Spelling suggestions: "subject:"direct laser writing"" "subject:"direct faser writing""
1 |
Photophysical And Photochemical Factors Affecting Multi-photon Direct Laser Writing Using The Cross-linkable Epoxide Su-8Williams, Henry 01 January 2013 (has links)
For the past decade, the epoxy based photoresist SU-8 has been used commercially and in the lab for fabricating micro- and nano-structures. Investigators have studied how processing parameters such as pre- and post-exposure bake temperatures affect the resolution and quality of SU-8 structures patterned using ultraviolet or x-ray lithography. Despite the advances in understanding the phenomena, not all of them have been explored, especially those that are specific to multi-photon direct laser writing (mpDLW). Unlike conventional exposure techniques, mpDLW is an inherently three-dimensional (3D) process that is activated by nonlinear absorption of light. This dissertation reports how several key processing parameters affect mpDLW using SU-8 including pre-exposure bake duration, focal depth, incident laser power, focal-point scan speed, and excitation wavelength. An examination of solvent content of films at various stages in the mpDLW by 1H-NMR shows that even moderate solvent content (over 1 wt-%) affects film viscosity and photoacid diffusion lengths, and can greatly affect the overall fidelity of small features. A study of micro-fabricated feature size versus writing depth in the material shows that even slight refractive index mismatch between SU-8 and the medium between it and the focusing objective introduces spherical aberration that distorts the focus, causing feature size to decrease or even increase in size with writing depth, depending on the average exposure power used. Proper adjustment of the average exposure power was demonstrated as a means to fabricate more uniform features with writing depth. Third, when varying the power and scan speed, it was observed that the feature-size scales with these two parameters in a manner that is consistent with a three-photon absorption mechanism at an excitation wavelength of 800 nm. When an iii excitation wavelength of 725 nm is used, the feature-size scaling becomes consistent with that of two photon absorption. This shows that the photoinitiators in the SU-8 can be activated by either two- or three-photon absorption over this wavelength range. Using an irradiance of ~2 TW cm-2 and elongated femtosecond pulses resulted in an observed fourth order power dependence. This observation is in agreement with the literature and suggests that the effective absorptive nonlinearity is also sensitive to pulse duration. These findings will be useful for creating accurate models of the process of mpDLW in SU-8. These models could be used to optimize the processing parameters and develop new processing methods and materials for high-resolution fabrication of robust 3D microstructures. Some of the findings were used to develop a method for fabricating functional microlenses on the tip of optical fibers. This approach opens a new route to functional integrated photonic devices.
|
2 |
Femtosecond laser direct writing of 3D metallic structures and 2D graphiteKang, Seungyeon 04 June 2016 (has links)
This thesis explores a novel methodology to fabricate three dimensional (3D) metal-dielectric structures, and two dimensional (2D) graphite layers for emerging metamaterials and graphene applications. The investigations we report here go beyond the limitations of conventional fabrication techniques that require multiple post-processing steps and/or are restricted to fabrication in two dimensions. Our method combines photoreduction mechanism with an ultrafast laser direct writing process in innovative ways. This study aims to open the doors to new ways of manufacturing nanoelectronic and nanophotonic devices. With an introductory analysis on how the various laser and chemical components affect the fabrication mechanism, this dissertation is divided into three sections. / Engineering and Applied Sciences
|
3 |
Fabrication of submicrometer 3D structures by one-photon absorption direct laser writing and applications / Fabrication et applications de structures 3D submicrométriques par écriture laser direct utilisant l'absorption à un photonDo, Mai Trang 19 January 2015 (has links)
