Spelling suggestions: "subject:"density biunctional theory"" "subject:"density 5functional theory""
311 |
First-principles based micro-kinetic modeling for catalysts designZhou, Mingxia January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Bin Liu / Efficient and selective catalysis lies at the heart of many chemical reactions, enabling the synthesis of chemicals and fuels with enormous societal and technological impact. A fundamental understanding of intrinsic catalyst properties for effective manipulation of the reactivity and selectivity of industrial catalysts is essential to select proper catalysts to catalyze the reactions we want and hinder the reactions we do not want.
The progress in density functional theory (DFT) makes it possible to describe interfacial catalytic reactions and predict catalytic activities from one catalyst to another. In this study, water-gas shift reaction (WGSR) was used as a model reaction. First-principles based micro-kinetic modeling has been performed to deeply understand interactions between competing reaction mechanisms, and the relationship with various factors such as catalyst materials, structures, promoters, and interactions between intermediates (e.g., CO self-interaction) that govern the observed catalytic behaviors.
Overall, in this thesis, all relevant reaction mechanisms in the model reaction on well-defined active sites were developed with first-principles calculations. With the established mechanism, the promotional effect of K adatom on Ni(111) on WGSR compared to the competing methanation was understood. Moreover, the WGSR kinetic trend, with the hydrogen production rate decreasing with increasing Ni particle diameters (due to the decreasing fractions of low-coordinated surface Ni site), was reproduced conveniently from micro-kinetic modeling techniques. Empirical correlations such as Brønsted-Evans-Polanyi (BEP) relationship for O-H, and C-O bond formation or cleavage on Ni(111), Ni(100), and Ni(211) were incorporated to accelerate computational analysis and generate trends on other transition metals (e.g., Cu, Au, Pt). To improve the numerical quality of micro-kinetic modeling, later interactions of main surface reaction intermediates were proven to be critical and incorporated successfully into the kinetic models. Finally, evidence of support playing a role in the enhancement of catalyst activity and the impact on future modeling will be discussed.
DFT will be a powerful tool for understanding and even predicting catalyst performance and is shaping our approach to catalysis research. Such molecular-level information obtained from computational methods will undoubtedly guide the design of new catalyst materials with high precision.
|
312 |
Theoretical study of the optical properties of the noble metal nanoparticles: CD and MCD spectroscopyKarimova, Natalia Vladimirovna January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christine M. Aikens / Gold and silver particles with dimensions less than a nanometer possess unique characteristics and properties that are different from the properties of the bulk. They demonstrate a non–zero HOMO–LUMO gap that can reach up to 3.0 eV. These differences arise from size quantization effects in the metal core due to the small number of atoms. These nanoparticles have attracted great interest for decades both in fundamental and applied research. Small gold clusters protected by various types of ligands are of interest because ligands allow obtaining gold nanoclusters with given sizes, shapes and properties. Three main families of organic ligands are usually used for stabilization of gold nanoclusters: phosphine ligands, thiolate ligands and DNA.
Usually, optical properties of these NPs are studied using optical absorption spectroscopy. Unfortunately, sometimes this type of spectrum is poorly resolved and tends to appear very similar for different complexes. In these cases, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopy can be applied. However, the interpretation of experimental CD and MCD spectra is a complicated process.
In this thesis, theoretically simulated CD and MCD spectra were combined with optical absorption spectra to study optical activity for octa– and nona– and undecanuclear gold clusters protected by mono– and bidentate phosphine ligands. Additionally, optical properties of bare and DNA protected silver NPs were studied. Theoretical CD spectra were examined to learn more about the origin of chirality in chiral organometallic complexes, and to contribute to the understanding of the difference in chiroptical activity of gold clusters stabilized by different phosphine ligands and DNA–stabilized silver clusters. Furthermore, optical properties of the small centered gold clusters Au₈(PPh₃)₈²⁺ and Au₉(PPh₃)₈³⁺ were examined by optical absorption and MCD spectra using TDDFT. Theoretical MCD spectra were also used to identify the plasmonic behavior of silver nanoparticles.
