• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 1
  • Tagged with
  • 26
  • 26
  • 18
  • 17
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude du mécanisme de régulation de la sénescence et de p53 par la protéine SOCS1

Calabrese, Viviane 01 1900 (has links)
Les mécanismes cellulaires anti-prolifératifs, lesquels comprennent l’apoptose, aussi appelée la mort cellulaire programmée, l’arrêt transitoire du cycle cellulaire et la sénescence, permettent à la cellule de prévenir, en réponse à différents stress, l’accumulation de mutations pouvant conduire à une prolifération incontrôlée et, éventuellement, au développement d’une tumeur. La régulation de ces différents mécanismes requiert l’activation de protéines appelées des suppresseurs de tumeur, dont le principal est p53. p53 est un facteur de transcription dont la stabilisation et l’activation conduit à une hausse de l’expression de gènes directement impliqués dans l’arrêt de la prolifération. Au cours des dernières années, l’ensemble des travaux sur p53 ont permis de mettre en évidence la complexité de sa fonction, de même que la multitude de voies de signalisation et de protéines avec lesquelles il coopère pour maintenir l’intégrité du génome. De ce fait, l’étude des mécanismes d’activation de p53 est de mise pour la compréhension de sa régulation et, éventuellement, pour la prévention et l’élaboration de nouvelles stratégies de traitement contre le cancer. L’objet de cette thèse est la mise en évidence d’un mécanisme d’activation de p53 et de la sénescence par la protéine SOCS1, un suppresseur de la signalisation par les cytokines. Ce mécanisme implique une interaction directe entre les deux protéines, plus précisément entre le domaine SH2 de SOCS1 et le domaine de transactivation de p53. SOCS1 interagit également, au niveau de son SOCS Box, avec les kinases ATM et ATR de la voie du dommage à l’ADN de façon à faciliter la phosphorylation de p53 en sérine 15. Ainsi, en interagissant à la fois avec p53 et ATM/ATR, SOCS1 contribue à la stabilisation et à l’activation de p53. En accord avec ce modèle, l’inhibition de SOCS1 dans des fibroblastes humains normaux tend à diminuer le nombre de cellules sénescentes suite à l’expression de l’oncogène ca-STAT5A et à réduire l’accumulation nucléaire de p53 dans ces cellules. De la même façon, les lymphocytes T provenant de souris Socs1-/-Ifnγ-/- sont moins susceptibles d’entrer en apoptose que les lymphocytes provenant de souris Socs1+/+Ifnγ+/+, suite à une exposition à des radiations. Dans les deux contextes, on observe une baisse de l’expression des gènes cibles de p53, ce qui démontre que SOCS1 est impliquée dans l’activation de p53 in vivo. Cette thèse a également pour but de mettre en évidence l’implication de SOCS1 dans l’activation d’autres facteurs de transcription et, par le fait même, de démontrer qu’elle peut agir comme un régulateur plus général de la transcription. Une étude approfondie de l’interaction entre SOCS1 et p53 a permis de démontrer que le domaine de transactivation II de p53 (acides aminés 36-67) est suffisant pour l’interaction. Plus précisément, il semble que le tryptophane 53 (W53) et la phénylalanine 54 (F54) sont les principaux résidus impliqués. Une analyse structurale de ce domaine de p53 a conduit à l’identification d’un motif conservé dans plusieurs autres facteurs de transcription pourvus d’un domaine de transactivation acide, dont p63, p73 et E2F1. En accord avec ces résultats, SOCS1 est en mesure d’interagir avec chacune des deux protéines. Ainsi, la capacité de SOCS1 d’interagir et de réguler l’activité de p53 peut s’étendre à d’autres facteurs de transcription. En terminant, le mécanisme présenté dans cette thèse contribue à la compréhension de la régulation de p53, le principal suppresseur de tumeur de la cellule. De plus, il met en évidence une nouvelle fonction de SOCS1, laquelle était jusqu’alors essentiellement connue pour inhiber la voie de signalisation JAK/STAT. Ce nouveau rôle pour SOCS1 permet d’expliquer de quelle manière une activation aberrante de la signalisation par les cytokines peut déclencher la sénescence ou l’apoptose. Enfin, le fait que SOCS1 puisse réguler différents facteurs de transcription permet de la qualifier de régulateur général des facteurs de transcription composés d’un domaine de transactivation acide. / In response to different stress, three anti-proliferative mechanisms, namely apoptosis, also called programmed cell death, transient growth arrest and senescence, prevent the cells from cumulating mutations that can lead to uncontrolled proliferation and, eventually, to tumor development. Regulation of these mechanisms requires the activation of proteins called tumor suppressors. One of them, p53, is a transcription factor whose stabilization and activation lead to an increase in expression of genes directly implicated in cell cycle arrest. In the past years, studies about p53 showed how much its function is complex and with how many signaling pathways and proteins it