Spelling suggestions: "subject:"directed mutagenesis"" "subject:"irected mutagenesis""
101 |
Characterisation of critical interactions between translation factors eIF2 and eIF2BMurphy, Patrick January 2013 (has links)
Eukaryotic translation initiation is a complex and highly regulated process involving the ribosome, mRNA and proteins called eukaryotic initiation factors (eIFs). The overall aim of translation initiation is to position the ribosome at the initiation codon of the mRNA. eIF2, in its GTP-bound conformation, binds the initiator tRNA (Met-tRNAiMet) and delivers it to the 40S ribosomal subunit. When the anticodon of the tRNA is bound to the initiation codon, the GTP on eIF2 is hydrolysed to GDP. The guanine nucleotide exchange factor (GEF) eIF2B regenerates eIF2-GTP. eIF2 and eIF2B are multisubunit/multidomain protein complexes. Because information regarding the interface between each complex is limited, particularly the interface on the eIF2γ subunit, which binds the guanine-nucleotides and Met-tRNAiMet, interactions between the minimal GEF domain of eIF2Bε, εGEF, and eIF2 were mapped using mutagenesis and an in vitro cysteine cross-linking approach, with the cross-linker Mts-Atf-Biotin. Site-directed mutagenesis (SDM) was used to mutate five N-terminal and five C-terminal surface-exposed εGEF residues to cysteines. The mutant alleles were analysed in Saccharomyces cerevisiae and it was found that the gcd6-R574C allele was lethal and the gcd6-T572C was Gcd-. Further gcd6-R574 mutant alleles were also found to be lethal in yeast but expressed in vivo.εGEF-R574C has dramatically reduced GEF activity in vitro and binding assays showed that this mutant has significantly reduced affinity for eIF2. The εGEF-T572C and εGEF-S576C mutants also have severe and minor eIF2-binding defects respectively, while the C-terminal εGEF-Cys mutants have slightly reduced affinity for eIF2. The N-terminal εGEF-Cys mutants cross-link specifically to eIF2γ, while the C-terminal εGEF-Cys mutants interact predominantly with eIF2β. From the data obtained in this study, we propose a new model for eIF2B-mediated guanine-nucleotide exchange that reduces the importance of eIF2β and suggests εGEF resembles other GEFs in binding primarily to its G protein partner eIF2γ.
|
102 |
Estudo da atividade inibitória da troponina I através de mutações sítio-dirigidas / Study of the inhibitory activity of troponin I by site-directed mutagenesisRonaldo Bento Quaggio 06 October 1994 (has links)
A troponina I (TnI) é a sub-unidade inibitória do complexo troponina, responsável pela regulação da contração do músculo esquelético. Foi demonstrado que sua ação inibitória sobre a Mg2+ATPase da actomiosina, deve-se principalmente à região entre os resíduos 96 e 116 (região do peptídeo inibitório). Para estudar o mecanismo de inibição a nível molecular, produzimos três mutantes na região do peptídeo inibitório através de mutações sítio-dirigidas. Substituímos os resíduos lisina 105 por ácido glutâmico (K105E), fenilalanina 106 por tirosina (F106Y) e arginina 113 por ácido glutâmico (R113E). As troponinas I mutantes foram expressas em E.coli, purificadas e ensaiadas em sua atividade inibitória, interações com os outros componentes do complexo regulatório e sua capacidade regulatória. Os resultados obtidos indicam que a mutação na posição 105 alterou a interação da proteína com a tropomiosina, diminuindo sua atividade inibitória e afinidade pela actina-tropomiosina. A substituição na posição 113 alterou a interação da proteína com a actina e com a actina-tropomiosina, também diminuindo a atividade inibitória na presença de tropomiosina e inviabilizando a inibição na ausência de tropomiosina. Já a substituição na posição 106 não produziu alteração detectável. Concluímos que o resíduo 105 faz parte do sítio de ligação da troponina I ao complexo actina-tropomiosina e que o resíduo 113 participa diretamente do mecanismo de inibição. Desta forma, definimos duas interfaces de interação da troponina I com o filamento de actina-tropomiosina, necessárias a ligação da troponina I ao filamento e inibição da ATPase. / Troponin I (TnI) is the