• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 15
  • 11
  • 9
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 23
  • 21
  • 18
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The Singing Doctor: Reconsidering the Terminal Degree in Voice Performance

Wilkinson, Mark Leslie 01 October 2020 (has links)
No description available.
132

Counter-flow Ion Mobility Analysis: Design, Instrumentation, and Characterization

Agbonkonkon, Nosa 14 November 2007 (has links) (PDF)
The quest to achieve high resolution in ion mobility spectrometry (IMS) has continued to challenge scientist and engineers in the field of separation science. The low resolution presently attainable in IMS has continued to negatively impact its utility and acceptance. Until now, efforts to improve the resolution have mainly focused on better instrumentation and detection methods. However, since the resolution of IMS is diffusion limited, it makes sense to address this limitation in order to attain high resolution. This dissertation presents a new IMS technique, which utilizes a high electric field and opposing high gas flow velocity with the aim to improve resolution. This approach essentially reduces the residence time of ions in the analyzer. This new technique is called "counter-flow ion mobility analysis" (CIMA). Theoretical modeling of this new technique predicted that a resolution of over 1000 is possible, which is over one order of magnitude better than that of conventional IMS techniques currently used. A wind tunnel was designed and constructed to produce a plug gas flow profile that is needed for CIMA. The test region of the wind tunnel was used as the CIMA analyzer region and was constructed from power circuit boards, PCBs, (top and bottom walls) and conductive plastic side walls. An inclined electric field was created by applying suitable voltages to multiple electrode traces on the PCBs. This inclined field, when resolved into its x- and y-components, was used to oppose the counter-gas flow and transport the ions to the detector, respectively. The results obtained did not show an improvement over conventional IMS techniques because of a limitation in the voltage that could be applied to the analyzer region. However, the results predict that high resolution is possible if (1) the ratio of the electric fields in the horizontal (x direction) to the vertical (y direction) is within the range of 2--0.5, (2) very high electric field and high gas flow velocities are applied, and (3) wall effects in the counter-flow gas profile are eliminated. While the resolution obtained using the present instrumentation is far from what was predicted, the foundation for ultimately achieving high resolution has been laid. The use of a wind tunnel has made the instrumentation possible. As far as the author knows, this is the first time a wind tunnel has been used in chemical measurement instrumentation. Chapter 5 of this dissertation, reports a method developed for predicting the reduced mobility constants, of chemical compounds. This method uses a purely statistical regression analysis for a wide range of compounds which is different from similar methods that use a neural network. The calculated value for this method was 87.4% when calculated values were plotted against experimental K0 values, which was close to the value for the neural network method (i.e., 88.7%).
133

Confección de modelos de redes de distribución de agua desde un Sig y desarrollo de herramientas de apoyo a la toma de decisiones

Bartolín Ayala, Hugo José 31 October 2013 (has links)
Advances in information technology in the past two decades have seen innovations in the field of domestic and industrial computing that led to a paradigm shift in the management and operation of urban water systems by water utility companies. The traditional public management policy that focused on ensuring a minimum quality of service regardless of the costs associated with the processes of catchment, treatment and distribution of water, in many cases even unknown, have evolved towards more efficient cost sensitive models. These new wholly or partly public funded management systems improve not only the quality of service offered to users, but also optimize resources by reducing the cost and causing the minimum environmental impact. The new challenges raised by the European Water Framework1 Directive by imposing cost recovery to improve water efficiency and environmental sustainability have led to a significant change at all levels of water management. Consequently, new priorities have been established in terms of infrastructure management that require the reduction of water losses and the improvement of the water efficiency in urban networks for human consumption. Likewise, in a broader context which includes the water--energy binomial, it is also desirable to improve the energy efficiency and carbon emissions of these systems. Today, network sectoring is the most commonly used strategy to improve management and increase network performance. It basically consists of dividing the network into several smaller hydraulic sectors, where water inlets and outlets are perfectly controlled. This simplifies the task of carrying out periodic water balances in each of the sectors, and allows water loss volume to be assessed for a given period of time. As configuring network sectors is not a trivial task, it is therefore important to have appropriate tools to perform the task efficiently and effectively. Mathematical models can play an important role as decision support tools to help water managers assess the performance of water network distribution systems. This thesis aims to address the current problems of managing urban water networks by combining new information-processing technologies with innovative network modelling techniques. It intends to facilitate the system diagnosis and extend the use of models on the decision-making process to provide better solutions to the management of urban water networks. For this purpose a software extension that works on a geographic information system (GIS) has been developed. It integrates: the hydraulic and water quality simulation program EPANET 2, innovative tools for model analysis and diagnostic, automatic tools for sectoring and computing tools to conduct water balances in the sectors using actual measurements. The work demonstrates the compatibility and complementarity of GIS and hydraulic models as technologies that can be used to support the assessment and diagnosis of water distribution networks. Considering that the majority of information linked to the network system has some geographic reference, it is not surprising that GIS has become a popular tool for dealing with such information. At the same time, the integration of mathematical modelling and simulation tools, offers the GIS a new dimension in the realm of hydraulic study of water networks. Furthermore, if this specific integration is provided with new features aimed not only to facilitate the model building, but also to assist the user in decision-making using powerful algorithms based on the application of the graph theory, the result is a powerful up-to-date analytical tool, which opens up new possibilities in the field of management and efficient operation of urban water supply systems. / Bartolín Ayala, HJ. (2013). Confección de modelos de redes de distribución de agua desde un Sig y desarrollo de herramientas de apoyo a la toma de decisiones [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33152

Page generated in 0.0267 seconds