Ce travail porte sur l’étude d’une nouvelle technique de microscopie basée sur le phénomène d’absorption linéaire ultra-faible (LOPA) de matériaux photosensibles pour la fabrication de structures submicrométriques à deux et à trois dimensions (2D, 3D). Premièrement, nous avons étudié théoriquement la distribution de l'intensité lumineuse dans la région focale d’un objectif de microscope de grande ouverture numérique en fonction des différentes conditions de travail, telles que la propagation de la lumière dans un milieu absorbant avec variation d'indice de refraction. Nous avons démontré que lorsque l'on travaille avec un matériau quasi homogène ayant de très faible absorption à la longueur d’onde du faisceau d’excitation, le faisceau laser peut être focalisé en profondeur à l'intérieur du matériau, ce qui permet de manipuler optiquement des objets en 3D. Nous avons ensuite démontré expérimentalement l'utilisation de cette technique pour fabriquer des structures à la demande. Différentes structures 2D et 3D submicrométriques ont été crées en résine SU-8, en utilisant un laser continue de faible puissance à 532 nm. Ces résultats sont similaires à ceux obtenus par la méthode d’absorption à deux photons, mais le coût de fabrication a été énormément réduit. De plus, nous avons démontré qu'il est possible de fabriquer des structures photoniques à base de polymère contenant une seule nanoparticule (NP), en utilisant un procédé à deux étapes. En effet, nous avons d'abord déterminé avec précision la position d'une seule NP d’or, en utilisant une puissance d’excitation très faible, puis nous l'avons insérée dans une structure photonique par une puissance d’excitation plus élevée. Le couplage d'une NP d’or et d'une structure photonique à base de polymère a été ensuite étudié théoriquement et expérimentalement, montrant une amélioration importante de la collection des photons émis par la NP. / This work deals with a novel microscopy technique based on the ultra-low one-photon absorption (LOPA) mechanism of photosensitive materials for fabrication of arbitrary two- and three-dimensional (2D, 3D) submicrometer structures. First, we theoretically investigated the intensity distribution at focusing region of a high numerical aperture objective lens as a function of various working conditions, such as propagation of light mismatched refractive index and/or absorbing media. We demonstrated that when working with refractive index mismatch-free and very low absorption conditions, the light could be focused deeply inside the material, allowing a 3D optical manipulation. We then demonstrated experimentally the use of this simple technique for fabrication of desired structures. Different 2D and 3D structures, with a feature as small as 150 nm, have been created in SU-8 photoresist by using a low power and continuous-wave laser emitting at 532 nm. Furthermore, we demonstrated that it is possible to fabricate a polymer-based photonic structure containing a single nanoparticle (NP), by using a double-step method. Indeed, the LOPA microscopy allowed us first to accurately determine the location of a single gold NP and then to embed it as desired into an arbitrary SU-8 photonic structure. The coupling of a gold NP and a polymer-based photonic structure was theoretically and experimentally investigated showing a six-fold photons collection enhancement as compared to that of a NP in unpatterned film.
|
4 |
Ecriture par Laser de fonctionnalités optiques : éléments diffractifs et ONL / Femtosecond laser written volumetric diffractive optical elements and their applicationsChoi, Ji Yeon 14 June 2010 (has links)
A la suite de la première démonstration de l'écriture de guide d'onde au sein de verres en 1996 par laser femtoseconde, l'écriture direct par Laser Femtoseconde (Femtoseconde Direct Laser Writing - FLDW) est apparu comme une technique souple pour la fabrication de structure photonique en trois dimensions au sein de matériaux pour l'optique. La thèse a porté sur l'inscription par laser femtoseconde de fonctionnalités optiques au sein de verres. Des éléments diffractifs par modification de l'indice de réfraction et des structures présentant des propriétés de luminescence ou d'optique non linéaire d'ordre deux ont pu être obtenus au sein de matériaux vitreux et étudiés. / Since the first demonstration of femtosecond laser written waveguides in 1996, femtosecond laser direct writing (FLDW) has been providing a versatile means to fabricate embedded 3-D microstructures in transparent materials. The key mechanisms are nonlinear absorption processes that occur when a laser beam is tightly focused into a material and the intensity of the focused beam reaches the range creating enough free electrons to induce structural modification. This dissertation was an attempt to make an improvement on the existing FLDW technique to achieve a reliable fabrication protocol for integrated optical devices involving micro diffractive optical elements and laser-structures exhibiting second order nonlinear optical properties. Relaxation processes of directly-written structures in chalcogenide glasses have been also investigated.