inhibitory subunit of the troponin complex, responsible for the regulation of skeletal muscle contraction. It has been demonstrated that TnI\'s inhibitory action on Mg2+ATPase of actomyosin is due principally to the region between residues 96 and 116 (the inhibitory region). To study the inhibitory mechanism at the molecular level, we produced three mutants of the inhibitory region by site-directed mutagenesis. We substituted lysine 105 for glutamic acid (K105E), phenylalanine 106 for tyrosine (F106Y) and arginine 113 for glutamic acid (R113E). The TnI mutants were expressed in E. coli, purified and analyzed for their inhibitory activity, interaction with other components of the regulatory complex and regulatory capacity. The results indicate that the mutation in K105E modified the interaction of TnI with tropomyosin, reduced its inhibitory activity and actin-tropomyosin affinity. The mutant R113E displayed modified interaction with actin and actin-tropomyosin, reduced inhibitory activity in the presence of tropomyosin and essentially no inhibitory activity in the absence of tropomyosin. The mutant F106Y behaved essentially like wild-type TnI. We conclude that residue 105 is part of the site by which troponin I binds to the actin-tropomyosin and that residue 113 participates directly in the inhibitory mechanism. In this way, we have defined two interfaces between troponin I and the actin-tropomyosin which are necessary for binding TnI to the filament and to inhibit the actomyosin ATPase.
|
103 |
Paysages énergétique et conformationnel d’interaction de la Synaptotagmin-1 avec des membranes / Energy and conformational landscape of Synaptotagmin-1 interacting with membranesGruget, Clémence 11 June 2018 (has links)
A l’arrivée d’un potentiel d’action au niveau d’une synapse neuronale, des ions calcium (Ca2+) pénètrent dans le neurone, permettant aux protéines SNAREs (N-ethylmaleimide-sensitive factor activating protein receptor) de s’assembler entièrement, engendrant la fusion des vésicules synaptiques contenant les neurotransmetteurs avec la membrane plasmique du neurone. Des protéines régulatrices telles que la Complexine et la Synaptotagmine sont étroitement couplées aux SNAREs et permettent une fusion rapide et synchrone. La Synaptotagmin-1 (Syt1), une protéine transmembranaire localisée sur les vésicules synaptiques, est le senseur calcique de la neurotransmission. Syt1 possède deux domaines de liaison au Ca2+, C2A et C2B, un domaine flexible reliant la région membranaire au C2A, ainsi qu’un court lien entre C2A et C2B. Il a été montré qu’une région polybasique dans le C2B se liait aux lipides anioniques tels que phosphatidylserine (PS) et phosphatidylinositol-4,5-bisphosphate (PIP2) en l’absence de Ca2+. A l’entrée du Ca2+, les ions Ca2+ se lient au C2A et au C2B. La liaison de Syt1 aux ions Ca2+ permet aux résidus non polaires à proximité des sites de liaison au Ca2+ de s’insérer dans la membrane. Si ces mécanismes sont relativement bien acceptés, les mécanismes biochimiques et biophysiques précis du déclenchement de la fusion induit par la liaison de Syt1 au Ca2+ restent flous. Dans ce travail, nous mesurons directement les interactions de Syt1 liée à une membrane avec des membranes anioniques comprenant des lipides PS et PIP2 par un appareil à force de surface (SFA), afin d’imiter la membrane d’une vésicule synaptique contenant Syt1 interagissant avec la membrane plasmique anionique. Nous réalisons une mutagénèse dirigée sur les sites de liaison au Ca2+ de C2A et C2B, ainsi que sur le site polybasique de C2B, pour entièrement cartographier les énergies de liaison à la membrane relatives à ces sites, à la fois en présence et en l’absence d’ions divalents. Nous trouvons que Syt1 se lie avec une énergie de ~6 kBT dans l’EGTA, ~10 kBT dans le Mg2+, et ~18 kBT dans le Ca2+. Des réarrangements moléculaires mesurés pendant le confinement de Syt1 entre les membranes prévalent dans le Ca2+ et dans le Mg2+, et suggèrent que Syt1 se lie initialement via le C2B puis réoriente ses domaines C2 dans la conformation de liaison privilégiée. La neutralisation des sites de liaison au Ca2+ de C2B engendre