Spelling suggestions: "subject:"diophantine equations"" "subject:"diophantine aquations""
21 |
Dělitelnost pro nadané žáky středních škol / Divisibility for talented students of secondary schoolsŽivčáková, Andrea January 2014 (has links)
This thesis is an educational text for high school students. It aims to teach them how to solve typical problems concerning divisibility found in mathematical correspondence seminars and mathematical olympiad. Basic notions from the theory of divisibility are recalled (e.g. prime numbers, divisors, multiples). Criteria of divisibility by 2 to 20 are introduced, as well as diophantine equations and practical applications of prime numbers in real life. One whole chapter is dedicated to problems and exercises. Powered by TCPDF (www.tcpdf.org)
|
22 |
Equações diofantinas lineares, quadráticas e aplicações / Diophantine linear equations, quadratics and applicationsSouza, Romario Sidrone [UNESP] 07 March 2017 (has links)
Submitted by ROMARIO SIDRONE DE SOUZA null (romario.sidrone@gmail.com) on 2017-03-22T13:09:53Z
No. of bitstreams: 1
Equações Diofantinas Lineares, Quadráticas e Aplicações.pdf: 841142 bytes, checksum: 07c262b2dc6963eba6f51b8c68808746 (MD5) / Rejected by Luiz Galeffi (luizgaleffi@gmail.com), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo:
O arquivo submetido não contém o certificado de aprovação.
O arquivo submetido está sem a ficha catalográfica.
A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação.
Corrija esta informação e realize uma nova submissão com o arquivo correto.
Agradecemos a compreensão. on 2017-03-22T19:27:07Z (GMT) / Submitted by ROMARIO SIDRONE DE SOUZA null (romario.sidrone@gmail.com) on 2017-03-23T17:44:35Z
No. of bitstreams: 1
Equações Diofantinas Lineares, Quadráticas e Aplicações.pdf: 921393 bytes, checksum: d6bb7d5e6be28758897ddf73120e42b2 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-24T17:25:51Z (GMT) No. of bitstreams: 1
souza_rs_me_rcla.pdf: 921393 bytes, checksum: d6bb7d5e6be28758897ddf73120e42b2 (MD5) / Made available in DSpace on 2017-03-24T17:25:51Z (GMT). No. of bitstreams: 1
souza_rs_me_rcla.pdf: 921393 bytes, checksum: d6bb7d5e6be28758897ddf73120e42b2 (MD5)
Previous issue date: 2017-03-07 / Este trabalho é resultado de uma pesquisa bibliográfica sobre Diofanto e as equações que levam seu nome, as equações diofantinas. Mais especificamente, apresentamos as equações diofantinas lineares e alguns casos particulares das equações diofantinas quadráticas. Ainda, abordamos um estudo sobre alguns tópicos de teoria dos números e frações contínuas, afim de facilitar o entendimento sobre os teoremas e resultados acerca do tema central deste trabalho. / This work is the result of a bibliographical research about Diophantus and the equations that take his name, the Diophantine equations. More specifically, we present the linear diophantine equations and some particular cases of the quadratic diophantine equations. We have also studied topics about number theory and continuous fractions, in order to facilitate the understanding of theorems and results that are related to the central theme of this work.
|
23 |
Some Diophantine ProblemsJanuary 2019 (has links)
abstract: Diophantine arithmetic is one of the oldest branches of mathematics, the search
for integer or rational solutions of algebraic equations. Pythagorean triangles are
an early instance. Diophantus of Alexandria wrote the first related treatise in the
fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.
The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.
The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2019
|
24 |
Aplicações de equações Diofantinas e um passeio pelo último teorema de Fermat / Applications of Diophantine equations and a walk by Fermat ́s last theoremAlves, Lucinda Freese 20 December 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-01-15T11:36:16Z
No. of bitstreams: 2
Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-01-15T11:36:54Z (GMT) No. of bitstreams: 2
Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-01-15T11:36:54Z (GMT). No. of bitstreams: 2
Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-12-20 / The presente work aims to help students, teachers and lovers of mathematics, to better
understand, interpret and solve problems that can be solved through Diophantine Equations.
In this way, we present some basic concepts about Diophantine Equations as well as some
practical applications. We also discuss Fermat ́s Last Theorem for the cases of n=2, n=3 and
n=4, aiming to arouse interest, on the students, in Number Theory. / O presente trabalho tem como objetivo auxiliar estudantes, professores e apaixonados pela
matemática, a melhor compreender, interpretar e resolver problemas que possam ser
solucionados através das Equações Diofantinas. Desta forma, apresentamos alguns conceitos
básicos sobre Equações Diofantinas bem como algumas aplicações práticas. Discutimos ainda,
o Último Teorema de Fermat para os casos de n=2, n=3 e n=4, visando despertar o interesse
no aluno pela teoria dos números.