cooperates to maintain genome integrity. Thus, studying the activation mechanisms of p53 is essential to understand its regulation and, thereby, to prevent tumor development and to elaborate new strategies for cancer treatment. The first aim of this thesis is to show a new activation mechanism of p53 and of senescence by the protein SOCS1, a suppressor of cytokine signaling. This mechanism implies a direct interaction between the two proteins, specifically between the SH2 domain of SOCS1 and the N-terminal transactivation domain of p53. SOCS1 also interacts with the DNA damage-regulated kinases ATM and ATR via its C-terminal domain, which contains a SOCS Box, to facilitate the phosphorylation of p53 on its serine 15. Thus, by interacting at the same time with p53 and ATM, SOCS1 contributes to stabilization and activation of p53. In accordance with this model, SOCS1 inhibition in human normal fibroblasts decreases the number of senescent cells in which the activated oncogene STAT5A is expressed and reduces p53 nuclear accumulation in these cells. In the same way, T cells from Socs1-/-Ifnγ-/- mice are less likely to undergo apoptosis than T cells from Socs1+/+Ifnγ+/+ mice, after exposure to γ radiation. In both contexts, the expression of p53 target genes is decreased, which indicates that SOCS1 is implicated in p53 activation in vivo. This thesis also aims to show the role of SOCS1 in the activation of other transcription factors and, thereby, to show that it can act as a more general regulator of transcription. A detailed study of the interaction between SOCS1 and p53 showed that the transactivation domain II of p53 (amino acids 36-67) is sufficient for the interaction. Specifically, it seems that tryptophan 53 (W53) and phenylalanine 54 (F54) are essential for the interaction. A structural analysis of this p53 region highlights an acid transactivation domain actually conserved in many others transcription factors, such as p63, p73 and E2F1. In accordance with this observation, SOCS1 is able to interact with both proteins. Thus, the capacity of SOCS1 to interact with p53 and to regulate its activity may extend to other transcription factors. The mechanism showed in this thesis contributes to the understanding of p53 regulation and highlights a new function for the SOCS1 protein. Indeed, until now, SOCS1 was mostly known to be a negative regulator of the JAK/STAT pathway. Moreover, this new role for SOCS1 explains how an aberrant cytokine signaling can trigger senescence or apoptosis. Finally, the fact that SOCS1 can regulate different transcription factors allows us to consider it as a general regulator of transcription factors containing an acid transactivation domain.
22

Mécanismes moléculaires sous-jacents au développement du médulloblastome

Racicot, Frédéric 11 1900 (has links)
Le médulloblastome est une des tumeurs les plus fréquentes du système nerveux central chez l’enfant. Son impact clinique, ainsi que les effets secondaires engendrés par les traitements actuels, sont significatifs en matière de morbidité et de mortalité. La caractérisation moléculaire des tumeurs du système nerveux central a grandement évolué, et ce, particulièrement en ce qui concerne le médulloblastome. Des travaux antérieurs ont permis d’établir qu’un des sous-groupes de médulloblastome est caractérisé par l’activation de la voie sonic hedgehog. La mutation la plus fréquente menant à ce sous-type de médulloblastome est la mutation du gène suppresseur de tumeur PTCH1. Grâce au modèle de souris Ptch1+/-, des données issues de notre laboratoire ont permis de caractériser le développement de cette tumeur comme étant en deux étapes. Ce travail porte sur la caractérisation du mécanisme par lequel cette première étape, soit la perte d’hétérozygotie de Ptch1, survient. Tout d’abord, nous revisitons le rôle in vivo du corécepteur Boc dans la tumorigenèse. Selon nos résultats, la modulation de Boc ne semble pas avoir un impact significatif sur le développement tumoral dans des expériences de transplantation orthotopiques. Ensuite, nous démontrons que le ligand Shh augmente le dommage à l’ADN, ce qui mène à une hausse des évènements de recombinaisons qui peuvent causer une perte d’hétérozygotie. Nous tentons de moduler l’activité de Rad51 en observant une tendance non statistiquement significative des évènements de recombinaison avec des inhibiteurs de Rad51. Nous démontrons ensuite qu’un inhibiteur de Cdc7 permet la diminution des évènements de recombinaisons ainsi qu’une diminution du stress réplicatif de l’ADN. En intervenant sur le gène Mcm2 grâce à un modèle de souris transgénique, nous parvenons à prouver qu’une diminution de l’action de Mcm2 permet une diminution du stress réplicatif de l’ADN. En somme, la première étape du développement du médulloblastome sonic hedgehog-activé est la perte d’hétérozygotie de Ptch1. Celle-ci est caractérisée par une augmentation du dommage à l’ADN engendrant une hausse des évènements de recombinaison. Plusieurs cibles potentielles de modulation