|
5 |
THIOXANTHONE BASED PHOTOINITIATORS FOR TWO-PHOTON NANOLITHOGRAPHIC PRINTINGTeng Chi (9605984) 16 December 2020 (has links)
Printing of
3-dimensional nanostructures with high-resolution by two-photon polymerization
has gained significant attention recently. Isopropyl thioxanthone (ITX) has
been studied and used as a photoinitiator because of its unique property in
initiating and depleting polymerization, but to further improve the resolution
of 3D structures, new photoinitiating materials are necessary to decrease the
power requirements especially in industrial world. In this dissertation, different
new types of thioxanthone-based photoinitiators were synthesized and our new
initiators possessed a clear enhancement in terms of excitation over ITX. To clearly
reveal the writing mechanism behind it, the behavior of the initiators was
evaluated by several methods such as low temperature phosphorescence
spectroscopy and density functional theory (DFT) calculations. The first type
of new molecules with alkyne bridge will be discussed in chapter 2 and the
further developed initiators with electron donating and withdrawing groups will
be discussed in chapter 3. By modifying the structure of ITX, we have revealed
and proposed an important pathway to guide future development of
photoinitiators in direct laser writing.
|
6 |
Direct laser writing of a new type of optical waveguides and components in silver containing glasses / L'inscription laser directe d’un nouveau type de guides d'ondes et composants optiques dans des verres contenant de l'argentAbou Khalil, Alain 28 November 2018 (has links)
L'inscription laser directe est un domaine de recherche en croissance depuis ces deux dernières décennies, fournissant un moyen efficace et robuste pour inscrire directement des structures en trois dimensions (3D) dans des matériaux transparents tels que des verres en utilisant des impulsions laser femtosecondes. Cette technique présente de nombreux avantages par rapport à la technique de lithographie, qui se limite à la structuration en deux dimensions (2D) et implique de nombreuses étapes de fabrication. Cela rend la technique d’inscription laser direct bien adaptée aux nouveaux procédés de fabrication. Généralement, l’inscription laser dans les verres induit des changements physiques tels qu'un changement permanent de l'indice de réfraction localisé. Ces modifications ont été classés en trois types distincts : (Type I, Type II et Type III). Dans ce travail, nous présentons un nouveau type de changement d'indice de réfraction, appelé type A qui est basé sur la création d’agrégats d'argent photo-induit. En effet, dans des verres dans lesquels sont incorporés des ions argent Ag+, lors de leurs synthèses, l’inscription laser directe induit la création d’agrégats d’argent fluorescents Agmx+ au voisinage du voxel d’interaction. Ces agrégats modifient localement les propriétés optiques comme : la fluorescence, la non-linéarité et la réponse plasmonique du verre. Ainsi, différents guides d'ondes, un séparateur de faisceau 50-50, ainsi que des coupleurs optiques ont été inscrits en se basant sur ce nouveau Type A et complétement caractérisés. D'autre part, une étude comparative entre les deux types de guides d'ondes (type A et type I) est présentée, tout en montrant qu’en ajustant les paramètres laser, il est possible de déclencher soit le Type I soit le Type A. Enfin, en se basant sur des guides d’ondes de type A inscrits proche de la surface du verre, un capteur d'indice de réfraction hautement sensible a été inscrit dans une lame de verre de 1 cm de long. Ce capteur miniaturisé peut présenter deux fenêtres de détection d’indice, ce qui constitue une première mondiale. Les propriétés des guides d'ondes inscrits dans ces verres massifs ont été transposées à des fibres en forme de ruban, du même matériau contenant de l'argent. Les résultats obtenus dans ce travail de thèse ouvrent la voie à la fabrication de circuits intégrés en 3D et de capteurs à fibre basés sur des propriétés optiques originales inaccessibles avec des guides d’onde de Type I standard. / Direct Laser Writing (DLW) has been an exponentially growing research field during the last two decades, by providing an efficient and robust way to directly address three dimensional (3D) structures in transparent materials such as glasses using femtosecond laser pulses. It exhibits many advantages over lithography technique which is mostly limited to two dimensional (2D) structuring and involves many fabrication steps. This competitive aspect makes the DLW technique suitable for future technological transfer to advanced industrial manufacturing. Generally, DLW in glasses induces physical changes such as permanent local refractive index modifications that have been classified under three distinct types: (Type I, Type II & Type III). In silver containing glasses with embedded silver ions Ag+, DLW induces the creation of fluorescent silver clusters Agmx+ at the vicinity of the interaction voxel. In this work, we present a new type of refractive index change, called type A that is based on the creation of