• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 42
  • 16
  • 10
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 459
  • 459
  • 419
  • 57
  • 57
  • 56
  • 39
  • 33
  • 32
  • 32
  • 31
  • 28
  • 28
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

"Farmacocinética e captação tecidual do paclitaxel associado à nanoemulsão (LDE) em pacientes com neoplasias malignas do trato genital feminino" / Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers

Genta, Maria Luiza Nogueira Dias 11 April 2006 (has links)
O paclitaxel é utilizado amplamente no carcinoma de ovário, nos casos refratários de carcinoma de endométrio e quimioterapia exclusiva para carcinoma avançado de colo uterino. A associação de paclitaxel a uma nanoemulsião rica em colesterol, denominada LDE, mostrou toxicidade menor e aumento da atividade antitumoral do fármaco em cobaias. No presente estudo, investigou-se os parâmetros farmacocinéticos do oleato de LDE-paclitaxel e a habilidade da LDE de concentrar o fármaco no tumor em oito pacientes com câncer do trato genital feminino. O oleate de paclitaxel associado a LDE é estável na circulação e tem uma meia-vida plasmática maior do que o paclitaxel comercial. A LDE concentra 3,6 mais paclitaxel em tecidos tumorais do que nos tecidos normais. Esta associação parece ser uma alternativa no tratamento dos tumores ginecológicos / A cholesterol-rich nanoemulsion termed LDE concentrates in cancer tissues after injection into the bloodstream. The association of a derivatized paclitaxel to LDE showed lower toxicity and increased antitumoral activity as tested in mice. Here, the pharmacokinetics of LDE-paclitaxel oleate and the ability of LDE to concentrate the drug in the tumor were investigated in eight patients with gynecologic cancers. Fractional clearance rate (FCR) and pharmacokinetic parameters were calculated by compartmental analysis. Also, specimens of tumors and the normal tissues were excised during the surgery for radioactivity measurement. LDE concentrates 3.5 more paclitaxel in malignant tissues than in the normal tissues. Therefore, association to LDE is an interesting strategy for using paclitaxel to treat gynecologic cancers
442

Photoacoustic drug delivery using carbon nanoparticles activated by femtosecond and nanosecond laser pulses

Chakravarty, Prerona 09 January 2009 (has links)
Cellular internalization of large therapeutic agents such as proteins or nucleic acids is a challenging task because of the presence of the plasma membrane. One strategy to facilitate intracellular drug uptake is to induce transient pores in the cell membrane through physical delivery strategies. Physical approaches are attractive as they offer more generic applicability compared with viral or biochemical counterparts. Pulsed laser light can induce the endothermic carbon-steam reaction in carbon-nanoparticle suspensions to produce explosive photoacoustic effects in the surrounding medium. In this study, for the first time, these photoacoustic forces were used to transiently permeabilize the cell membrane to deliver macromolecules into cells. Intracellular delivery using this method was demonstrated in multiple cell types for uptake of small molecules, proteins and DNA. At optimized conditions, uptake was seen in up to 50% of cells with nearly 100% viability and in 90% of cells with ≥90% viability, which compared favorably with other physical methods of drug delivery. Cellular bioeffects were shown to be a consequence of laser-carbon interaction and correlated with properties of the carbon and laser, such as carbon concentration and size, laser pulse duration, wavelength, intensity and exposure time. Similar results were observed using two different lasers, a femtosecond Ti: Sapphire laser and a nanosecond Nd: YAG laser. Uptake was also shown in murine skeletal muscles in vivo with up to 40% efficiency compared to non-irradiated controls. This synergistic use of nanotechnology with advanced laser technology could provide an alternative to viral and chemical-based drug and gene delivery.
443