s’avèrent prometteuses pour un éventuel traitement ciblé. / Medulloblastoma is one of the most common central nervous system tumors of the child. Its clinical impact, as well as the adverse effects caused by current treatments, are significant in terms of morbidity and mortality. The molecular characterization of tumors of the central nervous system has greatly evolved, particularly in the case of medulloblastoma. Previous work has established that one of the medulloblastoma sub-groups is characterized by the activation of the sonic hedgehog (Shh) pathway. The most common mutation leading to this medulloblastoma subtype is the PTCH1 tumor suppressor gene mutation. Working with the Ptch1+/- mouse model, data from our la-boratory characterized the medulloblastoma tumorigenesis as a two-step process. This work focuses on the characterization of the mechanism by which this first step, the loss of heterozygosity of Ptch1, occurs. First, we revisit the in vivo role of the Boc coreceptor in the medulloblastoma tumor-igenesis. According to our results, Boc modulation does not seem to have a significant impact on tumor development. Next, we show that the Shh ligand increases DNA dam-age. This leads to an increase in recombination events which predispose to loss of het-erozygosity. We attempt to modulate Rad51 activity and observe a non-statistically sig-nificant trend to decrease recombination events with Rad51 inhibitors. We then demonstrate that Cdc7 inhibition reduces recombination events as well as DNA replica-tive stress. Using an Mcm2 transgenic mouse model, we demonstrate that a reduction in the action of Mcm2 reduces DNA replicative stress. To conclude, the first step in the development of Shh-activated medulloblastoma is the loss of heterozygosity of Ptch1. This is characterized by an increase in DNA damage leading to an increase in recombination events. Several potential modulation targets hold promise for possible targeted therapy.
23

Mass spectrometry as a tool to dissect the role of chromatin assembly factors in regulating nucleosome assembly

Gharib, Marlène 12 1900 (has links)
L'assemblage des nucléosomes est étroitement couplée à la synthèse des histones ainsi qu’à la réplication et la réparation de l’ADN durant la phase S. Ce processus implique un mécanisme de contrôle qui contribue soigneusement et de manière régulée à l’assemblage de l’ADN en chromatine. L'assemblage des nucléosomes durant la synthèse de l’ADN est crucial et contribue ainsi au maintien de la stabilité génomique. Cette thèse décrit la caractérisation par spectrométrie de masse(SM) des protéines jouant un rôle critique dans l’assemblage et le maintien de la structure chromatinienne. Plus précisément, la phosphorylation de deux facteurs d’assemblage des nucléosome, le facteur CAF-1, une chaperone d’histone qui participe à l'assemblage de la chromatine spécifiquement couplée à la réplication de l'ADN, ainsi que le complexe protéique Hir, jouant de plus un rôle important dans la régulation transcriptionelle des gènes d’histones lors de la progression normale du cycle cellulaire et en réponse aux dommages de l'ADN, a été examiné. La caractérisation des sites de phosphorylation par SM nécéssite la séparation des protéines par éléctrophorèse suivi d’une coloration a l’argent. Dans le chapitre 2, nous demontrons que la coloration à l’argent induit un artéfact de sulfatation. Plus précisément, cet artéfact est causé par un réactif spécifiquement utilisé lors de la coloration. La sulfatation présente de fortes similitudes avec la phosphorylation. Ainsi, l’incrément de masse observé sur les peptides sulfatés et phosphorylés (+80 Da) nécéssite des instruments offrant une haute résolution et haute précision de masse pour différencier ces deux modifications. Dans les chapitres 3 et 4, nous avons d’abord démontré par SM que Cac1, la plus grande sous-unité du facteur CAF-1, est cible de plusieurs sites de phosphorylation. Fait intéréssant, certains de ces sites contiennent des séquences consensus pour les kinases Cdc7-Dbf4 et CDKs. Ainsi, ces résultats fournissent les premières évidences que CAF-1 est potentiellement régulé par ces deux kinases in vivo. La fonction de tous les sites de phosphorylation identifiés a ensuite été évaluée. Nous avons démontré que la phosphorylation de la Ser-503, un site consensus de la DDK, est essentielle à la répréssion transcriptionelle des gènes au niveau des télomères. Cependant, cette phosphorylation ne semble pas être nécéssaire pour d’autres fonctions connues de CAF-1, indiquant que le blocage de la phsophorylation de Cac1 Ser-503 affecte spécifiquement la fonction de CAF-1 aux structures hétérochromatiques des télomères. Ensuite, nous avons identifiés une intéraction physique entre CAF-1 et Cdc7-Dbf4. Des études in vitro ont également demontré que cette kinase phosphoryle spécifiquement Cac1 Ser-503, suggérant un rôle potential pour la kinase Cdc7-Dbf4 dans l’assemblage et la stabilité de la structure hétérochromatique aux télomères. Finalement, les