• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 120
  • 54
  • 32
  • 21
  • 18
  • 15
  • 10
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 786
  • 181
  • 142
  • 138
  • 137
  • 127
  • 122
  • 108
  • 90
  • 73
  • 68
  • 59
  • 54
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
771

The individual and combined effects of exercise and collagenase on the rodent Achilles tendon

Dirks, Rachel Candace 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Tendinopathy is a common degenerative pathology that is characterized by activity related pain, focal tendon tenderness, intratendinous imaging changes, and typically results in changes in the histological, mechanical, and molecular properties of the tendon. Tendinopathy is difficult to study in humans, which has contributed to limited knowledge of the pathology, and thus a lack of appropriate treatment options. However, most believe that the pathology is degenerative as a result of a combination of both extrinsic and intrinsic factors. In order to gain understanding of this pathology, animal models are required. Because each tendon is naturally exposed to different conditions, a universal model is not feasible; therefore, an appropriate animal model must be established for each tendon susceptible to degenerative changes. While acceptable models have been developed for several tendons, a reliable model for the Achilles tendon remains elusive. The purpose of this dissertation was to develop an animal model of Achilles tendinopathy by investigating the individual and combined effects of an intrinsic and extrinsic factor on the rodent Achilles tendon. Rats selectively bred for high capacity running and Sprague Dawley rats underwent uphill treadmill running (an extrinsic factor) to mechanically overload the Achilles tendon or served as cage controls. Collagenase (intrinsic factor) was injected into one Achilles tendon in each animal to intrinsically break down the tendon. There were no interactions between uphill running and collagenase injection, indicating that the influence of the two factors was independent. Uphill treadmill running alone failed to produce any pathological changes in the histological or mechanical characteristics of the Achilles tendon, but did modify molecular activity. Intratendinous collagenase injection had negative effects on the histological, mechanical, and molecular properties of the tendon. The results of this dissertation demonstrated that the combined introduction of uphill treadmill running and collagenase injection did not lead to degenerative changes consistent with human Achilles tendinopathy. Intratendiouns collagenase injection negatively influenced the tendon; however, these changes were generally transient and not influenced by mechanical overload. Future studies should consider combinations of other intrinsic and extrinsic factors in an effort to develop an animal model that replicates human Achilles tendinopathy.
772

Effects of coadministration of D-Napvsipq [NAP] and D-Sallrsipa [SAL] on spatial learning after developmental alcohol exposure