une réduction radicale de l’énergie de liaison de Syt1 dans le Ca2+, alors que la même mutation dans le C2A a un effet plus nuancé. Ces résultats éclairent sur la coopérativité de C2A et C2B dans leur liaison à la membrane, et montrent un rôle apparent prédominant de C2B. / Upon arrival of an action potential at the neuronal synapse, calcium ions (Ca2+) enter the neuron, allowing soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins to fully zipper, leading to the fusion of pre-docked synaptic vesicles containing neurotransmitters with the plasma membrane of the neurone. Regulatory proteins such as Complexin and Synaptotagmin are closely coupled to SNAREs during synaptic vesicle fusion and lead to synchronous, fast fusion. Synaptotagmin-1 (Syt1) is a transmembrane protein found in synaptic vesicles and is the Ca2+ sensor for synaptic transmission. Syt1 has two Ca2+ binding domains, C2A and C2B, with a flexible linker domain from the membrane region to C2A, and a short linker between C2A and C2B. A polybasic patch in C2B has been shown to bind to anionic lipids such as phophidylserine (PS) and phosphisotinol (PIP2) in the absence of Ca2+. Upon Ca2+ influx, Ca2+ ions bind in C2A and C2B. Ca2+ binding to Syt1 allows non-polar residues nearby the Ca2+ binding sites to insert into the membrane. While these mechanisms are relatively well-accepted, the precise biochemical and biophysical mechanisms for the Syt1 Ca2+ trigger remain unclear. In this work, we directly measure the interactions of Syt1-coated membranes with anionic membranes including PS and PIP2 lipids by the surface forces apparatus (SFA) technique, in order to mimic a Syt1-coated synaptic vesicle membrane interacting with the anionic plasma membrane. We perform site directed mutagenesis of the Ca2+ binding sites of C2A and C2B, along with the polybasic patch in C2B, to fully map the site-binding energetics of Syt1 with membranes, both in the absence and presence of divalent ions. We find that Syt1 binds with ~6 kBT in EGTA, ~10 kBT in Mg2+, and ~18 kBT in Ca2+. Molecular rearrangements measured during confinement of Syt1 between membranes are more prevalent in Ca2+ and Mg2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. Neutralization of C2B Ca2+ binding site leads to a drastic decrease of Syt1 binding energy in Ca2+, while the same mutation in C2A has a milder effect. These results illuminate that C2A and C2B cooperate in membrane binding, with an apparent predominant role of C2B.
|
104 |
Vývoj rychlé metody cílené mutageneze bakterie Streptococcus zooepidemicus / Development of a fast method for site-directed mutagenesis in Streptococcus zooepidemicusČerný, Zbyněk January 2016 (has links)
This diploma thesis is focused on development of a fast method for site-directed gene mutagenesis in Streptococcus zooepidemicus based on the mechanism of natural competence. Several genes were selected based on experimental data which highly probably influence hyaluronic acid synthesis. The deletion of the selected genes from genomic DNA was performed as proof of concept, and the resulting recombinant strains were characterized regarding changes of hyaluronic acid precursor concentrations (glucuronic acid and N-acetylglucosamin) in time of cultivation and the end production of hyaluronic acid.
|
105 |
Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspinUlbricht, David, Tindall, Catherine A., Oertwig, Kathrin, Hanke, Stefanie, Sträter, Norbert, Heiker, John T. 27 January 2020 (has links)
Kallikrein-related peptidases KLK5, KLK7 and KLK14 are important proteases in skin desquamation and aberrant KLK activity is associated with inflammatory skin diseases such as Netherton syndrome but also with various serious forms of cancer. Previously, we have identified KLK7 as the first protease target of vaspin (Serpin A12). Here, we report KLK14 as a second KLK protease to be inhibited by vaspin. In conclusion, vaspin represents a multispecific serpin targeting the kallikrein proteases KLK7 and KLK14, with distinct exosites regulating recognition of these target proteases and opposing effects of heparin binding on the inhibition reaction.
