP) in the QDs was discovered and believed to be a stronger effect under weak/zero magnetic field.
|
709 |
STM/STS and BEES Study of NanocrystalsShao, Jianfei 11 April 2006 (has links)
This work investigates the electronic properties of very small gold and semiconductor particles using Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Ballistic Electron Emission Spectroscopy (BEES). Complementary theoretical works were also performed. The first theoretical work was to calculate the quantized states in the CdS/HgS/CdS quantum-well-quantum-dot nanocrystals. An eight-band envelope function method was applied to this system. This method treats exactly the coupling between the conduction bands, the light-hole bands, the heavy-hole bands, and the spin-orbit split bands. The contributions of all other bands were taken into account using second order perturbation theory.
Gold nanocrystals with diameters of 1.5 nm have discrete energy levels with energy spacings of about 0.2 eV. These values are comparable to the single electron charging energy, which was about 0.5 eV in our experimental configuration. Since bulk gold doesnt have an energy gap, we expect the electron levels both below and above the Fermi level should be involved in the tunneling. Measured spectroscopy data have rich features. In order to understand and relate these features to the electronic properties of the nanocrystals, we developed a tunneling model. This model includes the effect of excited states that have electron-hole pairs. The relaxation between discrete electron energy levels can also be included in this model. We also considered how the nanocrystals affect the BEES current.
In this work an ultra-high vacuum and low-temperature STM was re-designed and rebuilt. The BEEM/BEES capabilities were incorporated into the STM. We used this STM to image gold nanocrystals and semiconductor nanocrystals. STS and BEES spectra of gold nanocrystals were collected and compared with calculations.
|
710 |
Interesting Electronic and Dynamic Properties of Quantum Dot Quantum Wells and other Semiconductor Nanocrystal HeterostructuresSchill, Alexander Wilhem 01 June 2006 (has links)
Some interesting electronic and dynamic properties of semiconductor nanocrystal heterostructures have been investigated using various spectroscopic methods. Semiconductor nanocrystal heterostructures were prepared using colloidal synthesis techniques. Ultrafast transient absorption spectroscopy was used to monitor the relaxation of hot electrons in CdS/HgS/CdS quantum dot quantum wells. Careful analysis of the hot electron relaxation in CdS/HgS/CdS quantum dot quantum wells reveals an energy dependent relaxation mechanism involving electronic states of varying CdS and HgS composition. The composition of the electronic states, combined with the layered structure of the nanocrystal permits the assignment of CdS localized and HgS localized excited states. The dynamic effect of surface passivation is then shown to have the strongest influence on excited states that are localized in the HgS layer.
New quantum dot quantum well heterostructures of different sizes and compositions were also prepared and studied. The dynamic properties of CdS/CdSe/CdS colloidal quantum wells suggest simultaneous relaxation of excited electrons within the CdS core and CdSe shell on the sub-picosecond time scale. Despite the very different electronic structure of CdS/CdSe/CdS compared to CdS/HgS/CdS, the time scales of the relaxation and electron localization were very similar.
Enhancement of trap luminescence was observed when CdS quantum dots were coated with silver. The mechanism of the enhancement was investigated using time-resolved spectroscopic techniques.
|
Page generated in 0.0324 seconds