Wagner, Jennifer Lynne January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Despite warnings about the dangers of drinking during pregnancy, little progress has been made in reducing alcohol drinking among women of childbearing age. Even after the recognition of pregnancy, 15% of women continue to drink, 3% of which admit to binge drinking. Because we cannot stop women from drinking during pregnancy, and many children with fetal alcohol spectrum disorders (FASD) are adopted, there is a significant need to develop postnatal interventions that can improve the long-term outcome of children adversely affected by prenatal alcohol exposure. This thesis aims to evaluate one promising new treatment in the rehabilitation or rescue of specific learning deficits long after the damage has occurred. The treatment evaluated herein (40µg D-NAP + 40µg D-SAL) has long been used in the prevention of the detrimental effects of long-term and binge-like alcohol exposures in rodent models of fetal alcohol syndrome and FASD. Until recently this peptide treatment had only been shown to be effective in preventing some of the consequences of alcohol exposure when administered concurrently with the prenatal alcohol exposure. A recent report by Incerti and colleagues (2010c), however, reported that these peptides could completely reverse a profound spatial learning deficit induced by one episode of a heavy binge-like alcohol exposure (5.9g.kg in a single intraperitoneal injection) on gestational day 8 (G8) in C57BL/6 mice. In that report, the peptide treatment was administered starting in late adolescence, beginning three days prior to and throughout water maze training, and the profound deficits in their alcohol-placebo group were completely eliminated in the alcohol-peptide group. There are currently no FDA-approved treatments for FASD. An effective treatment for the cognitive and behavioral dysfunctions suffered by the 1% of people born today could potentially improve the lives of millions of children and adults. The first aim of this thesis was to determine whether the peptide treatment could reverse the significant spatial learning deficits we have demonstrated in adult C57BL/6 mice given high-dose binge-like alcohol exposure (2.5 g/kg in each of two intraperitoneal injections separated by two hours) on postnatal day (P)7. When administered three days prior to and throughout water maze testing (P67-76), the peptide treatment had no effect on spatial learning. The second aim sought to determine whether the same peptide treatment could reverse water maze spatial learning deficits in G8 binge-like exposure models, as reported by Incerti et al. (2010c). For this analysis, the first study used a different binge-like alcohol exposure model that is more commonly used than that employed by the Incerti et al. (2010c) study, namely administration of 2.8g/kg in each of two intraperitoneal injections separated by four hours (Sulik et al., 1981). This model has been shown to produce high peak blood alcohol concentrations and neuroanatomical aberrations in the hippocampal formation and septal regions (Parnell et al., 2009), which have been implicated in learning and memory. Surprisingly, this G8 binge-like alcohol exposure failed to produce a spatial learning deficit, undermining the usefulness of this model in evaluating the peptide effects. In direct contrast to the outcomes of Incerti et al. (2010c), the G8 Webster alcohol exposure was also unable to produce any deficits in acquisition of spatial learning in the Morris water maze. Surprisingly, neither of the heavy binge-like alcohol exposures on G8 were able to produce spatial learning deficits in the Morris water maze. The binge-like alcohol exposure on P7 did yield the expected spatial learning deficit, but the peptide treatment was unsuccessful in recovering water maze learning. These findings fail to support oral administration of 40µg D-NAP and 40 µg D-SAL as a potential therapy for postnatal alcohol-induced spatial learning deficits in adult mice.
773

Effects of electrical stimulation and testosterone on regeneration-associated gene expression and functional recovery in a rat model of sciatic nerve crush injury

Meadows, Rena Marie January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Although peripheral motoneurons are phenotypically endowed with robust regenerative capacity, functional recovery is often suboptimal following peripheral nerve injury (PNI). Research to date indicates that the greatest success in achieving full functional recovery will require the use of a combinatorial approach that can simultaneously target different aspects of the post-injury response. In general, the concept of a combinatorial approach to neural repair has been established in the scientific literature but has yet to be successfully applied in the clinical situation. Emerging evidence from animal studies supports the use of electrical stimulation (ES) and testosterone as one type of combinatorial treatment after crush injury to the facial nerve (CN VII). With the facial nerve injury model, we have previously demonstrated that ES and testosterone target different stages of the regeneration process and enhance functional recovery after facial nerve crush injury. What is currently unknown, but critical to determine, is the impact of a combinatorial treatment strategy of ES and testosterone on functional recovery after crush injury to the sciatic nerve, a mixed sensory and motor spinal nerve which is one of the most serious PNI clinical problems. The results of the present study indicate that either treatment alone or in combination positively impact motor recovery. With regard to molecular effects,single and combinatorial treatments differentially alter the expression of regeneration-associated genes following sciatic nerve crush injury relative to facial nerve injury. Thus, our data indicate that not all injuries equally respond to treatment. Furthermore, the results support the importance of treatment strategy development in an injury-dependent manner and based upon the functional characteristics of spinal vs. cranial nerves.
774

Involvement of Collapsin Response Mediator Protein 2 in Posttraumatic Sprouting in Acquired Epilepsy

