Spelling suggestions: "subject:"differential forma."" "subject:"ifferential forma.""
21 |
High Order Edge Finite ElementsStoynov, Kiril 02 September 2008 (has links)
No description available.
|
22 |
Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential FormsKim, Joonshik January 2010 (has links)
No description available.
|
23 |
Complex Analysis on Planar Cell ComplexesArnold, Rachel Florence 28 May 2008 (has links)
This paper is an examination of the theory of discrete complex analysis that arises from the framework of a planar cell complex. Construction of this theory is largely integration-based. A combination of two cell complexes, the double and its associated diamond complex, allows for the development of a discrete Cauchy Integral Formula. / Master of Science
|
24 |
Diskretes Äußeres Kalkül (DEC) auf Oberflächen ohne RandNitschke, Ingo 24 January 2017 (has links) (PDF)
In dieser Arbeit geben wir eine Einführung in das Diskrete Äußere Kalkül (engl.: Discrete Exterior Calculus, kurz: DEC), das sich mit der Diskretisierung von Differentialformen und -operatoren beschäftigt. Wir beschränken uns hierbei auf zweidimensionalen orientierten kompakten Riemannschen Mannigfaltigkeiten und zeigen auf, wie diese als wohlzentrierte Simplizialkomplexe zu approximieren sind. Dabei beschreiben wir die Implementierung der Methode und testen diese an Beispielen, wie Helmholtz-artige PDEs und die Berechnung von in- und extrinsischen Krümmungsgrößen.
|
25 |
AplicaÃÃes de cÃlculo diferencial exterior a teoria econÃmica / Applications of differential calculus outside the economic theoryJosà Tiago Nogueira Cruz 29 August 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O trabalho consiste em decompor uma forma diferencial, sob algumas condiÃÃes iniciais, para conseguirmos resolvermos problemas na economia. / O trabalho consiste em decompor uma forma diferencial, sob algumas condiÃÃes iniciais, para conseguirmos resolvermos problemas na economia.
|
26 |
The Oka-Weil TheoremKarlsson, Jesper January 2017 (has links)
We give a proof of the Oka-Weil theorem which states that on compact, polynomially convex subsets of Cn, holomorphic functions can be approximated uniformly by holomorphic polynomials. / Vi ger ett bevis av Oka-Weil sats som säger att på kompakta och polynomkonvexa delmängder av Cn kan holomorfa funktioner approximeras likformigt med holomorfa polynom.
|
27 |
Diskretes Äußeres Kalkül (DEC) auf Oberflächen ohne RandNitschke, Ingo 30 September 2014 (has links)
In dieser Arbeit geben wir eine Einführung in das Diskrete Äußere Kalkül (engl.: Discrete Exterior Calculus, kurz: DEC), das sich mit der Diskretisierung von Differentialformen und -operatoren beschäftigt. Wir beschränken uns hierbei auf zweidimensionalen orientierten kompakten Riemannschen Mannigfaltigkeiten und zeigen auf, wie diese als wohlzentrierte Simplizialkomplexe zu approximieren sind. Dabei beschreiben wir die Implementierung der Methode und testen diese an Beispielen, wie Helmholtz-artige PDEs und die Berechnung von in- und extrinsischen Krümmungsgrößen.:0 Einführung
1 Diskrete Mannigfaltigkeiten
1.1 Primär- und Dualgitter
1.2 Kettenkomplexe
1.3 Gittergenerierung für Oberflächen
1.4 Implizit gegebene Oberflächen
2 Diskretes Äußeres Kalkül (DEC)
2.1 Diskrete Differentialformen
2.2 Äußere Ableitung
2.3 Hodge-Stern-Operator
2.4 Laplace-Operator
2.5 Primär-Dual-Gradient im Mittel
3 Anwendung: Oberflächenkrümmung
3.1 Weingartenabbildung
3.2 Krümmungsvektor
3.3 Gauß-Bonnet-Operator
3.4 Numerisches Experiment
4 Fazit und Ausblicke
5 Appendix
5.1 Häufige Bezeichner
5.2 Algorithmen
5.3 Krümmungen für impliziten Oberflächen
5.4 Ausgewählte Oberflächen
Literaturverzeichnis
|
28 |
Bounding The Hochschild Cohomological DimensionKratsios, Anastasis 08 1900 (has links)
Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter
les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de
borner la dimension cohomologique des k-algèbres par dessous; montrant que presque
aucune k-algèbre commutative est quasi-libre. / The aim of this master’s thesis is two-fold. Firstly to develop and interpret the low
dimensional Hochschild cohomology of a k-algebra and secondly to establish a lower
bound for the Hochschild cohomological dimension of a k-algebra; showing that nearly
no commutative k-algebra is quasi-free.