DEVELOPMENT OF NOVEL MULTI-RESPONSIVE MATERIALS CHARACTERIZED BY POTENTIAL CONTROLLED RELEASE PROPERTIES

Chikh Alard, Ibaa 05 December 2018 (has links) (PDF)
With the emergence of novel and more effective drug therapies, increased importance is being placed upon the methods by which these drugs are being delivered to the body. In conventional drug delivery systems, there is very little control over the release of drug. The effective concentration at the target site can be achieved by intermittent administration of grossly excessive doses, which, often results in constantly, unpredictable variations in plasma concentrations, with the risk of reaching levels below or above the therapeutic range leading to marked side effects. A plethora of formulation strategies mainly based on polymeric/lipid nanoparticles, are described in literature. Even though these systems are therapeutically advantageous in comparison to conventional systems, they remain insensitive to the changing metabolic states of the body although the symptoms of most metabolic diseases follow a rhythmic pattern.A more appropriate and effective approach of managing some of these conditions lies in the chronotherapy. This approach allows for pulsed or self-regulated drug delivery which is adjusted to the staging of biological rhythms, since the onset of certain diseases exhibits strong circadian temporal dependence. In order to reach the objective of mimicking the biophysical and biochemical processes of pathological states, many innovations in material design for drug delivery systems (DDS) that are able to release the therapeutic payload-on-demand were done to release the therapeutic agent only when it is required, according to the physiological need. The development of multidisciplinary research teams has brought huge advantages in the design, fabrication and utilization of such smart systems, especially in the pharmaceutical field. Interestingly, numerous smart polymeric materials exhibit a response to a specific stimulus. A step further, the elaboration of purpose-built monomers can give rise to compounds with tunable sensitivities or multi-stimuli responsiveness. These smart polymers demonstrate an active responsiveness to environmental (or external) signals and change their physicochemical properties as designed (e.g. conformation, solubility, shape, charge or size). As far as the stimuli are concerned, they consist of physical (e.g. temperature, ultrasound, light, electricity, magnetic or mechanical stress), chemical (e.g. pH, ionic strength) and biological signals (e.g. enzymes, biomolecules). Due to the intrapersonal variabilities which may make internal stimuli hazardous, externally controlled systems rely on externally applied stimuli that are produced by stimuli-generating devices, which results in pulsed drug delivery. This type of delivery may be rapid and allows a transient release of a determined amount of drug within a short period of time immediately after a pre-determined off-release period. A novel strategy for the formation of multi-stimuli responsive materials endowed with pH, magnetic and light sensitivity was achieved. The approach relied on the incorporation of magnetic tetrahalogenoferrate(III) anions along a polymeric backbone based on poly(2-(N,N-dimethylamino) ethyl meth-acrylate) (PDMAEMA). Starting from the same PDMAEMA, quaternized pending amine groups with various halide derivatives gave rise to magnetic materials after anion metathesis. Measuring the magnetic susceptibility of these materials exhibited that the magnetic susceptibility increased as the substituted group size decreased (become smaller) which was apparently related to the steric hindrance around the ionic pendants. Additionally, a good correlation between the magnetic susceptibility and ferric content was found. Additional experimental and theoretical Raman analyses allowed the determination of the nature of the magnetic species constituting the materials. This strategy further offers the opportunity to tailor the magnetic response through partial ammonium salt formation. In order to merge the magnetic properties of ferric-based materials with another stimuli-responsive functionality, random copolymers containing DMAEMA (D) with diazobenzene (A) unit were prepared. So, three copolymers PDA were synthesized (with targeted D/A ratios 4/6 (PDA4), 6/4 (PDA6) and 8/2 (PDA8)). Meanwhile, different degrees of amine quaternization (10, 50 and 100 %) were applied, which led to the following polymeric salts PDAX/Y where X = 4, 6, 8 (referring to the percentage of the DMAEMA unit) and Y = 10, 50 and 100 (referring to the percentage of quaternized amine groups). Finally, the aforementioned materials were converted into magnetic polymers by anion exchange. As a result, magnetic responses correlated well with amount of iron oxide in these compounds and the amount of ionic pending groups along the backbone. Moreover, the remaining tertiary amines conferred pH sensitivity to the polymers whereas the diazobenzene units ensured light responsiveness through the well-established trans-to-cis isomerization.In order to functionalize these materials in the pharmaceutical field, an intelligent delivery system was prepared. Firstly, an attempt to formulate riboflavin-5’-phosphate sodium (RPS) loaded on PDA8 microspheres was made using double emulsion evaporation method. Meanwhile, prednisolone (PRD) microspheres were prepared using s/o/w emulsion technique. Subsequently, coating systems of cochineal red tablets were developed. These tablets were coated with polymer solution (using each of three types of copolymers: PDA8, PDA6, and PDA4) until the desired percentage of the coating was achieved (10, 15, and 20 % w/w). The cumulative release profiles of cochineal red tablets coated with PDA8, PDA6, and PDA4 showed a pH-sensitive release behavior. The release in the neutral media (pH ≈ 7.0) was very slow (less than 3 % after one hour). Then, after changing the pH to 1.2, an increase in the release of cochineal was observed. Furthermore, the cumulative release of cochineal red was at the highest value for the PDA8 and the lowest for PDA4 depending on the percentage of PDMAEMA moieties. Moreover, by increasing the percentage of the coating from (10, 15 to 20 % w/w), the cumulative release of cochineal decreased. Therefore, the copolymer PDAX can be used for controlling the release of drug by changing the pH value.Finally, the cochineal tablets coated with PDA6 (10 %) showed features of light sensitivity. The release of cochineal red from coated tablets was only due to the switching in the conformational trans/cis isomerization of azobenzene moieties upon irradiation, which was confirmed by comparing the release of coated tablets with uncoated tablets upon irradiation. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
444