Wilson, Sarah Marie January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Posttraumatic epilepsy, the development of temporal lobe epilepsy (TLE) following traumatic brain injury, accounts for 20% of symptomatic epilepsy. Reorganization of mossy fibers within the hippocampus is a common pathological finding of TLE. Normal mossy fibers project into the CA3 region of the hippocampus where they form synapses with pyramidal cells. During TLE, mossy fibers are observed to innervate the inner molecular layer where they synapse onto the dendrites of other dentate granule cells, leading to the formation of recurrent excitatory circuits. To date, the molecular mechanisms contributing to mossy fiber sprouting are relatively unknown. Recent focus has centered on the involvement of tropomycin-related kinase receptor B (TrkB), which culminates in glycogen synthase kinase 3β (GSK3β) inactivation. As the neurite outgrowth promoting collapsin response mediator protein 2 (CRMP2) is rendered inactive by GSK3β phosphorylation, events leading to inactivation of GSK3β should therefore increase CRMP2 activity. To determine the involvement of CRMP2 in mossy fiber sprouting, I developed a novel tool ((S)-LCM) for selectively targeting the ability of CRMP2 to enhance tubulin polymerization. Using (S)-LCM, it was demonstrated that increased neurite outgrowth following GSK3β inactivation is CRMP2 dependent. Importantly, TBI led to a decrease in GSK3β-phosphorylated CRMP2 within 24 hours which was secondary to the inactivation of GSK3β. The loss of GSK3β-phosphorylated CRMP2 was maintained even at 4 weeks post-injury, despite the transience of GSK3β-inactivation. Based on previous work, it was hypothesized that activity-dependent mechanisms may be responsible for the sustained loss of CRMP2 phosphorylation. Activity-dependent regulation of GSK3β-phosphorylated CRMP2 levels was observed that was attributed to a loss of priming by cyclin dependent kinase 5 (CDK5), which is required for subsequent phosphorylation by GSK3β. It was confirmed that the loss of GSK3β-phosphorylated CRMP2 at 4 weeks post-injury was likely due to decreased phosphorylation by CDK5. As TBI resulted in a sustained increase in CRMP2 activity, I attempted to prevent mossy fiber sprouting by targeting CRMP2 in vivo following TBI. While (S)-LCM treatment dramatically reduced mossy fiber sprouting following TBI, it did not differ significantly from vehicle-treated animals. Therefore, the necessity of CRMP2 in mossy fiber sprouting following TBI remains unknown.
775

Lafora Disease: Mechanisms Involved in Pathogenesis

Garyali, Punitee January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lafora disease is a neurodegenerative disorder caused by mutations in either the EPM2A or the EPM2B gene that encode a glycogen phosphatase, laforin and an E3 ubiquitin ligase, malin, respectively. A hallmark of the disease is accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle and heart. The laforin-malin complex has been proposed to play a role in the regulation of glycogen metabolism and protein degradation/quality control. We evaluated three arms of protein quality control (the autophagolysosomal pathway, the ubiquitin-proteasomal pathway, and ER stress response) in embryonic fibroblasts from Epm2a-/-, Epm2b-/- and Epm2a-/- Epm2b-/- mice. There was an mTOR-dependent impairment in autophagy, decreased proteasomal activity but an uncompromised ER stress response in the knockout cells. These defects may be secondary to the glycogen overaccumulation. The absence of malin, but not laforin, decreased the level of LAMP1, a marker of lysosomes, suggesting a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal. To understand the physiological role of malin, an unbiased diGly proteomics approach was developed to search for malin substrates. Ubiquitin forms an isopeptide bond with lysine of the protein upon ubiquitination. Proteolysis by trypsin cleaves the C-terminal Arg-Gly-Gly residues in ubiquitin and yields a diGly remnant on the peptides. These diGly peptides were immunoaffinity purified using anti-diGly antibody and then analyzed by mass spectrometry. The mouse skeletal muscle ubiquitylome was studied using diGly proteomics and we identified 244 nonredundant ubiquitination sites in 142 proteins. An approach for differential dimethyl labeling of proteins with diGly immunoaffinity purification was also developed. diGly peptides from skeletal muscle of wild type and Epm2b-/- mice were immunoaffinity purified followed by differential dimethyl labeling and analyzed by mass spectrometry. About 70 proteins were identified that were present in the wild type and absent in the Epm2b-/- muscle tissue. The initial results identified 14 proteins as potential malin substrates, which would need validation in future studies.
776