the photo-induced silver clusters allowing the creation of new linear and nonlinear optical waveguides in silver containing glasses. Various waveguides, a 50-50 Y beam splitter, as well as optical couplers, were written based on type A modification inside bulk glasses and further characterized. On the other hand, a comparison study between type A and type I waveguides is presented, showing that finely tuning the laser parameters allows the creation of either type A or type I modification inside silver containing glasses. Finally, based on type A near-surface waveguides, a highly sensitive refractive index sensor is created in a 1 cm glass chip, which could exhibit a pioneer demonstration of double sensing refractive ranges. The waveguiding properties observed and reported in the bulk of such silver containing glasses were transposed to ribbon shaped fibers of the same material. Those results pave the way towards the fabrication of 3D integrated circuits and fiber sensors with original fluorescent, nonlinear and plasmonic properties that are not accessible using the standard type I modification
|
7 |
Direct laser writing of polymeric and metallic nanostructures via optically induced local thermal effect / Étude théorique et réalisation de nanostructures polymères et métalliques par l'écriture directe du point chaud induit optiquement.Tong, Quang Cong 13 December 2016 (has links)
Ce travail consiste à l’utilisation de la technique d'écriture directe par laser par absorption à un photon pour fabriquer des nanostructures polymères et métalliques en vue d’applications en photonique et en plasmonique. Il est démontré que la température du matériau est augmentée localement et temporellement grâce à une excitation locale d’un laser continu dont la longueur d’onde se situe dans la bande d’absorption du matériau. Un modèle théorique simple a été étudié pour expliquer l'effet photothermique local et temporel, qui est déterminé par le spot de focalisation du système d'écriture directe par laser. En utilisant une résine photosensible positive, il a été démontré que les structures photoniques 1D et 2D peuvent être réalisées avec une taille aussi petite que 57 nm et avec une périodicité aussi courte que 300 nm, ce qui sont beaucoup plus petites par rapport à la limite de diffraction du système optique utilisé. Les structures photoniques 3D ont également été fabriqués pour la première fois avec une photorésine positive, permettant d’envisager de nombreuses nouvelles applications. Les structures polymères fabriquées ont été démontrés très utiles pour obtenir des nanostructures plasmoniques par soit une combinaison de la méthode d’évaporation thermique d'un film d'or et le procédé lift-off, ou par une combinaison de la méthode de pulvérisation cathodique d'une couche d'or et la méthode de recuit thermique. Les nanostructures d'or fabriquées ont été caractérisées expérimentalement et leurs propriétés optiques ont été théoriquement confirmées par des calculs FDTD. En outre, il a été démontré que les nanostructures d'or, avec les tailles et formes contrôlables, peut être réalisées en une seule étape par la technique d’écriture directe par laser grâce à l'effet thermique optiquement induit. Certaines applications de ces nanostructures métalliques sont proposées et étudiés, par exemple, le capteur d'indice de réfraction, le stockage des données et l'impression couleur. / This work focuses on the investigation of direct laser writing technique for fabrication of desired nanostructures on positive photoresist and metallic materials. The photothermal and photochemical processes deriving from one-photon absorption mechanism, which occurs when materials are excited by a green continuous-wave laser, enabled a scalable and practical approach for producing nanostructures on demand. A simple heat model was proposed to explain the local and temporal thermal effect, induced by a tiny focusing spot of the direct laser writing system. Using a positive photoresist, it was demonstrated that 1D and 2D photonic structures can be realized with a feature size as small as 57 nm and with a periodicity as short as 300 nm, which are much smaller than the diffraction limit of the used optical system. 3D photonic structures were also fabricated for the first time with a positive photoresist, paving the way to numerous applications. The fabricated polymeric structures have been demonstrated as excellent templates to obtain plasmonic nanostructures by a combination of thermal evaporation of gold film and lift-off process and/or by a combination of the sputtering of a thin gold layer and thermal annealing methods. Fabricated gold nanoarrays were experimentally characterized and their optical properties were theoretically confirmed by FDTD calculations. Furthermore, it was demonstrated that any gold nanostructure, with controllable size and shape, can be realized in one-step by direct laser writing technique thanks to the optically induced thermal effect. Some applications of these metallic nanostrucures are proposed, for instance, refractive index sensor, data storage, and color printing.