Hyaluronic Acid Based Biodegradable Polyelectrolyte Nanocapsules and Modified Protein Nanoparticles for Targeted Delivery of Anticancer Agents

Sreeranjini, P January 2015 (has links) (PDF)
Targeted delivery aids in minimizing most of the drug-originated systemic toxic effects as well as improving the pharmacokinetic properties of anticancer therapeutics. Tumor targeting using hyaluronic acid (HA) as the targeting ligand has attracted a great deal of interest among a host of strategies developed to target the overexpressed tumor specific receptors. HA is an endogenous molecule that possesses a lot of biological functions in the human body. The role of HA synthases, HA degrading enzymes and the interaction of HA with its primary receptor CD44 in tumor metastasis and angiogenesis is really complex and controversial to date. However, overexpression of CD44receptors on tumor surface has been well studied, which have been utilized to direct tumor targeted drugs. Most of the HA based targeting systems were HA drug conjugates and surface modified colloidal carriers which required covalent modification. The lack of accurate structural characterization of these systems resulted in modification of HA binding sites that could affect the efficient cellular uptake. LbL technique is a simple and facile method to incorporate several materials into polyelectrolyte assemblies for drug delivery applications. HA being a negatively charged polysaccharide can be easily incorporated into such systems without any covalent modification. Although HA based polyelectrolyte multilayer films and microcapsules have been reported in combination with polycations like PAH, PLL and chitosan, their application as targeted drug delivery systems have not yet been explored. Herein, two LbL architectures with HA as the terminal layer have been investigated as targeted drug carriers, which can recognize overexpressed CD44 receptors in metastatic breast cancer cells. In the first part of the thesis, a novel polyelectrolyte nanocapsule system composed of biopolymers HA and protamine sulphate (PR) as the wall components was prepared and characterized. These pH and enzyme responsive nanocapsules were then utilized for efficient loading and release of anticancer drug doxorubicin (dox). Higher drug release was observed in simulated intracellular conditions like acidic pH and presence of hyaluronidase enzyme as compared to physiological pH. In the second part of the thesis, dox incorporated bovine serum albumin (BSA) nanoparticles modified with HA-Poly(l-Lysine) multilayers were developed and characterized. The drug release pattern of the dox loaded BSA nanoparticles was found to depend on the presence of a protease enzyme trypsin than pH variations. Both of these drug delivery systems were then evaluated for their cell targeting efficiency and cytotoxicity in CD44+ positive metastatic breast cancer cell line MDA MB 231. The final layer HA facilitated targeted delivery of these drug carriers via CD44 receptor mediated endocytosis. The enhanced cellular uptake followed by sustained delivery of dox by virtue of slow intracellular enzymatic degradation of the drug carriers resulted in their improved cytotoxicity as compared to free dox. Further in vitro biodistribution and tumor suppression efficiency of both the systems were studied in breast cancer xenograft models using BALB/c nude mice. Enhance accumulation of dox in the tumor tissue and significant tumor reduction were observed when treated with encapsulated dox using the HA based nanocarriers as opposed to free dox.
445