|
106 |
Veratridine Can Bind to a Site at the Mouth of the Channel Pore at Human Cardiac Sodium Channel NaV1.5Gulsevin, Alican, Glazer, Andrew M., Shields, Tiffany, Kroncke, Brett M., Roden, Dan M., Meiler, Jens 20 January 2024 (has links)
The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each
with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid
influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine
(VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal
action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding
sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking
calculations and high-throughput electrophysiology experiments in the present study. The docking
calculations identified two distinct binding regions. The first site was in the pore, close to the
binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at
the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409,
E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect,
consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site
close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an
allosteric inactivation mechanism for VTD at NaV1.5
|
107 |
Investigating the Role of Subunit III in the Structure and Function of Rhodobacter Sphaeroides Cytochrome C OxidaseGeyer, R. Ryan 31 July 2007 (has links)
No description available.
|
108 |
MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from NostocXu, Qian-Zhao, Bielytskyi, Pavlo, Otis, James, Lang, Christina, Hughes, Jon, Zhao, Kai-Hong, Losi, Aba, Gärtner, Wolfgang, Song, Chen 10 January 2024 (has links)
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can
bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral
diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the
cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark
state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes.
Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR
evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas
the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR
experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699,
showing a greater precision in the chromophore–protein interactions in the GAF1-2 construct. A 3D
Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the
GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it
from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for
the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in
the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophor
|
109 |
Computational Modelling of Ligand Complexes with G-Protein Coupled Receptors, Ion Channels and EnzymesBoukharta, Lars January 2014 (has links)
Accurate predictions of binding free energies from computer simulations are an invaluable resource for understanding biochemical processes and drug action. The primary aim of the work described in the thesis was to predict and understand ligand binding to several proteins of major pharmaceutical importance using computational methods. We report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 G-protein coupled receptor and a series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. Site-directed mutagenesis, homology modelling and docking were further used to characterize agonist binding to the human neuropeptide Y2 receptor, which is important in feeding behavior and an obesity drug target. In a separate project, homology modelling was also used for rationalization of mutagenesis data for an integron integrase involved in antibiotic resistance. Blockade of the hERG potassium channel by various drug-like compounds, potentially causing serious cardiac side effects, is a major problem in drug development. We have used a homology model of hERG to conduct molecular docking experiments with a series of channel blockers, followed by molecular dynamics simulations of the complexes and evaluation of binding free energies with the linear interaction energy method. The calculations are in good agreement with experimental binding affinities and allow for a rationalization of three-dimensional structure-activity relationships with implications for design of new compounds. Docking, scoring, molecular dynamics, and the linear interaction energy method were also used to predict binding modes and affinities for a large set of inhibitors to HIV-1 reverse transcriptase. Good agreement with experiment was found and the work provides a validation of the methodology as a powerful tool in structure-based drug design. It is also easily scalable for higher throughput of compounds.