|
8 |
Processamento de poli(p-fenilenovinileno) (PPV) com pulsos laser de femtossegundos: fabricação de microestruturas óptica e eletricamente ativas / Processing of poly (p-phenylenevinylene) (PPV) with femtosecond laser pulses: fabrication of optically and electrically active microstructuresSalas, Oriana Ines Avila 12 July 2018 (has links)
O poli (p-fenilenevinileno), ou PPV, é um polímero de grande relevância tecnológica devido a suas propriedades eletroluminescentes, que têm sido exploradas em diodos emissores de luz orgânicos, displays flexíveis e outros dispositivos optoeletrônicos. Embora o PPV seja um material de importância para muitas aplicações, a sua síntese na nano/microescala não pode ser obtida através do método padrão, o qual utiliza o aquecimento de um polímero precursor poli (cloreto de xileno tetrahidrotiofenio) (PTHT). Este trabalho mostra como a microestruturação com pulsos de femtosegundo pode ser empregada para a síntese de PPV em regiões pré-determinadas, empregando três diferentes abordagens, permitindo uma nova metodologia para a fabricação precisa de microcircuitos poliméricos complexos, (i) na primeira abordagem, o processo de conversão é obtido pela irradiação de filmes de PTHT com pulsos laser ultracurtos em regiões previamente determinadas, o que leva ao controle espacial da formação de PPV em microescala, (ii) na segunda abordagem, microestruturas tridimensionais dopadas com PTHT foram fotopolimerizadas por absorção de dois fótons. A conversão de PTHT para PPV nestas microestruturas dopadas foi obtida após um tratamento térmico, (iii) na terceira abordagem, a transferência direta induzida por laser (LIFT) com pulsos de femtossegundos permite a deposição controlada de PPV com alta resolução espacial, fornecendo micropadrões 2D, preservando sua estrutura e propriedades ópticas. As estruturas foram caracterizadas por microscopia eletrônica de varredura, microscopia óptica de transmissão, microscopia de fluorescência e microscopia confocal de fluorescência. Suas propriedades ópticas foram analisadas através de sistemas de micro-fotoluminescência e micro-absorção implementadas em um microscópio invertido. Medidas de espectroscopia Raman, microscopia de força atômica e medidas elétricas também foram realizadas. Este trabalho mostra como a microestruturação com laser de fs pode ser explorada para a síntese de PPV em regiões pré-determinadas para fabricar uma variedade de microdispositivos, abrindo novos caminhos na optoeletrônica baseada em polímeros. / Poly(p-phenylenevinylene), or PPV, is a polymer of great technological relevance due to its electroluminescent properties, which have been exploited in organic light emitting diodes, flexible displays and other optoelectronic devices. Although PPV is a material of foremost importance for many applications, its synthesis at the nano/micro scale cannot be achieved through the standard method that uses heating of a precursor polymer poly(xylene tetrahydrothiophenium chloride)(PTHT). This work demonstrates the use of direct laser writing with femtosecond pulses to obtain the synthesis of PPV in pre-determined regions, by applying three different approaches, allowing the precise fabrication of complex polymeric microcircuits, (i) in the first approach the conversion process is achieved by irradiating PTHT films with ultra-short laser pulses in previously determined regions, which leads to the spatial control of PPV formation at microscale, (ii) in the second approach, three-dimensional microstructures doped with PTHT were photopolymerized by two photons absorption. The conversion of PTHT to PPV in these doped microstructures was obtained by a subsequent thermal treatment, (iii) in the third approach, laser-induced forward transfer (LIFT) with femtosecond pulses enables the controlled deposition of PPV with high spatial resolution, providing 2D micropatterns, while preserving its structure and optical properties. The structures were characterized by scanning electron, fluorescence, transmission and confocal fluorescence microscopies. Their optical properties were analyzed by micro-photoluminescence and micro-absorption setups assembled on an inverted microscope. Raman spectroscopy, electrical measurements and atomic force microscopy were also performed. This thesis shows the use of fs-laser writing methods for the synthesis of PPV in pre-determined regions, to fabricate a variety of microdevices, thus opening new avenues in polymer-based optoelectronics.