Avaliação do cenário regulatório de testes de permeação transdérmica de fármacos / Evaluation of the regulatory environment transdermal permeation test drugs

Engelhardt, Renata Lourenço January 2015 (has links)
Made available in DSpace on 2016-07-01T11:59:28Z (GMT). No. of bitstreams: 2 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) 4.pdf: 2145558 bytes, checksum: 50549f6c199193ece4951dbb22851f56 (MD5) Previous issue date: 2015 / Made available in DSpace on 2016-07-21T14:39:34Z (GMT). No. of bitstreams: 2 4.pdf: 2145558 bytes, checksum: 50549f6c199193ece4951dbb22851f56 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2015 / Fundação Oswaldo Cruz. Instituto de Tecnologia em Fármacos/Farmanguinhos. Rio de Janeiro, RJ, Brasil. / Os sistemas de liberação transdérmica (SLT) representam atualmente uma via alternativa para a administração de fármacos por difusão passiva através da pele. Os SLT são capazes de contornar inconvenientes, como interações com alimentos e metabolismo de primeira passagem, e de substituir esquemas de doses repetidas, aumentando a adesão do paciente ao tratamento. Entretanto, não há pela Agência Nacional de Vigilância Sanitária (ANVISA) uma regulamentação específica que oriente quanto a exigências para pesquisa, desenvolvimento e registro desses medicamentos, contemplando ensaios e parâmetros definidos na avaliação de segurança e eficácia desses dispositivos. Sendo assim, esta dissertação objetiva realizar um levantamento e comparar as exigências regulatórias utilizadas para obtenção de registro dos SLT nas três principais agências, European Medicines Agency (EMA), Food and Drug Administration (FDA) e ANVISA. Adicionalmente, objetiva realizar uma análise das técnicas que vêm sendo mais vastamente empregadas nos ensaios in vitro de permeação pela comunidade científica, podendo nortear a proposta de uma metodologia harmonizada, inexistente até o momento. A definição dos parâmetros empregados na realização de tais testes é fundamental para o aumento na confiabilidade do método e simulação de biodisponibilidade in vitro, como alternativa aos testes in vivo. A partir do resultado obtido com a pesquisa concernente aos aspectos regulatórios, foi possível identificar duas diretrizes do EMA, dois guias do FDA e testes específicos para os SLT descritos na USP, como fontes suficientes na construção de uma legislação específica voltada a esses dispositivos. Com relação aos testes in vitro de permeação, dois guias da Organização para Cooperação Econômica e Desenvolvimento (OECD) e a análise da prática científica nesses ensaios, possibilitaram a realização de uma proposta para a definição dos parâmetros a serem empregados. / The transdermal drug delivery systems (TDDS) current presents an alternative for drug administration by passive diffusion throughout the skin. The TDDS are capable to avoid inconvenients, as food interactions and first pass metabolism, and to replace repetitive dose scheme, increasing patients adhesion on treatment. However, there is no specific regulation by Agência Nacional de Vigilância Sanitária (ANVISA) to guide for requirements regarding research, development and registration for this drugs, including assay and defined parameters on evaluation of safety and efficacy of these devices. So, the main objective of this work is to identify and to compare the regulatory requirements for TDDS regulatory approval of three most important agencies, European Medicines Agency (EMA), Food and Drug Administration (FDA) and ANVISA. In addition, this work aims to study the must employed techniques on in vitro permeation tests by scientific community to guide the development of an harmonized methodology, which does not exist until now. The parameters definition to be applied on these tests are essential to increase method reliability of in vitro bioavailability simulation, as an alternative for in vivo tests. With results obtained after searching about regulatory aspects, it was possible to identify two EMA guidelines, two FDA guides and specific tests related to TDDS on USP, as suficient sources for specific regulation construction focused on these devices. About in vitro permeation tests, two OECD (Organization for Economic Co-operation and Development) guides and the analysis of scientific practice on these tests, allowed a proposal definition for parameters to be employed.
446