analyses par SM nous ont également permi de montrer que la sous-unité Hpc2 du complexe Hir est phosphorylée sur plusieurs sites consensus des CDKs et de Cdc7-Dbf4. De plus, la quantification par SM d’un site spécifique de phosphorylation de Hpc2, la Ser-330, s’est révélée être fortement induite suite à l’activation du point de contrôle de réplication (le “checkpoint”) suite au dommage a l’ADN. Nous montrons que la Ser-330 de Hpc2 est phopshorylée par les kinases de point de contrôle de manière Mec1/Tel1- et Rad53-dépendante. Nos données préliminaires suggèrent ainsi que la capacité du complex Hir de réguler la répréssion transcriptionelle des gènes d'histones lors de la progression du cycle cellulaire normal et en réponse au dommage de l'ADN est médiée par la phosphorylation de Hpc2 par ces deux kinases. Enfin, ces deux études mettent en évidence l'importance de la spectrométrie de masse dans la caractérisation des sites de phosphorylation des protéines, nous permettant ainsi de comprendre plus précisement les mécanismes de régulation de l'assemblage de la chromatine et de la synthèse des histones. / Nucleosome assembly entails a controlled mechanism that is tightly coupled to DNA and histone synthesis during DNA replication and repair in S-phase. Importantly, this contributes to the prompt and carefully orchestrated assembly of newly replicated DNA into chromatin, which is essential for the maintenance of genomic integrity. This thesis describes the mass spectrometric characterization of proteins critical in the regulation of nucleosome assembly behind the replication fork and chromatin structure. More specifically, the phosphorylation of Chromatin Assembly Factor 1 (CAF-1), a nucleosome assembly factor that uniquely functions during replication-coupled de novo nucleosome assembly in S-phase and the Hir protein complex, a second nucleosome assembly factor that also contributes to the transcriptional regulation of histone genes during normal cell cycle progression and in response to DNA damage, was examined. We first demonstrated that characterization of protein phosphorylation by mass spectrometry (MS), which often relies on the separation of proteins by gel electrophoresis followed by silver staining for visualization, should be given careful considerations. In chapter 2, we report a potential pitfall in the interpretation of phosphorylation modifications due to the artifactual sulfation of serine, threonine and tyrosine residues caused by a specific reagent used during silver staining. Sulfation and phosphorylation both impart an 80 Da addition of these residues making them distinguishable only with MS systems offering high resolution and high mass accuracy capabilities. Chapter 3 and 4 present the MS characterization of in vivo phosphorylation occurring on CAF-1 and Hir proteins, respectively. We first demonstrated that Cac1, the largest subunit of CAF-1, is phosphorylated on several novel residues containing the consensus sequences recognized by either Cdc7-Dbf4 (DDK) or cyclin-dependent kinases(CDKs). These results have provided the first evidence that CAF-1 is regulated by these two kinases in vivo. The function of all identified Cac1 phosphorylation sites was then assessed. In vivo phenotypic studies showed that the specific phosphorylation of Ser-503, a Cac1 DDK-like site identified in our study, is essential for heterochromatin-mediated telomeric silencing. Cac1-Ser-503 did not appear to be required for other known functions of CAF-1, including DNA damage resistance and mitotic chromosom segregation, indicating that blocking Cac1 phosphorylation on Ser-503 sepcifically cripples CAF-1 function at telomeres. Next, biochemical purifications identified a physical interaction between CAF-1 and Cdc7-Dbf4. Consistent with this physical interaction data, in vitro kinase assay studies showed that Cdc7-Dbf4 specifically phosphorylates Cac1 Ser-503 thereby uncovering a novel role for Cdc7-Dbf4 in heterochromatin assembly and/or stability that is potentially mediated through CAF-1. Finally, MS analysis also showed that the Hpc2 subunit of the Hir protein complex is phosphorylated on several CDK- and DDK-like consensus sites. Furthermore, MS quantification of a specific phosphorylation site,Hpc2 Ser-330, was shown to be highly induced following the activation of the DNA damage checkpoint in response to DNA damage. We show that Hpc2 Ser-330 is phopshorylated by checkpoint kinases in a Mec1/Tel1- and Rad53-dependent manner. Our preliminary data suggest that the ability of the Hir protein complex to regulate the transcriptional repression of histone genes during normal cell cycle progression and in response to DNA damage is mediated through the regulated phosphorylation of Hpc2 by these kinases. Finally, these two studies highlight the importance of mass spectrometry in characterizing protein phosphorylation events, which has yielded novel insights into the regulation of chromatin assembly by CAF-1 and histone synthesis mediated by Hir proteins.