|
9 |
Elaboration et caractérisation de matériaux fonctionnels pour la stereolithographie biphotonique / Elaboration and characterization of functional materials for two-photon stereolithographyChia Gomez, Laura Piedad 08 June 2017 (has links)
La stéréolithographie biphotonique (TPS) est une technique de microfabrication 3D basée sur la polymérisation par absorption biphotonique qui permet d’obtenir en une seule étape des structures 3D complexes avec des détails sub-100nm. Aujourd’hui, en raison des conditions spécifiques de fabrication liées à la TPS (fort flux, confinement spatial de la photoréaction,…), un des enjeux concerne le développement de matériaux fonctionnels compatibles avec ce procédé. Dans ce contexte, l’objectif de cette thèse a été de développer de nouveaux matériaux fonctionnels à base de polymères à empreintes moléculaires (MIP) pour élaborer des capteurs chimiques. Une première partie de ce travail a consisté à mettre en place différentes méthodes dédiées à la caractérisation des propriétés géométriques, chimiques et mécaniques des matériaux élaborés par TPS. Par exemple, la vibrométrie laser a été utilisée pour la première fois afin de sonder de façon non-invasive les propriétés mécaniques de microstructures réalisées par TPS. Dans un second temps, ce travail a été mis à profit pour étudier l’impact du processus de fabrication (i.e. conditions photoniques) ainsi que des paramètres physico-chimiques affectant la photoréaction (i.e. inhibition par oxygène et nature du monomère) sur les propriétés finales des matériaux. Enfin, en s’appuyant sur les résultats obtenus, des microcapteurs chimiques à base de MIP, à lecture optique ou mécanique, ont été fabriqués. Leurs propriétés de reconnaissance moléculaire, ainsi que leurs sélectivités ont été démontrées pour une molécule cible modèle (D-L-Phe). / The two-photon stereolithography (TPS) technique is a micro-nanofabrication method based on photopolymerization by two-photon absorption that allows in a single manufacturing step to obtain complex 3D structures with high-resolution details (sub-100nm). Due to the specific conditions of TPS process (intense photon flux, spatial confinement of the photoreaction…) one of the main concerns today is the development of functional materials compatible with the TPS. According to the aforementioned, the general objective of this thesis was to develop new functional materials based on molecularly imprinted polymers (MIP) to elaborate chemical microsensors. In the first step of this work, different methods were implemented to characterize the geometrical, chemical and mechanical properties of the materials synthesized by TPS. For example, laser-Doppler vibrometry was used for first time to evaluate the mechanical properties of microstructures fabricated by TPS in a non-invasive way. In the second step, the characterization methodology was used to study the impact of the manufacturing process (i.e. photonic conditions) and the physicochemical parameters that affect the photoreaction (i.e. oxygen inhibition and the nature of the monomer) and the final properties of the materials. Finally, the obtained results enabled the prototyping of chemical microsensors based on MIP. Their molecular recognition properties and their selectivity were demonstrated for the molecule (D-L-Phe) by an optical and a mechanical sensing method.