Regulation of inflammation in choroidal neovascularization in age related macular degeneration

Andriessen, Elisabeth MMA 10 1900 (has links)
La dégénérescence maculaire liée à l'âge (DMLA) est la cause la plus fréquente de déficience visuelle centrale irréversible chez les personnes de plus de 50 ans dans les pays industrialisés, avec des impacts sociétaux et financiers majeurs. La DMLA est une maladie à multiples facettes provoquée par des interactions entre les facteurs de risque et les antécédents génétiques et l'inflammation joue un rôle important. Les effets pro-inflammatoires provoquent une perturbation de l'environnement sousrétinien physiologiquement immunosuppresseur. L'accumulation de phagocytes mononucléaires (PM) dans l'espace sous-rétinien qui s'ensuit est au coeur de l'étiologie des formes atrophiques et humides de la DMLA. Après l’usage de tabac, l'obésité est l'un des facteurs de risque modifiables les plus importants. Nous avons démontré que les régimes riches en graisses exacerbent la néovascularisation choroïdienne (NVC) en modifiant le microbiote intestinal. La dysbiose intestinale entraîne une perméabilité intestinale accrue, une inflammation chronique de bas grade, une augmentation des PM sur le site de l'angiogenèse pathologique dans l'oeil et exacerbe finalement la NVC. La modification du microbiote peut réduire l'inflammation et atténuer la NVC et peut ainsi fournir des traitements peu intrusifs et rentables pour prévenir ou retarder la DMLA exsudative. Une autre option thérapeutique qui pourrait réduire la NVC par modulation inflammatoire consiste à piéger localement les ligands de NRP1 avec un piège dérivé de NRP1. Les ligands de NRP1 sont élevés dans le vitré des patients atteints de DMLA. Nous avons constaté que les PM exprimant NRP1 favorisaient la NVC en atténuant la production de facteurs inflammatoires et en favorisant l'activation alternative, donnant aux PM un caractère pro-angiogénique. Les PM moins inflammatoires et plus de type M2 qui sont enrichis avec l'âge et exacerbent la NVC peuvent être modulés et devenir moins nuisibles en empêchant l'activation de NRP1. Cette thèse explore deux angles dans lesquels la régulation de l'inflammation peut influencer la formation de NVC et jette les bases du développement futur de nouveaux traitements préventifs primaires et secondaires efficaces dans le contexte de la DMLA. / Age related macular degeneration (AMD) is the most common cause of irreversible central vision impairment in people over 50 in industrialized countries, with major societal and financial impacts. AMD is a multifaceted disease provoked by interactions among environmental risk factors and genetic backgrounds in which inflammation plays an important role. Proinflammatory effects cause a disruption of the physiologically immunosuppressive subretinal environment. The ensuing accumulation of mononuclear phagocytes in the subretinal space is central to the etiology of both atrophic and wet forms of AMD. After smoking, obesity is one of the most important modifiable risk factors. We demonstrate that high-fat diets exacerbate choroidal neovascularisation (CNV) by altering gut microbiota. Gut dysbiosis leads to heightened intestinal permeability and chronic low-grade inflammation, increases recruitment of microglia and macrophages to the site of pathological angiogenesis in the eye and ultimately exacerbates CNV. Modifying microbiota can reduce systemic and local choroidal inflammation and attenuate pathological neovascularization and may thus provide minimally intrusive and cost-effective paradigms to prevent or delay exudative AMD. Another therapeutic option that could reduce CNV through inflammatory modulation is locally trapping ligands of NRP1 with a NRP1-derived trap. Ligands for NRP1 are elevated in the vitreous of patients with AMD at times of active CNV. We found that NRP1-expressing MPs promote CNV by mitigating production of inflammatory factors and promoting alternative activation, giving the MPs a pro-angiogenic character. The less inflammatory and more M2-like MPs that are enriched with age and exacerbate CNV can be rendered less detrimental by hindering NRP1 activation. This thesis explores two angles wherein regulation of inflammation can influence the formation of CNV and lays the groundwork for future development of novel effective primary and secondary preventive treatments for AMD.
777