These results showed that CD and MCD spectroscopy yield more detailed information about optical properties and electronic structure of the different chemical systems than optical absorption spectroscopy alone. Theoretical simulation of the CD and MCD spectra together with optical absorption spectra can be used to assist in the understanding of empirically measured CD and MCD and provide useful information about optical properties and electronic structure.
|
313 |
Fundamental Study on Si Nanowires for Advanced MOSFETs and Light-Emitting Devices / 先端MOSFETおよび発光デバイスを目指したSiナノワイヤの基礎研究Yoshioka, Hironori 23 July 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15612号 / 工博第3301号 / 新制||工||1498(附属図書館) / 28139 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 藤田 静雄, 准教授 山田 啓文 / 学位規則第4条第1項該当
|
314 |
Développement et application de méthodes corrélées pour la description de systèmes moléculaires / Development and application of correlated methods for the description of molecular systemsPaulino Neto, Romain 29 September 2014 (has links)
Ces travaux de thèse se sont concentrés sur le développement, l'implémentation et l'application de différents types de méthodes quantiques prenant la corrélation électronique en compte, dans le but de fournir des outils performants pour la description de systèmes moléculaires à l'état fondamental et excité. La méthode dite DMRG (Density Matrix Renormalization Group) a été étudiée et un logiciel correspondant a été développé en FORTRAN. Cette méthode permet de limiter le nombre d'états électroniques à prendre en compte, ce qui fait gagner du temps de calcul, tout en assurant une précision des résultats du même ordre que celle fournie par les toutes meilleures méthodes post-Hartree-Fock actuelles. Dans la deuxième partie de cette thèse, nous avons utilisé une autre méthode : la DFT (Density Functional Theory). Une étude théorique a été effectuée sur deux fonctionnelles à séparation de portée (HISS-A et -B) afin d'évaluer dans quelle mesure ces fonctionnelles, développées au départ pour l'étude des systèmes métalliques, pouvaient être appliquées à la description de l'état fondamental et excité de systèmes moléculaires hautement conjugués. Nous avons également utilisé la DFT afin de modéliser et rationaliser le comportement photo-physique d'un composé moléculaire présentant une émission dite " duale ". Nous avons pu ainsi caractériser le comportement complexe de la molécule à l'état excité et expliquer les résultats surprenants qui avaient été observés, en particulier au niveau des spectres d'émission UV et d'excitation de fluorescence. Le phénomène d'émission duale observé a ainsi pu être lié à la présence d'un degré de liberté conformationnel important de la molécule. / In the last few years, a lot of energy has been put forward in the area of quantum chemistry to develop new methods, or to improve existing methods, that are able to describe very precisely the electronic structure of molecular systems. In this manuscript, a precise overview of such a method (namely the Density Matrix Renormalization Group, DMRG method) is given. A software able to carry out DMRG calculations has indeed been developed from scratch in the laboratory during this thesis. This method can be seen as a post-Hartree-Fock method, in which only the electronic states that are relevant for the correct description of the molecule are kept. In this way, the computational cost remains acceptable, and the results are in line with those given by "exact" methods such as full-CI. Density Functional Theory (DFT) has also been investigated in this work. DFT and TD-DFT calculations have indeed also been carried out. The performances of two middle-range-separated functionals, namely HISS-A and HISS-B, to describe electronic transitions in conjugated molecules have been probed in a theory vs. theory study. Those functionals, which had been first developed for the study of metals, show to be adequate for the correct description of electronic excitations of chromophores and of push-pull molecules. Optical properties of a dual emittor have also been studied using TD-DFT. The dual emission of this molecule has been shown to stem from the presence of two distinct emissive states, respectively of Intramolecular Charge Transfer (ICT) and locally excited (LE) nature. TD-DFT has allowed us to link those two emissive states to two different conformations of the molecule.
|
315 |
Theoretical study of the hydrolysis of aluminum complexesSaukkoriipi, J. (Jaakko) 04 May 2010 (has links)
Abstract
This thesis focuses on the molecular-level chemistry of the solvation of aluminum salts. Fundamental aspects such as, structural characteristics of the aluminum molecules, hydrolysis, acidity, solvation structure, effect of counter ions, and chemical stability are discussed herein. Static computations augmented with the conductor-like screening model (COSMO) were used to investigate hundreds of planar and cyclic configurations of dimeric, trimeric, tetrameric, and pentameric aluminum complexes. Car–Parrinello molecular dynamics (CPMD) calculations were used to expand investigations to aqueous environments.
This thesis consists of four articles and one additional article. The first paper focuses on the structural analysis of the hydrolysis products of AlCl3 · 6H2O. Dimeric, trimeric, and tetrameric aluminum (chloro)hydroxides were investigated in both gas and liquid phase. The liquid environment was modeled by using COSMO.