|
29 |
Sobre folheações projetivas sem soluções algébricasPenao, Giovanna Arelis Baldeón 30 May 2018 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-08-22T18:18:00Z
No. of bitstreams: 1
giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-03T16:34:23Z (GMT) No. of bitstreams: 1
giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5) / Made available in DSpace on 2018-09-03T16:34:23Z (GMT). No. of bitstreams: 1
giovannaarelisbaldeonpenao.pdf: 709529 bytes, checksum: 3a96b8a9a33c7117ccbff2e2ff41c7c0 (MD5)
Previous issue date: 2018-05-30 / O objetivo deste trabalho é estudar um método, apresentado em [6], que nos permite
determinar se uma folheação no plano projetivo possui ou não soluções algébricas, usando
apenas métodos de computação algébrica. Mais especificamente usando bases de Gröbner.
Com este método é possível procurar por outros exemplos de folheações sem soluções
algébricas. / The aim of this work is to present a method, given by S. C. Coutinho and Bruno F. M.
Ribeiro in [6], to check whether certain holomorphic foliations on the complex projective
plane have algebraic solutions, using only methods of algebraic computing or more precisely,
using Gröbner bases. This algorithm is then used to produce examples of foliations without
algebraic solutions.
|
30 |
Formas normais de sistemas forçados / Normal forms of constrained differential systemsHerrera, Yovani Adolfo Villanueva 30 May 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-06-23T19:07:29Z
No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 1975075 bytes, checksum: 4226bb99e3c16dbc26f70e7f7208e2c1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Rejected by Erika Demachki (erikademachki@gmail.com), reason: on 2017-06-29T18:25:12Z (GMT) / Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-06-29T18:25:47Z
No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 2011176 bytes, checksum: 4107b5d00ad34d3b4127265319a99868 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2017-06-29T18:28:16Z (GMT) No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 2011176 bytes, checksum: 4107b5d00ad34d3b4127265319a99868 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-29T18:28:16Z (GMT). No. of bitstreams: 2
Dissertação - Yovani Adolfo Villanueva Herrera - 2017.pdf: 2011176 bytes, checksum: 4107b5d00ad34d3b4127265319a99868 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-05-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The subject of this work is the theory of normal forms of smooth vector fields of constrained
systems (systems of non-linear differential-algebraic equations). In this study we introduce the
qualitative theory of ordinary differential equations, with topics such as stability, structural stability, bifurcations, limit cycles and catastrophes of differential equations, and the functional
singularity theory. The goal of this work is classify and normalize constrained systems, first of all
from the local point of view, we'll show an idea of the global one and our final objective will be
extend this theory to differenciable manifolds of dimension $n \geq 2$. / O tema deste trabalho é a teoria das formas normais de campos vetoriais suaves de sistemas
forçados (sistemas de equações diferenciais-algébricas não lineares). Neste estudo entram a teoria
qualitativa de equações diferenciais ordinárias, com tópicos como estabilidade, estabilidade
estrutural, bifurcações, ciclos limite e catástrofes de equações diferenciais e a teoria das
singularidades de funções. O objetivo do trabalho é a classificação e normalização dos sistemas
forçados, primeiramente do ponto de vista local, mostraremos uma ideia da análise global e será
nossa finalidade estender esta teoria para variedades diferenciáveis de dimensão $n \geq 2$.
|
Page generated in 0.0676 seconds