|
25 |
Egyptian fractionsHanley, Jodi Ann 01 January 2002 (has links)
Egyptian fractions are what we know as unit fractions that are of the form 1/n - with the exception, by the Egyptians, of 2/3. Egyptian fractions have actually played an important part in mathematics history with its primary roots in number theory. This paper will trace the history of Egyptian fractions by starting at the time of the Egyptians, working our way to Fibonacci, a geologist named Farey, continued fractions, Diophantine equations, and unsolved problems in number theory.
|
26 |
Embedded Surface Attack on Multivariate Public Key Cryptosystems from Diophantine EquationRen, Ai 11 June 2019 (has links)
No description available.
|
27 |
Diophantine Equations and Cyclotomic FieldsBartolomé, Boris 26 November 2015 (has links)
No description available.
|
28 |
Recursive Methods in Number Theory, Combinatorial Graph Theory, and ProbabilityBurns, Jonathan 07 July 2014 (has links)
Recursion is a fundamental tool of mathematics used to define, construct, and analyze mathematical objects. This work employs induction, sieving, inversion, and other recursive methods to solve a variety of problems in the areas of algebraic number theory, topological and combinatorial graph theory, and analytic probability and statistics. A common theme of recursively defined functions, weighted sums, and cross-referencing sequences arises in all three contexts, and supplemented by sieving methods, generating functions, asymptotics, and heuristic algorithms.
In the area of number theory, this work generalizes the sieve of Eratosthenes to a sequence of polynomial values called polynomial-value sieving. In the case of quadratics, the method of polynomial-value sieving may be characterized briefly as a product presentation of two binary quadratic forms. Polynomials for which the polynomial-value sieving yields all possible integer factorizations of the polynomial values are called recursively-factorable. The Euler and Legendre prime producing polynomials of the form n2+n+p and 2n2+p, respectively, and Landau's n2+1 are shown to be recursively-factorable. Integer factorizations realized by the polynomial-value sieving method, applied to quadratic functions, are in direct correspondence with the lattice point solutions (X,Y) of the conic sections aX2+bXY +cY2+X-nY=0. The factorization structure of the underlying quadratic polynomial is shown to have geometric properties in the space of the associated lattice point solutions of these conic sections.
In the area of combinatorial graph theory, this work considers two topological structures that are used to model the process of homologous genetic recombination: assembly graphs and chord diagrams. The result of a homologous recombination can be recorded as a sequence of signed permutations called a micronuclear arrangement. In the assembly graph model, each micronuclear arrangement corresponds to a directed Hamiltonian polygonal path within a directed assembly graph. Starting from a given assembly graph, we construct all the associated micronuclear arrangements. Another way of modeling genetic rearrangement is to represent precursor and product genes as a sequence of blocks which form arcs of a circle. Associating matching blocks in the precursor and product gene with chords produces a chord diagram. The braid index of a chord diagram can be used to measure the scope of interaction between the crossings of the chords. We augment the brute force algorithm for computing the braid index to utilize a divide and conquer strategy. Both assembly graphs and chord diagrams are closely associated with double occurrence words, so we classify and enumerate the double occurrence words based on several notions of irreducibility. In the area of analytic probability, moments abstractly describe the shape of a probability distribution. Over the years, numerous varieties of moments such as central moments, factorial moments, and cumulants have been developed to assist in statistical analysis. We use inversion formulas to compute high order moments of various types for common probability distributions, and show how the successive ratios of moments can be used for distribution and parameter fitting. We consider examples for both simulated binomial data and the probability distribution affiliated with the braid index counting sequence. Finally we consider a sequence of multiparameter binomial sums which shares similar properties with the moment sequences generated by the binomial and beta-binomial distributions. This sequence of sums behaves asymptotically like the high order moments of the beta distribution, and has completely monotonic properties.