|
10 |
Processamento de poli(p-fenilenovinileno) (PPV) com pulsos laser de femtossegundos: fabricação de microestruturas óptica e eletricamente ativas / Processing of poly (p-phenylenevinylene) (PPV) with femtosecond laser pulses: fabrication of optically and electrically active microstructuresOriana Ines Avila Salas 12 July 2018 (has links)
O poli (p-fenilenevinileno), ou PPV, é um polímero de grande relevância tecnológica devido a suas propriedades eletroluminescentes, que têm sido exploradas em diodos emissores de luz orgânicos, displays flexíveis e outros dispositivos optoeletrônicos. Embora o PPV seja um material de importância para muitas aplicações, a sua síntese na nano/microescala não pode ser obtida através do método padrão, o qual utiliza o aquecimento de um polímero precursor poli (cloreto de xileno tetrahidrotiofenio) (PTHT). Este trabalho mostra como a microestruturação com pulsos de femtosegundo pode ser empregada para a síntese de PPV em regiões pré-determinadas, empregando três diferentes abordagens, permitindo uma nova metodologia para a fabricação precisa de microcircuitos poliméricos complexos, (i) na primeira abordagem, o processo de conversão é obtido pela irradiação de filmes de PTHT com pulsos laser ultracurtos em regiões previamente determinadas, o que leva ao controle espacial da formação de PPV em microescala, (ii) na segunda abordagem, microestruturas tridimensionais dopadas com PTHT foram fotopolimerizadas por absorção de dois fótons. A conversão de PTHT para PPV nestas microestruturas dopadas foi obtida após um tratamento térmico, (iii) na terceira abordagem, a transferência direta induzida por laser (LIFT) com pulsos de femtossegundos permite a deposição controlada de PPV com alta resolução espacial, fornecendo micropadrões 2D, preservando sua estrutura e propriedades ópticas. As estruturas foram caracterizadas por microscopia eletrônica de varredura, microscopia óptica de transmissão, microscopia de fluorescência e microscopia confocal de fluorescência. Suas propriedades ópticas foram analisadas através de sistemas de micro-fotoluminescência e micro-absorção implementadas em um microscópio invertido. Medidas de espectroscopia Raman, microscopia de força atômica e medidas elétricas também foram realizadas. Este trabalho mostra como a microestruturação com laser de fs pode ser explorada para a síntese de PPV em regiões pré-determinadas para fabricar uma variedade de microdispositivos, abrindo novos caminhos na optoeletrônica baseada em polímeros. / Poly(p-phenylenevinylene), or PPV, is a polymer of great technological relevance due to its electroluminescent properties, which have been exploited in organic light emitting diodes, flexible displays and other optoelectronic devices. Although PPV is a material of foremost importance for many applications, its synthesis at the nano/micro scale cannot be achieved through the standard method that uses heating of a precursor polymer poly(xylene tetrahydrothiophenium chloride)(PTHT). This work demonstrates the use of direct laser writing with femtosecond pulses to obtain the synthesis of PPV in pre-determined regions, by applying three different approaches, allowing the precise fabrication of complex polymeric microcircuits, (i) in the first approach the conversion process is achieved by irradiating PTHT films with ultra-short laser pulses in previously determined regions, which leads to the spatial control of PPV formation at microscale, (ii) in the second approach, three-dimensional microstructures doped with PTHT were photopolymerized by two photons absorption. The conversion of PTHT to PPV in these doped microstructures was obtained by a subsequent thermal treatment, (iii) in the third approach, laser-induced forward transfer (LIFT) with femtosecond pulses enables the controlled deposition of PPV with high spatial resolution, providing 2D micropatterns, while preserving its structure and optical properties. The structures were characterized by scanning electron, fluorescence, transmission and confocal fluorescence microscopies. Their optical properties were analyzed by micro-photoluminescence and micro-absorption setups assembled on an inverted microscope. Raman spectroscopy, electrical measurements and atomic force microscopy were also performed. This thesis shows the use of fs-laser writing methods for the synthesis of PPV in pre-determined regions, to fabricate a variety of microdevices, thus opening new avenues in polymer-based optoelectronics.
|
Page generated in 0.0832 seconds