The implication of the microRNA Let-7f in the degeneration and dysfunction of retinal pigment epithelial cells

Ortiz, Christina 02 1900 (has links)
L'épithélium pigmentaire rétinien (EPR) est une monocouche formée de cellules hautement spécialisées et uniques dont les nombreuses fonctions servent à maintenir une vision adéquate. En revanche, ces fonctions spécifiques rendent les cellules de l’EPR particulièrement vulnérables au stress oxydant. Avec le vieillissement, les cellules de l’EPR peuvent dégénérer et devenir non-fonctionnelles, donnant lieu à plusieurs maladies telles que la dégénérescence maculaire liée à l'âge (DMLA). Dans les pays occidentaux, la DMLA est la principale cause de cécité et de déficience visuelle chez les personnes âgées. En fait, environ 90 % des patients atteints de la DMLA souffrent de la forme sèche, pour laquelle il n'existe aucun traitement. Des années de recherche ont établi que le stress oxydant est un contributeur majeur à la pathogenèse de la DMLA sèche. De nombreuses études ont montré que le stress oxydant induit les cellules de l’EPR à libérer des vésicules extracellulaires (VEs). Nos propres travaux ont démontré que les VEs peuvent induire le stress oxydant et la sénescence chez les cellules de l’EPR. Comme d'autres, nous avons constaté que les VEs étaient enrichis en microARNs. Grâce au séquençage d’ARN, nous avons identifié le let-7f comme étant l'un des microARNs les plus abondants contenus dans ces vésicules. L'objectif de ce mémoire a été l’exploration entre la relation let-7f et la dégénérescence des cellules de l’EPR. Nos résultats ont démontré une régulation et une augmentation de l’expression du let-7f dans les cellules de l’EPR sous stress oxydant, in vitro et in vivo. De plus, la surexpression du let-7f a généré un stress oxydant, le dysfonctionnement et la sénescence des cellules humaines de l’EPR (ARPE-19). De plus, l’inhibition du let-7f à protéger ces cellules contre les conséquences néfastes induites par l’iodate de sodium. En somme, les résultats de ce travail suggèrent fortement que le let-7f est impliqué dans la dégénérescence des cellules de l’EPR et pourraient aider à la découverte de nouveaux processus pertinents dans la pathogenèse de la DMLA sèche. / The retinal pigment epithelium (RPE) is a highly specialized and unique monolayer of cells whose many functions are vital for maintaining proper vision. In turn, these specific functions render RPE cells particularly vulnerable to oxidative injury. With age, RPE cells can degenerate and become dysfunctional, giving rise to various disorders such as age-related macular degeneration (AMD). In western countries, AMD is the primary cause of blindness and visual impairments in the elderly. In fact, approximately 90% of all AMD patients suffer from the dry form of the disease, for which there exist no approved treatment. Decades of research have established that chronic oxidative stress is a major contributor to the pathogenesis of dry AMD. Numerous studies have shown that oxidative stress induces RPE cells to release extracellular vesicles (EVs) which participate in cell-to-cell communication. Our recent work has demonstrated that EVs alone were sufficient in inducing oxidative stress and senescence in RPE cells. Consistent with others, we found that EVs released by RPE cells were enriched in microRNAs. RNA-sequencing identified let-7f as one of the most abundant miRNAs contained in these vesicles. Despite being one of the first miRNAs to be discovered, the role of let-7f in RPE cells has remained essentially unexplored. The aim of this dissertation was to investigate the relationship between let-7f and RPE cells in regards to their degeneration and dysfunction. Our results revealed that the expression of let-7f increased and was regulated by oxidative stress in RPE cells, in vitro and in vivo. In addition, let-7f overexpression promoted oxidative stress, cellular dysfunction and senescence in human RPE (ARPE-19) cells. Finally, inhibition of let-7f exhibited protective effects against sodium iodate-induced oxidative injury. Overall, the findings in this work provide strong evidence that let-7f is implicated in the degeneration of RPE cells and further mechanistic investigation may help to uncover novel insights into the genesis of dry AMD.
778