The second and the additional paper concentrate on the chemistry of aluminum sulfate complexes. The second article focuses on identifying hydrolysis products of AlCl3 · 6H2O in the presence of sulfate (H2SO4). The additional paper focuses on the structural characteristics of the hydrolysis products of Al2 (SO4)3 · 18H2O. Structural information was deduced from the ESI MS results with the aid of computational methods. Detected cationic structures closely resembled the aluminum chlorohydrate analogues introduced in the first paper.
The third and fourth articles are devoted to the hydrolysis, stability, and dynamics of dimeric and pentameric aluminum (chloro)hydroxides in aquatic environments. During the CPMD simulations, several spontaneous associative hydration reactions were detected in the primary hydration shell of the complexes. Dimeric aluminum chlorohydrates were detected to be stable in liquid conditions, whereas the pentameric aluminum complexes experienced significant topological changes during the simulations. Constrained simulations were used to reveal the role of chloride ions in the hydrolysis processes of dimeric complexes. The effect of the empirical van der Waals corrections to the dynamics of the simulations was also tested for the pentameric system.
The results of this thesis showed unequivocally that computational chemistry provides effective tools for structural analysis of inorganic complexes such as, aluminum chlorohydrates and sulfates in both gas and liquid phase. In addition, calculations provided answers to the anomalies detected in the experiments. Hence, theoretical methods are highly recommended to be used alongside with conventional experimental methods in the interpretation of the aluminum species in aqueous solutions and to widen the overall chemical perspective of the hydrolysis of aluminum salts.
|
316 |
Kubo–Greenwood electrical conductivity formulation and implementation for projector augmented wave datasetsCalderín, L., Karasiev, V.V., Trickey, S.B. 12 1900 (has links)
As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (BIlichl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.
|
317 |
Ab Initio Modeling of Thermal Barrier Coatings: Effects of Dopants and Impurities on Interface Adhesion, Diffusion and Grain Boundary StrengthOzfidan, Asli Isil January 2011 (has links)
The aim of this thesis is to investigate the effects of additives, reactive elements and impurities, on the lifetime of thermal barrier coatings. The thesis consists of a number of studies on interface adhesion, impurity diffusion, grain boundary sliding and cleavage processes and their impact on the mechanical behaviour of grain boundaries.
The effects of additives and impurity on interface adhesion were elaborated by using total energy calculations, electron localization and density of states, and by looking into the atomic separations. The results of these calculations allow the assessment of atomic level contributions to changes in the adhesive trend. Formation of new bonds across the interface is determined to improve the adhesion in reactive element(RE)-doped structures. Breaking of the cross interface bonds and sulfur(S)-oxygen(O) repulsion is found responsible for the decreased adhesion after S segregation.
Interstitial and vacancy mediated S diffusion and the effects of Hf and Pt on the diffusion rate of S in bulk NiAl are studied. Hf is shown to reduce the diffusion rate, and the preferred diffusion mechanism of S and the influence of Pt are revealed to be temperature dependent.
Finally, the effects of reactive elements on alumina grain boundary strength are studied. Reactive elements are shown to improve both the sliding and cleavage resistance, and the analysis of atomic separations suggest an increased ductility after the addition of quadrivalent Hf and Zr to the alumina grain boundaries.
|
318 |
A Density Functional Theory of a Nickel-based Anode Catalyst for Application in a Direct Propane Fuel CellVafaeyan, Shadi January 2012 (has links)
The maximum theoretical energy efficiency of fuel cells is much larger than those of the steam-power-turbine cycles that are currently used for generating electrical power. Similarly, direct hydrocarbon fuel cells, DHFCs, can theoretically be much more efficient than hydrogen fuel cells. Unfortunately the current densities (overall reaction rates) of DHFCs are substantially smaller than those of hydrogen fuel cells. The problem is that the exchange current density (catalytic reaction rate) is orders of magnitude smaller for DHFCs. Other work at the University of Ottawa has been directed toward the development of polymer electrolytes for DHFCs that operate above the boiling point of water, making corrosion rates much slower so that precious metal catalysts are not required. Propane (liquefied petroleum gas, LPG) was the hydrocarbon chosen for this research partly because infrastructure for its transportation and storage in rural areas already exists. In this work nickel based catalysts, an inexpensive replacement for the platinum based catalysts used in conventional fuel cells, were examined using density functional theory, DFT. The heats of propane adsorption for 3d metals, when plotted as a function of the number of 3d electrons in the metal atom, had the shape of a volcano plot, with the value for nickel being the peak value of the volcano plot. Also the C-H bond of the central carbon atom was longer for propane adsorbed on nickel than when adsorbed on any of the other metals, suggesting that the species adsorbed on nickel was less likely to desorb than those on other metals. The selectivity of the propyl radical reaction was examined. It was found that propyl radicals