24

Homéostasie des histones en réponse au dommage à l’ADN et étude d’inhibiteurs de désacétylases d’importance clinique

Villeneuve, Valérie 01 1900 (has links)
La chromatine possède une plasticité complexe et essentielle pour répondre à différents mécanismes cellulaires fondamentaux tels la réplication, la transcription et la réparation de l’ADN. Les histones sont les constituants essentiels de la formation des nucléosomes qui assurent le bon fonctionnement cellulaire d’où l’intérêt de cette thèse d’y porter une attention particulière. Un dysfonctionnement de la chromatine est souvent associé à l’émergence du cancer. Le chapitre II de cette thèse focalise sur la répression transcriptionnelle des gènes d’histones par le complexe HIR (HIstone gene Repressor) en réponse au dommage à l'ADN chez Saccharomyces cerevisiae. Lors de dommage à l’ADN en début de phase S, les kinases du point de contrôle Mec1, Tel1 et Rad53 s’assurent de bloquer les origines tardives de réplication pour limiter le nombre de collisions potentiellement mutagéniques ou cytotoxiques entre les ADN polymérases et les lésions persistantes dans l'ADN. Lorsque la synthèse totale d’ADN est soudainement ralentie par le point de contrôle, l’accumulation d'un excès d'histones nouvellement synthétisées est néfaste pour les cellules car les histones libres se lient de manière non-spécifique aux acides nucléiques. L'un des mécanismes mis en place afin de minimiser la quantité d’histones libres consiste à réprimer la transcription des gènes d'histones lors d'une chute rapide de la synthèse d'ADN, mais les bases moléculaires de ce mécanisme étaient très mal connues. Notre étude sur la répression des gènes d’histones en réponse aux agents génotoxiques nous a permis d’identifier que les kinases du point de contrôle jouent un rôle dans la répression des gènes d’histones. Avant le début de mon projet, il était déjà connu que le complexe HIR est requis pour la répression des gènes d’histones en phase G1, G2/M et lors de dommage à l’ADN en phase S. Par contre, la régulation du complexe HIR en réponse au dommage à l'ADN n'était pas connue. Nous avons démontré par des essais de spectrométrie de masse (SM) que Rad53 régule le complexe HIR en phosphorylant directement une de ses sous-unités, Hpc2, à de multiples résidus in vivo et in vitro. La phosphorylation d’Hpc2 est essentielle pour le recrutement aux promoteurs de gènes d’histones du complexe RSC (Remodels the Structure of Chromatin) dont la présence sur les promoteurs des gènes d'histones corrèle avec leur répression. De plus, nous avons mis à jour un nouveau mécanisme de régulation du complexe HIR durant la progression normale à travers le cycle cellulaire ainsi qu'en réponse aux agents génotoxiques. En effet, durant le cycle cellulaire normal, la protéine Hpc2 est très instable durant la transition G1/S afin de permettre la transcription des gènes d’histones et la production d'un pool d'histones néo-synthétisées juste avant l'initiation de la réplication de l’ADN. Toutefois, Hpc2 n'est instable que pour une brève période de temps durant la phase S. Ces résultats suggèrent qu'Hpc2 est une protéine clef pour la régulation de l'activité du complexe HIR et la répression des gènes d’histones lors du cycle cellulaire normal ainsi qu'en réponse au dommage à l’ADN. Dans le but de poursuivre notre étude sur la régulation des histones, le chapitre III de ma thèse concerne l’analyse globale de l’acétylation des histones induite par les inhibiteurs d’histone désacétylases (HDACi) dans les cellules normales et cancéreuses. Les histones désacétylases (HDACs) sont les enzymes qui enlèvent l’acétylation sur les lysines des histones. Dans plusieurs types de cancers, les HDACs contribuent à l’oncogenèse par leur fusion aberrante avec des complexes protéiques oncogéniques. Les perturbations causées mènent souvent à un état silencieux anormal des suppresseurs de tumeurs. Les HDACs sont donc une cible de choix dans le traitement des cancers engendrés par ces protéines de fusion. Notre étude de l’effet sur l’acétylation des histones de deux inhibiteurs d'HDACs de relevance clinique, le vorinostat (SAHA) et l’entinostat (MS-275), a permis de démontrer une augmentation élevée de l’acétylation globale des histones H3 et H4, contrairement à H2A et H2B, et ce, autant chez les cellules normales que cancéreuses. Notre quantification en SM de l'acétylation des histones a révélé de façon inattendue que la stœchiométrie d'acétylation sur la lysine 56 de l’histone H3 (H3K56Ac) est de seulement 0,03% et, de manière surprenante, cette stœchiométrie n'augmente pas dans des cellules traitées avec différents HDACi. Plusieurs études de H3K56Ac chez l’humain présentes dans la littérature ont rapporté des résultats irréconciliables. Qui plus est, H3K56Ac était considéré comme un biomarqueur potentiel dans le diagnostic et pronostic de plusieurs types de cancers. C’est pourquoi nous avons porté notre attention sur la spécificité des anticorps utilisés et avons déterminé