Preclinical Efficacy and Safety Evaluation of Novel Small-Molecule Targeted Agents for the Prevention and Treatment of Prostate Cancer

Sargeant, Aaron Matthew 02 September 2009 (has links)
No description available.
779

Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis

Gray, E., Thomas, T. L., Betmouni, S., Scolding, N., Love, S. January 2008 (has links)
No / Recent studies have revealed extensive cortical demyelination in patients with progressive multiple sclerosis (MS). Demyelination in gray matter lesions is associated with activation of microglia. Macrophages and microglia are known to express myeloperoxidase (MPO) and generate reactive oxygen species during myelin phagocytosis in the white matter. In the present study we examined the extent of microglial activation in the cerebral cortex and the relationship of microglial activation and MPO activity to cortical demyelination. Twenty-one cases of neuropathologically confirmed multiple sclerosis, with 34 cortical lesions, were used to assess microglial activation. HLA-DR immunolabeling of activated microglia was significantly higher in demyelinated MS cortex than control cortex and, within the MS cohort, was significantly greater within cortical lesions than in matched non-demyelinated areas of cortex. In homogenates of MS cortex, cortical demyelination was associated with significantly elevated MPO activity. Immunohistochemistry revealed MPO in CD68-positive microglia within cortical plaques, particularly toward the edge of the plaques, but not in microglia in adjacent non-demyelinated cortex. Cortical demyelination in MS is associated with increased activity of MPO, which is expressed by a CD68-positive subset of activated microglia, suggesting that microglial production of reactive oxygen species is likely to be involved in cortical demyelination.
780

Exploring the link between adipose tissue, obesity and age-related macular degeneration