Strategic pre-clinical development of Riminophenazines as resistance circumventing anticancer agents

Koot, Dwayne Jonathan 26 April 2013 (has links)
Cancer is responsible for upward of 13% of human deaths. Contemporary chemotherapy of disseminated cancer is often thwarted by dose limiting systemic toxicity and by multi-drug resistance (MDR). Riminophenazines are a novel class of potential anticancer agents that possess a potent multi-mechanistic antineoplastic action. Apart from their broad action against intrinsic, non-classical resistance, Riminophenazines inhibit the action of Pgp and hypothetically all ABC transporters demonstrating their great utility against classical MDR. Considering that combination chemotherapy is the norm, the vision directing R&D efforts was that Riminophenazines could be used with benefit within many standard chemotherapeutic regimes. The strategic intent of this project was to attain improved therapeutic benefit for patients through gains in both pharmaco dynamic and pharmacokinetic specificity for cancer cells over what is currently available. Tactically, this was driven through the use of synergistic Fixed-Ratio Drug Combinations (FRDC) encapsulated within tumour-targeting Nanoparticulate Drug Delivery Systems (NDDS). Long-term aims of this R&D project were to: 1) Screen FRDC of clofazimine (B663) and the lead derivative (B4125) with etoposide, paclitaxel and vinblastine for synergistic drug interactions in vitro. 2) Design, assemble and characterize a novel nanoparticulate, synergistic, anticancer co-formulation. 3) Evaluate the in vivo safety and efficacy of the developed product/s in accordance with international regulatory guidelines. Using the median effect and combination index equations, impressive in vitro synergistic drug interactions (CI<1) were shown for various FRDC of the three standard chemotherapeutics tested (etoposide, paclitaxel and vinblastine) in combination with either B663 or B4125 against MDR neoplastic cell cultures. Considering in vitro results and with the view to advance quickly to clinical studies, the already approved clofazimine (B663) was elected as the combination partner for paclitaxel (PTX). Considering the potency and wide action of PTX, a novel coformulation (designed to circumvent drug resistance) has the potential to greatly impact upon virtually all cancer types, particularly if selectively delivered through innovative delivery systems and loco-regional administration. A passively tumour targeting, micellular NDDS system called Riminocelles™ that encapsulates a synergistic FRDC of B663 and PTX has been designed, assembled using thin film hydration methods and characterized in terms of drug loading, particle size, zeta potential, CMC and drug retention under sink conditions. An acute toxicity and a GLP repeat dose toxicity study confirmed Riminocelles to be well tolerated and safe at clinically relevant dosages whilst Taxol® (QDx7) produced statistically significant (P<0.05) weight loss within 14 days. The same study demonstrated statistically significant (P<0.05) tumour growth delays superior to that of Taxol at an equivalent PTX dosage of 10 mg/kg. Importantly, all components (amphiphiles and drugs) used in assembly of Riminocelles are already individually approved for medicinal use - this promotes accelerated development towards advanced clinical trials and successful registration. Although these results are very promising (outperforming Taxol), this system was however found in a pharmacokinetic study to suffer from in vivo thermodynamic instability due to the high concentration (abundance) of albumin present in plasma. For this reason, in vivo longevity within circulation, permitting passive tumour accumulation was not fully realized. A second NDDS called the RiminoPLUS™ imaging system was additionally developed. This lipopolymeric nanoemulsion system has successfully entrapped Lipiodol® Ultra fluid (an oil based contrast agent) within the hydrophobic core of a monodisperse particle population with a size of roughly 100 nm and a stability of one week. This formulation is therefore thought capable of CT imaging of tumour tissue and drug targeting after either intravenous or loco-regional injection. In vivo proof of the imaging concept is warranted. The results of this study serve to highlight the great potential of in vitro optimized synergistic FRDC against drug resistant cancers. Lipopolymeric micelles are an effective way to formulate multiple hydrophobic drugs for intravenous administration and present a means by which cancer can be readily targeted; provided that the delivery system possess the prerequisite in vivo stability and surface attributes. Further experiments exploring synergistic drug and biological combinations as well as “intelligent” NDDS actively guided through specific molecular recognition are called for. / Thesis (PhD)--University of Pretoria, 2012. / Pharmacology / unrestricted
447