|
29 |
EQUAÇÕES DIOFANTINAS LINEARES: POSSIBILIDADES DIDÁTICAS USANDO A RESOLUÇÃO DE PROBLEMAS / LINEAR DIOPHANTINE EQUATIONS: TEACHING POSSIBILITIES THROUGH PROBLEM SOLVINGCampos, Adilson de 13 March 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents an educational experiment carried out in a 9th grade class of elementary school, in order to assess the didactic and pedagogical possibilities involving the Linear Diophantine Equations theme, with the contextual support of Problem Solving. This application intends to expand the students' conceptions in arithmetic and algebra courses, also providing a concrete possibility of applicability of the greatest common divisor of two integers, a very neglected theme throughout the elementary school. In a level of elementary school, one of the main vehicles that allows you to work the initiative, creativity and exploring spirit is through Problem Solving. A Mathematics Teacher has a great opportunity to challenge the curiosity of the students by presenting them problems that are compatible with their knowledge and guiding them through incentive questions and this teacher can also try to input on them a taste for discovery and independent thinking. Thus, a very reasonable way is to prepare the student to deal with new situations, whatever they may be. The paper is organized in three chapters. In the first chapter entitled "Problem Solving in mathematics teaching" a theoretical foundation on the Teaching of Problem Solving is searched based on the Hungarian-American author George Polya and Luiz Roberto Dante and, it also presents some aspects from the learning theory proposed by Vygotsky. In the second chapter entitled "arithmetic concepts" the themes treated are: Greatest Common Divisor (gcd), Euclidean algorithm, Bèzout theorem and Linear Diophantine Equations. In the third and final chapter entitled "pedagogical experimentation" as mentioned above, the experimentation in a class of ninth grade of an elementary school. This experiment is based on the Didactic Engineering methodology, comprising the following stages: theme and scope of action; previous analyzes associated with the dimensions: epistemological, didactic and cognitive; prior analysis; experimentation; aftermost analysis and validation of Didactic Engineering. / Este trabalho apresenta uma experimentação pedagógica realizada numa turma de 9ºano do Ensino Fundamental com o objetivo de aferir as possibilidades didático-pedagógicas envolvendo a temática Equações Diofantinas Lineares, tendo como suporte contextual a Resolução de Problemas. Tal aplicação tem o intento de ampliar as concepções dos alunos nos campos da aritmética e da álgebra, dando também uma possibilidade concreta de aplicabilidade do máximo divisor comum de dois números inteiros, tema tão negligenciado ao longo do Ensino Fundamental. Em um nível de Ensino Fundamental, um dos principais veículos que permite trabalhar a iniciativa, a criatividade e o espírito explorador é a Resolução de Problemas. O professor de Matemática tem, dessa forma, uma grande oportunidade de desafiar a curiosidade de seus alunos, apresentando-lhes problemas compatíveis com os conhecimentos destes e orientando-os através de indagações incentivadoras, podendo incutir-lhes o gosto pela descoberta e pelo raciocínio independente. Assim, um caminho bastante razoável é preparar o aluno para lidar com situações novas, quaisquer que sejam elas. O trabalho está organizado em três capítulos. No primeiro capítulo intitulado A Resolução de Problemas no ensino da Matemática busca-se uma fundamentação teórica sobre a Didática da Resolução de Problemas no autor húngaro-americano George Polya e Luiz Roberto Dante e, também, são apresentados alguns aspectos da teoria da aprendizagem proposta por Vygotsky. No segundo capítulo intitulado conceitos de aritmética são tratados os temas: Máximo Divisor Comum (mdc), Algoritmo de Euclides, Teorema de Bèzout e Equações Diofantinas Lineares. No terceiro e último capítulo intitulado experimentação pedagógica é apresentada a experimentação supracitada numa turma de nono ano do Ensino Fundamental. Tal experimentação é baseada na metodologia Engenharia Didática, compreendendo os seguintes momentos: tema e campo de ação; análises prévias associadas às dimensões: epistemológica, didática e cognitiva; análise a priori; experimentação; análise a posteriori e validação da Engenharia Didática.
|
30 |
Equações diofantinas lineares : uma proposta para o Ensino MédioCapilheira, Bianca Herreira January 2012 (has links)
Este trabalho, cuja metodologia foi inspirada na Engenharia Didática, discute e investiga a viabilidade de inserir o ensino/estudo das equações diofantinas lineares no ensino médio. Foi desenvolvida e aplicada uma sequência didática em uma turma do 1º semestre do ensino médio integrado de química do Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Através das atividades executadas pelos alunos, das anotações feitas pela mestranda e da filmagem de todas as aulas, foi possível coletar os dados sobre toda a experiência. Esta foi iniciada e baseada em um jogo nomeado “escova diofantina”, derivado do jogo “escova”, seguido de atividades estruturadas com exercícios, questionamentos e debates que encaminharam os alunos, de forma natural, para a construção e estudo do conteúdo desejado. Elaboramos a sequência didática com objetivos bem definidos em cada atividade. Após o término das aulas, analisamo-las e reformulamo-las. Assim, no Apêndice B, apresentamos uma proposta de sequência didática renovada e pronta para ser aplicada por qualquer professor interessado em lecionar equações diofantinas no ensino médio. Os resultados das análises dos dados indicaram que os alunos do primeiro ano do ensino médio apresentam plenas condições matemáticas para a compreensão e construção dos conceitos e propriedades básicas relacionadas às equações diofantinas lineares. / This work, whose methodology is inspired by didactical engineering, discusses and investigates the viability of introducing linear diophantine equations at High School level study and teaching. We developed and applied a didactical sequence to a first semester chemistry oriented high school at the Pelotas campus of the Sul-Rio-Grandense Federal Institute. We collected the data of this whole experience, starting with all the activities performed by the students and continuing with notes taken by the author as well as the whole class footage. We started the seminars with a card game that we called “diophantine escova”, derived from the usual “escova” card game. We followed it by structured activities with exercises and several debates that led the students, in a natural way, to understand the definitions, concepts and results about Diophantine Equations. The didactical sequence we have created had very clear and specific goals in each activity. When the seminars ended, we analyzed and reformulated the sequence and therefore, in Appendix C, we present a totally improved and ready to use sequence for any teacher interested in developing linear diophantine equations in high school. The data analysis indicated that fist year high school students have the necessary mathematical skills to understand all concepts and results of basic linear diofantine equations.
|
Page generated in 0.0934 seconds