Diaz Marin, Roberto 08 1900 (has links)
L’obésité est en croissance rapide à l’échelle mondiale et représente un facteur de risque important pour plusieurs pathologies, dont la dégénérescence maculaire liée à l’âge (DMLA). Dans l’obésité, le tissu adipeux blanc (WAT) subi un remodelage pathologique caractérisé par le recrutement de macrophages pro-inflammatoires facilitant l’établissement de l’inflammation stérile systémique. Contrairement au WAT, les tissus adipeux brun (BAT) et beige (BgAT) participent à la thermogénèse, un processus qui libère de la chaleur en métabolisant les lipides. En raison de leurs potentiels effets physiologiques bénéfiques, le recrutement d’adipocytes et l’activation de ces types spécifiques de tissu adipeux (AT) ont fait l’objet de multiples recherches et débats. Malgré les avancées considérables dans le domaine, les mécanismes impliqués dans l’activation du BAT et du BgAT ainsi que les mécanismes impliqués dans le développement de l’obésité et leur contribution à des maladies comme la DMLA, restent mal définis. Dans un premier temps, nous avons développé le protocole RELi pour permettre une extraction et une quantification fiable des protéines du AT murin saturé en lipides. Notre protocole élimine les lipides contaminants en excès, réduit la variabilité du chargement de protéines pour le western blot et l’usage de gènes de ménage standards (Article #1). Ensuite, nous avons étudié l’inflammation au niveau du BAT dans un modèle d’obésité induite par l’alimentation. La délétion de la Neuropiline 1 (NRP1) chez les macrophages résidents du tissu adipeux (ATMs) a provoqué une diminution des densités de la vasculature et de l’innervation. De plus ces souris sont devenues plus sensibles à l’exposition au froid suggérant un rôle des ATMs-Nrp1+ dans la régulation de l’homéostasie du BAT et de la température corporelle (Article #2). Finalement, nous avons exploré l’axe BgAT-DMLA; plus spécifiquement son impact potentiel sur la néovascularization choroïdienne (CNV) en utilisant des approches in vivo et in vitro. Nous avons démontré que la délétion génétique de PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16), un gène impliqué dans la thermogénèse, conduit à une réduction de la CNV, et que la réintroduction d’AT-PRDM16+ exacerbe la formation de CNV pathologique. Le traitement d’explants de choroïde avec du milieu conditionné par des adipocytes-PRDM16+ augmente la croissance des vaisseaux sanguins. Ensemble, les données suggèrent un rôle sécrétoire potentiel pour le BgAT-PRDM16+ capable d’influencer la formation distale de CNV qui pourrait être pertinente pour la DMLA (Article #3). Les travaux présentés dans cette thèse établissent les bases d’un protocole permettant l’obtention de résultats reproductibles dans l’étude du AT, soulignent l’importance des ATMs- Nrp1+ dans la régulation de l’homéostasie du BAT et explorent pour la première fois l’implication du BgAT-PRDM16+ chez la DMLA neovasculaire. Ce travail établit les bases de la compréhension des mécanismes moléculaires reliant la régulation du AT thermogénique et les pathologies caractérisées par un excès de gras. Ce travail souligne également l’importance d’évaluer l’activation du BgAT chez les patients atteints de la DMLA. / Obesity is rapidly growing worldwide and represents a significant risk factor to several pathologies, including age-related macular degeneration (AMD). In obesity, the white adipose tissue (WAT) undergoes a strong remodeling characterized by the recruitment of pro- inflammatory macrophages, facilitating low-grade chronic inflammation. Unlike WAT, brown (BAT) and beige (BgAT) adipose tissues participate in thermogenesis, a process that releases heat by metabolizing lipids. Due to the likely beneficial physiological effects of BAT and BgAT, the recruitment of adipocytes and activation of these specific types of adipose tissue (AT) has been the subject of much research and debate. Despite considerable advances in the field, the mechanisms involved in BAT- and BgAT-activation as well as mechanisms involved in the development of obesity and their contribution to diseases such as AMD, remain ill-defined. First, we developed the RELi protocol to allow a reliable extraction and quantification of proteins from murine AT saturated with lipids. Our protocol eliminates excess contaminating lipids, reduces the variability of protein loading in Western blot and stabilizes expression of housekeeping genes (Article #1). Next, we investigated the inflammatory component of BAT in a diet-induced obesity model. The deletion of NRP1 in resident adipose tissue macrophages (ATMs) led to the expansion of the BAT and affected the densities of the vasculature and the innervation. Moreover, these mice became more sensitive to cold exposure, suggesting a role of ATMs-Nrp1+ in the regulation of BAT homeostasis and body temperature (Article #2). Lastly, we explored the axis of BgAT and AMD; more specifically, its potential impact on choroidal neovascularization (CNV) using in vivo and in vitro approaches. We demonstrated that the genetic deletion in BgAT of PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16), a gene involved in thermogenesis, leads to a reduction of CNV, and that the reintroduction of BgAT-PRDM16+ via AT transplantation exacerbates the formation of pathological CNV. Treatment of choroid explants with PRDM16+-adipocyte-conditioned medium augmented blood vessel growth. Altogether, the data suggest a potential secretory role for BgAT-PRDM16+ to influence distal CNV formation that could be relevant to AMD (Article #3). The work presented in this thesis establishes the basis of a protocol allowing reproducible results in the study of AT, underlines the importance of ATMs-Nrp1+ in the regulation of BAT homeostasis and explores, for the first time, the involvement of BgAT-PRDM16+ in neovascular AMD. This work sets the basis for the understanding of the molecular mechanisms linking the regulation of thermogenic AT and pathologies characterized by an excess of fat. This work also highlights the importance of assessing the activation of BgAT in patients with AMD.

Page generated in 0.0914 seconds