qu’une grande majorité d’anticorps utilisés dans la littérature reconnaissent d’autres sites d'acétylation de l’histone H3, notamment H3K9Ac dont la stœchiométrie d'acétylation in vivo est beaucoup plus élevée que celle d'H3K56Ac. De plus, le chapitre IV fait suite à notre étude sur l’acétylation des histones et consiste en un rapport spécial de recherche décrivant la fonction de H3K56Ac chez la levure et l’homme et comporte également une évaluation d’un anticorps supposément spécifique d'H3K56Ac en tant qu'outil diagnostic du cancer chez l’humain. / The chromatin is a complex structure and its plasticity is essential to complete different fundamental cellular processes such as DNA replication, transcription and repair. Furthermore, chromatin malfunction is often associated with cancer emergence. The focus of this thesis will be on the function and regulation of histones, as they are essential components of nucleosomes and they ensure proper chromatin formation. Chapter II of this thesis focuses on the transcriptional repression of histone genes by the HIR (HIstone gene Repressor) complex in response to DNA damage in Saccharomyces cerevisiae. When DNA damage occurs in early S phase, the DNA damage checkpoint kinases Mec1, Tel1 and Rad53 block late origins of replication to limit potentially mutagenic or cytotoxic collisions between DNA polymerases and remaining DNA lesions. When the total DNA synthesis rate drops suddenly in S- phase, following the checkpoint control activation, accumulation of newly synthesized histones becomes detrimental for the cells because free histones bind non-specifically to nucleic acids. One mechanism that contributes to a reduction in free histones at this time is the repression of histone gene transcription; however, the molecular basis of this repression was not known. Our study on histone gene repression in response to genotoxic agents allowed us to identify the checkpoint kinases as major players in the repression of histone genes. Before initiating this project, it was known that the HIR complex is required to repress histone genes in G1 and G2/M phases and during DNA damage. Nonetheless, HIR complex regulation was not well characterized. We demonstrated by mass spectrometry (MS) analyses that Rad53 regulates the HIR complex by directly phosphorylating one of its subunits, Hpc2, at many residues in vivo and in vitro. Hpc2 phosphorylation is essential to recruit the RSC complex (Remodels the Structure of Chromatin) to histone gene promoters where its presence correlates with histone gene repression. Moreover, we uncovered a novel mechanism for the HIR complex regulation during a normal cell cycle progression and in response to genotoxic agents. Indeed, during a normal cell cycle, the Hpc2 protein is very unstable at the G1/S transition to allow histone gene transcription and production of a pool of newly synthesized histones just before DNA replication initiation. These results suggest that Hpc2 is a key player in the regulation of HIR complex activity and can repress histone gene expression both during a normal cell cycle and in response to DNA damage. In order to pursue our study on histone regulation, chapter III of this thesis covers histone acetylation induced by histone deacetylase inhibitors (HDACi) in normal and cancer cells. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from lysine residues on histones, condensing the chromatin and effectively repressing local transcription. Several types of cancers are characterized by epigenetic abnormalities and HDACs contribute to oncogenesis by aberrant fusion with oncogenic protein complexes. The disruptions often lead to an abnormal silent state of tumour suppressors. HDACs are then targets of interest in cancer treatment caused by those fusion proteins. Our study of the effects of two clinically relevant HDAC inhibitors, vorinostat (SAHA) and entinostat (MS-275) on acetylation of histones demonstrated an obvious increase of histones H3 and H4 acetylation, unlike histones H2A and H2B in both normal and cancer cells. Unexpectedly, our MS quantification of histone acetylation revealed that the stoichiometry of histone H3 lysine 56 acetylation (H3K56Ac) was only 0.03% and, surprisingly, this stoichiometry did not increase upon HDACi treatments. Several reported studies in the literature of H3K56Ac in humans are irreconcilable. Furthermore, H3K56Ac was considered as a potential biomarker in diagnosis and prognosis in many cancer types. Therefore we focussed on antibody specificity and determined that the majority of antibodies used in the literature recognize other acetylation sites in histone H3, especially H3K9Ac whose stoichiometry of acetylation in vivo is much higher than H3K56Ac. Additionally, chapter IV is a follow-up of our study on histone acetylation and consists of a special report describing the function of H3K56Ac in yeast and human and also contains an evaluation of a supposedly specific H3K56Ac antibody as a diagnostic tool in human cancers.