|
110 |
Compréhension et prédiction de l'énantiosélectivité des lipases / Comprehension and prediction of lipases enantioselectivityLafaquière, Vincent 19 January 2010 (has links)
Cette étude a porté sur l’analyse de l’énantiosélectivité de la lipase de Burkholderia cepacia (BCL) pour les acides 2-substitués, synthons chiraux d’intérêt pharmaceutique, avec pour objectif d’examiner le rôle de l’accès au site actif enfoui de BCL sur l’énantiosélectivité et de développer une procédure d’ingénierie permettant de créer des mutants d’énantiosélectivité améliorée. Pour traiter le problème, une nouvelle approche de calcul, basée sur des algorithmes de planification de mouvements issus de la robotique a été développée. Elle permet l’exploration conformationnelle des espaces multi-dimensionnels contraints et a été appliquée au calcul des trajectoires de plusieurs racémiques dans le site actif de BCL et à l’identification de résidus pouvant potentiellement gêner le déplacement du substrat le long du site actif. Les résultats obtenus in silico ont révélé une corrélation qualitative avec les valeurs d’énantiosélectivité et ont permis de proposer des cibles de mutagénèse. Sur cette base, l’ingénierie du site actif de BCL a été entreprise pour moduler sélectivement l’accès des énantiomères R et S à la triade catalytique. Un système d’expression hétérologue de BCL chez E. coli compatible avec une expression en microplaque, a été développé. Une librairie de 57 (3x19) mono-mutants sur les positions : Leu17, Val266 et Leu287 a été construite par iPCR puis criblée en utilisant une procédure à moyen débit pour identifier les variants actifs pour l’hydrolyse du pNPB. L’énantiosélectivité de ces mutants a ensuite été évaluée pour l’hydrolyse du racémique (R,S)-2 bromophényl acétate de 2-chloro-éthyle, par utilisation d’une nouvelle procédure de criblage en deep-wells. Ce crible a permis de mettre en évidence plusieurs mutants dont les plus prometteurs ont été caractérisés. Ainsi les mutants Leu17Ser et Leu17Met présentent une augmentation de l’énantiosélectivité d’un facteur 10 accompagnée d’une augmentation de leur activité d’un facteur 4 à 5. Le mutant Val266Gly présente, quant à lui, une inversion de l’énantiosélectivité pour le substrat d’intérêt. L’étude des trajectoires par les techniques de planification combinée à une représentation sous la forme de carte de voxels a été réalisée en parallèle. Pour les mutants sélectionnés, une bonne corrélation a été observée entre les résultats obtenus in silico et expérimentalement. De plus, cela a permis de proposer de nouvelles combinaisons de mutations ayant conduit à l’identification de deux double-mutants Leu17Met/Val266Met et Leu17Ser/Leu287Ile d’énantiosélectivité supérieure à 150 pour le substrat modèle, révélant ainsi l’intérêt de l’approche semi-rationnelle proposée / This work has been focused on the understanding of the Burkholderia cepacia lipase (BCL) enantioselectivity towards 2-substituted acids which are chiral building blocks of pharmaceutical interest. The main objective of this work was the investigation of the potential role of substrate accessibility toward the buried active site of BCL on enantioselectivity and the development of an engineering procedure for the design of enantioselective mutants. To study further this hypothesis, a novel computational approach, based on motion-planning algorithms, originally used in robotics, was developed. It allows the conformational exploration of constrained high-dimensional spaces and was applied to the computation of trajectories for a set of racemates within the catalytic site. This methodology also enables the identification of residues potentially hindering substrates displacement along the active site. Results obtained in silico were correlated qualitatively with experimental values of enantioselectivity. On the basis of these results, engineering of the narrow active site of BCL has been undertaken to modulate selectively the access of R and S enantiomers to the catalytic triade. An heterologous expression system of BCL in E. coli compatible with production at microplate scale was developed. A library of 57 (3x19) variants targeted at positions Leu17, Val266 and Leu287 was built by iPCR and subsequently screened using a medium-throughput procedure to identify active variants against pNPB hydrolysis. Next, the enantioselectivity of these mutants was evaluated towards a given racemate, the (R,S)-2-chloro ethyl 2-bromophenylacetate, using a novel screening procedure developed in deep wells. Such screening enabled the identification of several variants amongst which the most promising were characterized. Mutants Leu17Ser and Leu17Met showed a remarkable 10-fold increase of their enantioselectivity and a 4- and 5-fold improvement of their specific activity. Compared to the wild-type enzyme, mutant Val266Gly displayed a reversed enantioselectivity for the substrate of interest. Investigation of the trajectories using motion-planning techniques combined to a voxel map representation was carried out. For selected variants, a fair correlation was observed between in silico and experimental results. Moreover, this enabled us to suggest novel combinations of mutations that led to the identification of two double-mutants Leu17Met/Val266Met and Leu17Ser/Leu287Ile showing an enantioselectivity value higher than 150 for the racemic substrate, revealing thus the effiency of the semi-rational strategy
|
Page generated in 0.0833 seconds