Endocytosis, Phagocytosis, and Innate Immune Responses: A Dissertation

St. Pierre, Christine A. 13 July 2010 (has links)
In this dissertation, the roles of endocytosis and phagocytosis pathways in a variety of clinically relevant scenarios were examined. These scenarios include antibody-mediated internalization of cell surface proteins, titanium wear-particle uptake in failed joint replacements, and polymeric microparticle uptake and immune responses for drug delivery or adjuvant use. The use of antibodies specific for cell surface proteins has become a popular method to deliver therapeutics to target cells. As such, it is imperative to fully understand the ability of antibodies to mediate internalization and endosomal trafficking of the surface protein that it recognizes, so that drug delivery can be optimized. By comparing the internalization and endosomal localization of two different antibody-bound proteins, the transferrin receptor (TfR) and rabies G, we have found that there is a specific antibody-mediated internalization pathway that occurs when an antibody binds to a cell surface protein. Interestingly, the internalization pathway induced by antibody binding is different than that seen with recycling receptor internalization after ligand binding. This may have broad implications for the future development of antibody-based therapeutics. Joint replacement failure is a major clinical problem. Studies have indicated that a large amount of metal and polyethylene wear debris is found in the synovial membrane and tissue surrounding failed replacements. Through examination of the immune response following uptake of titanium particles, our results suggest that titanium wear-particle induced inflammation and subsequent joint replacement failure may be due to activation of the NLRP3 inflammasome, leading to increased IL-1ß secretion and IL-1 associated signaling. These findings introduce IL-1 as a target for potential therapeutics for patients exhibiting significant inflammation. Polymeric microparticles have been widely used in a variety of therapeutic applications, including drug delivery and vaccine adjuvants. It is essential to understand the ability of such particles to either activate or inhibit an immune response following uptake. Through comparison of particles with varying surface morphology, we have determined that particles with regions of high surface curvature (budding) are more immunogenic than particles with low surface curvature (spherical). Budding particles were more rapidly phagocytosed and induced higher levels of the inflammasome-associated cytokine, IL-1ß, when exposed to mouse macrophages. Additionally, budding particles induced a more rapid neutrophil response in vivo, when compared to spherical particles. These findings have broad implications for the development of future targeting vehicles for delivery of vaccines, drugs, proteins, and siRNA therapeutics.
448

An in vitro study of the mechanisms that underlie changes in neuronal sensitivity and neurite morphology following treatment with microtubule targeting agents