25

Mass spectrometry as a tool to dissect the role of chromatin assembly factors in regulating nucleosome assembly

Gharib, Marlène 12 1900 (has links)
L'assemblage des nucléosomes est étroitement couplée à la synthèse des histones ainsi qu’à la réplication et la réparation de l’ADN durant la phase S. Ce processus implique un mécanisme de contrôle qui contribue soigneusement et de manière régulée à l’assemblage de l’ADN en chromatine. L'assemblage des nucléosomes durant la synthèse de l’ADN est crucial et contribue ainsi au maintien de la stabilité génomique. Cette thèse décrit la caractérisation par spectrométrie de masse(SM) des protéines jouant un rôle critique dans l’assemblage et le maintien de la structure chromatinienne. Plus précisément, la phosphorylation de deux facteurs d’assemblage des nucléosome, le facteur CAF-1, une chaperone d’histone qui participe à l'assemblage de la chromatine spécifiquement couplée à la réplication de l'ADN, ainsi que le complexe protéique Hir, jouant de plus un rôle important dans la régulation transcriptionelle des gènes d’histones lors de la progression normale du cycle cellulaire et en réponse aux dommages de l'ADN, a été examiné. La caractérisation des sites de phosphorylation par SM nécéssite la séparation des protéines par éléctrophorèse suivi d’une coloration a l’argent. Dans le chapitre 2, nous demontrons que la coloration à l’argent induit un artéfact de sulfatation. Plus précisément, cet artéfact est causé par un réactif spécifiquement utilisé lors de la coloration. La sulfatation présente de fortes similitudes avec la phosphorylation. Ainsi, l’incrément de masse observé sur les peptides sulfatés et phosphorylés (+80 Da) nécéssite des instruments offrant une haute résolution et haute précision de masse pour différencier ces deux modifications. Dans les chapitres 3 et 4, nous avons d’abord démontré par SM que Cac1, la plus grande sous-unité du facteur CAF-1, est cible de plusieurs sites de phosphorylation. Fait intéréssant, certains de ces sites contiennent des séquences consensus pour les kinases Cdc7-Dbf4 et CDKs. Ainsi, ces résultats fournissent les premières évidences que CAF-1 est potentiellement régulé par ces deux kinases in vivo. La fonction de tous les sites de phosphorylation identifiés a ensuite été évaluée. Nous avons démontré que la phosphorylation de la Ser-503, un site consensus de la DDK, est essentielle à la répréssion transcriptionelle des gènes au niveau des télomères. Cependant, cette phosphorylation ne semble pas être nécéssaire pour d’autres fonctions connues de CAF-1, indiquant que le blocage de la phsophorylation de Cac1 Ser-503 affecte spécifiquement la fonction de CAF-1 aux structures hétérochromatiques des télomères. Ensuite, nous avons identifiés une intéraction physique entre CAF-1 et Cdc7-Dbf4. Des études in vitro ont également demontré que cette kinase phosphoryle spécifiquement Cac1 Ser-503, suggérant un rôle potential pour la kinase Cdc7-Dbf4 dans l’assemblage et la stabilité de la structure hétérochromatique aux télomères. Finalement, les analyses par SM nous ont également permi de montrer que la sous-unité Hpc2 du complexe Hir est phosphorylée sur plusieurs sites consensus des CDKs et de Cdc7-Dbf4. De plus, la quantification par SM d’un site spécifique de phosphorylation de Hpc2, la Ser-330, s’est révélée être fortement induite suite à l’activation du point de contrôle de réplication (le “checkpoint”) suite au dommage a l’ADN. Nous montrons que la Ser-330 de Hpc2 est phopshorylée par les kinases de point de contrôle de manière Mec1/Tel1- et Rad53-dépendante. Nos données préliminaires suggèrent ainsi que la capacité du complex Hir de réguler la répréssion transcriptionelle des gènes d'histones lors de la progression du cycle cellulaire normal et en réponse au dommage de l'ADN est médiée par la phosphorylation de Hpc2 par ces deux kinases. Enfin, ces deux études mettent en évidence l'importance de la spectrométrie de masse dans la caractérisation des sites de phosphorylation des protéines, nous permettant ainsi de comprendre plus précisement les mécanismes de régulation de l'assemblage