|
319 |
Dual-spray Synthesis and ReactionsRashid, Shaan January 2017 (has links)
By using two electrospray emitters containing different solutions (“dual-spray”) we have recently conducted in-source hydrogen/deuterium exchange (HDX) reactions and synthesized organometallic species. For dual-spray HDX reactions, peptide and protein solutions were electrosprayed through one emitter and the deuterating agent D2O through the secondary electrospray emitter. Clear shifts in isotope distributions indicated hydrogen-deuterium exchange occurring within the ion source. By ion mobility, simultaneous deuterium exchange for two isobaric species, the oxytocin monomer and dimer, was observed. Lysozyme has a linear relation between the charge state and the average number of exchanges, indicating that lysozyme becomes increasingly unfolded as the charge state increases. Based on deuterium uptake data and the lack of a temperature dependence, the dual-spray HDX reaction is thought to occur mostly in the gas phase. Tris(2,2’-bipyridine)ruthenium(II) and similar complexes containing the 1,10-phenanthroline ligand were formed by spraying a ligand solution and the ruthenium trichloride solution through two independent ESI emitters. This was confirmed by comparing ion mobility drift time, mass spectra, and CID fragmentation with the reference standard compounds. Tris(2,2’-bipyridine)iron(II), tris(1,10-phenantroline)iron(II) and mixed ligand complexes of iron(II) formed by dual-spray showed two additional hydrogens bonded to the complex. By CID, these unique gas phase complexes showed similar initial ligand loss to the reference standards however the secondary ligand loss showed dissimilar dissociation channels and energetics. Using DFT calculations, geometry optimizations for the [Fe(phen)3 + 2H]2+ complex and its fragment ions were done. After the initial ligand loss, the additional hydrogens are believed to transfer to the central iron atom. The relative energy of the dissociation channels showed good agreement with experimental breakdown curves.
|
320 |
In-Situ and Computational Studies of Ethanol Electrooxidation Reaction: Rational Catalyst Design StrategiesMonyoncho, Evans Angwenyi January 2017 (has links)
Fuel cells represent a promising technology for clean power generation because they convert chemical energy (fuel) into electrical energy with high efficiency and low-to-none emission of pollutants. Direct ethanol fuel cells (DEFCs) have several advantages compared to the most studied hydrogen and methanol fuel cells. First and foremost, ethanol is a non-toxic liquid, which lowers the investment of handling facilities because the current infrastructure for gasoline can be largely used. Second, ethanol can be conveniently produced from biomass, hence is carbon neutral which mitigates increasing atmospheric CO2. Last but not least, if completely oxidized to CO2, ethanol has a higher energy density than methanol since it can deliver 12 electrons per molecule. The almost exclusive oxidation to acetic acid overshadows the attractiveness of DEFCs considerably, as the energy density is divided by 3. The standard potential of acetic acid formation indicates that a reaction path including acetic acid, leads to inevitable potential losses of about 0.4 V (difference between ideal potential for CO2 and acetic acid "production").
The development of alkaline DEFCs had also been hampered by the lack of stable and efficient anion exchange membranes. Fortunately, this challenge has been well tackled in recent years,8,9 making the development of alkaline fuel cells (AFCs) which are of particular technological interest due to their simple designs and ability to operate at low temperatures (25-100 °C). In alkaline conditions, the kinetic of both the cathodic oxygen reduction and the anodic ethanol oxidation is facilitated. Furthermore, the expensive Pt catalyst can be replaced by the lower-cost and more active transition metals such as Pd.
The main objectives of this project are: i) to provide detailed fundamental understanding of ethanol oxidation reaction on transition metal surfaces in alkaline media, ii) to propose the best rational catalyst design strategies to cleave the C–C bond during ethanol electrooxidation. To achieve these goals two methodologies are used, i.e., in-situ identification of ethanol electrooxidation products using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and mechanistic investigation using computational studies in the framework of density functional theory (DFT). The PM-IRRAS technique was advanced in this project to the level of distinguishing electrooxidation products at the surface of the nanoparticles (electrode) and in the bulk-phase of the electrolyte. This new PM-IRRAS utility makes it possible to detect molecules such as CO2 which desorbs from the catalyst surface as soon as they are formed. The DFT insights in this project, provides an explanation as to why it is difficult to break the C–C bond in ethanol and is used for screening the top candidate metals for further studies.
|
Page generated in 0.0997 seconds