Pittman, Sherry Kathleen 11 1900 (has links)
Microtubule targeting agents (MTAs) are chemotherapeutics commonly used in the treatment of breast, ovarian, lung, and lymphoma cancers. There are two main classes of MTAs based upon their effects on microtubule stability. The two classes are the destabilizing agents, which include the drug vincristine, and the stabilizing agents, which include paclitaxel and epothilone B. These drugs are highly effective antineoplastics, but their use is often accompanied by several side effects, one of which is peripheral neuropathy. Peripheral neuropathy can be characterized by burning pain, tingling, loss of proprioception, or numbness in the hands and feet. In some patients, the MTA-induced peripheral neuropathy is debilitating and dose-limiting; however, there are no effective prevention strategies or treatment options for peripheral neuropathy as the mechanisms mediating this side effect are unknown. The goal of this work was to investigate MTA-induced effects on neuronal activity and morphology in order to elucidate the underlying mechanisms involved in the development of MTA-induced peripheral neuropathy. As an indicator of sensory neuronal activity, the basal and stimulated release of the putative nociceptive peptide, calcitonin gene-related peptide (CGRP), was measured from sensory neurons in culture after exposure to the MTAs paclitaxel, epothilone B, and vincristine. Neurite length and branching were also measured in sensory neuronal cultures after treatment with these MTAs. The results described in this thesis demonstrate that MTAs alter the stimulated release of CGRP from sensory neurons in differential ways depending on the MTA agent employed, the CGRP evoking-stimulus used, the concentration of the MTA agent, the duration of exposure to the MTA agent, and the presence of NGF. It was also observed that MTA agents decrease neurite length and branching, independent of the concentration of NGF in the culture media. Thus, this thesis describes MTA-induced alterations of sensory neuronal sensitivity and neurite morphology and begins to elucidate the underlying mechanisms involved in MTA-induced alterations of sensory neurons. These findings will undoubtedly be used to help elucidate the mechanisms underlying MTA-induced peripheral neuropathy.
449

Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane

Xue, J., He, M., Niu, Y., Liu, H., Crawford, A., Coates, Philip D., Chen, D., Shi, R., Zhang, L. January 2014 (has links)
No / Infection is the major reason of GTR/GBR membrane failure in clinical application. In this work, we developed GTR/GBR nanofiber membranes with localized drug delivery function to prevent infection. Metronidazole (MNA), an antibiotic, was successfully incorporated into electrospun polycaprolactone (PCL) nanofibers at different concentrations (0, 1, 5, 10, 20, 30, and 40 wt% polymer). To obtain the optimum anti-infection membrane, we systematically investigated the physical-chemical and mechanical properties of the nanofiber membranes with different drug contents. The interaction between PCL and MNA was identified by molecular dynamics simulation. MNA released in a controlled, sustained manner over 2 weeks and the antibacterial activity of the released MNA remained. The incorporation of MNA improved the hydrophilicity and in vitro biodegradation rate of PCL nanofibers. The nanofiber membranes allowed cells to adhere to and proliferate on them and showed excellent barrier function. The membrane loaded with 30% MNA had the best comprehensive properties. Analysis of subcutaneous implants demonstrated that MNA-loaded nanofibers evoked a less severe inflammatory response than pure PCL nanofibers. These results demonstrate the potential of MNA-loaded nanofiber membranes as GTR/GBR membrane with antibacterial and anti-inflammatory function for extensive biomedical applications.
450

Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes

Xue, J., He, M., Liu, H., Niu, Y., Crawford, A., Coates, Philip D., Chen, D., Shi, R., Zhang, L. 28 July 2014 (has links)
Yes / Infection is the major reason for guided tissue regeneration/guided bone regeneration (GTR/GBR) membrane failure in clinical application. In this work, we developed GTR/GBR membranes with localized drug delivery function to prevent infection by electrospinning of poly(ε-caprolactone) (PCL) and gelatin blended with metronidazole (MNA). Acetic acid (HAc) was introduced to improve the miscibility of PCL and gelatin to fabricate homogeneous hybrid nanofiber membranes. The effects of the addition of HAc and the MNA content (0, 1, 5, 10, 20, 30, and 40 wt.% of polymer) on the properties of the membranes were investigated. The membranes showed good mechanical properties, appropriate biodegradation rate and barrier function. The controlled and sustained release of MNA from the membranes significantly prevented the colonization of anaerobic bacteria. Cells could adhere to and proliferate on the membranes without cytotoxicity until the MNA content reached 30%. Subcutaneous implantation in rabbits for 8 months demonstrated that MNA-loaded membranes evoked a less severe inflammatory response depending on the dose of MNA than bare membranes. The biodegradation time of the membranes was appropriate for tissue regeneration. These results indicated the potential for using MNA-loaded PCL/gelatin electrospun membranes as anti-infective GTR/GBR membranes to optimize clinical application of GTR/GBR strategies.

Page generated in 0.0581 seconds