de la chromatine et de la synthèse des histones. / Nucleosome assembly entails a controlled mechanism that is tightly coupled to DNA and histone synthesis during DNA replication and repair in S-phase. Importantly, this contributes to the prompt and carefully orchestrated assembly of newly replicated DNA into chromatin, which is essential for the maintenance of genomic integrity. This thesis describes the mass spectrometric characterization of proteins critical in the regulation of nucleosome assembly behind the replication fork and chromatin structure. More specifically, the phosphorylation of Chromatin Assembly Factor 1 (CAF-1), a nucleosome assembly factor that uniquely functions during replication-coupled de novo nucleosome assembly in S-phase and the Hir protein complex, a second nucleosome assembly factor that also contributes to the transcriptional regulation of histone genes during normal cell cycle progression and in response to DNA damage, was examined. We first demonstrated that characterization of protein phosphorylation by mass spectrometry (MS), which often relies on the separation of proteins by gel electrophoresis followed by silver staining for visualization, should be given careful considerations. In chapter 2, we report a potential pitfall in the interpretation of phosphorylation modifications due to the artifactual sulfation of serine, threonine and tyrosine residues caused by a specific reagent used during silver staining. Sulfation and phosphorylation both impart an 80 Da addition of these residues making them distinguishable only with MS systems offering high resolution and high mass accuracy capabilities. Chapter 3 and 4 present the MS characterization of in vivo phosphorylation occurring on CAF-1 and Hir proteins, respectively. We first demonstrated that Cac1, the largest subunit of CAF-1, is phosphorylated on several novel residues containing the consensus sequences recognized by either Cdc7-Dbf4 (DDK) or cyclin-dependent kinases(CDKs). These results have provided the first evidence that CAF-1 is regulated by these two kinases in vivo. The function of all identified Cac1 phosphorylation sites was then assessed. In vivo phenotypic studies showed that the specific phosphorylation of Ser-503, a Cac1 DDK-like site identified in our study, is essential for heterochromatin-mediated telomeric silencing. Cac1-Ser-503 did not appear to be required for other known functions of CAF-1, including DNA damage resistance and mitotic chromosom segregation, indicating that blocking Cac1 phosphorylation on Ser-503 sepcifically cripples CAF-1 function at telomeres. Next, biochemical purifications identified a physical interaction between CAF-1 and Cdc7-Dbf4. Consistent with this physical interaction data, in vitro kinase assay studies showed that Cdc7-Dbf4 specifically phosphorylates Cac1 Ser-503 thereby uncovering a novel role for Cdc7-Dbf4 in heterochromatin assembly and/or stability that is potentially mediated through CAF-1. Finally, MS analysis also showed that the Hpc2 subunit of the Hir protein complex is phosphorylated on several CDK- and DDK-like consensus sites. Furthermore, MS quantification of a specific phosphorylation site,Hpc2 Ser-330, was shown to be highly induced following the activation of the DNA damage checkpoint in response to DNA damage. We show that Hpc2 Ser-330 is phopshorylated by checkpoint kinases in a Mec1/Tel1- and Rad53-dependent manner. Our preliminary data suggest that the ability of the Hir protein complex to regulate the transcriptional repression of histone genes during normal cell cycle progression and in response to DNA damage is mediated through the regulated phosphorylation of Hpc2 by these kinases. Finally, these two studies highlight the importance of mass spectrometry in characterizing protein phosphorylation events, which has yielded novel insights into the regulation of chromatin assembly by CAF-1 and histone synthesis mediated by Hir proteins.
26

Study of histone H3 lysine 56 deacetylation in saccharomyces cerevisiae

Delgoshaie, Neda 04 1900 (has links)
No description available.

Page generated in 0.0478 seconds