• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • Tagged with
  • 15
  • 15
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers une optimisation du processus d'analyse en ligne de données 3D : cas des fouilles archéologiques

Rageul, Nicolas 13 April 2018 (has links)
L'archéologie est une discipline des sciences humaines dont l'objet d'étude est l'ensemble des vestiges matériels laissés par l'Homme (objets, bâtiments, infrastructures, paysages...). Une technique précise, la fouille, est employée afin de tirer toutes les informations possibles des sols et structures fouillés en tenant compte de la localisation exacte des objets découverts, de l'étude de la succession des différentes couches de terrain déblayé afin de pouvoir procéder à une datation stratigraphique. L'analyse d'une fouille archéologique demande souvent beaucoup d'efforts pour l'archéologue car, à ce jour, aucun système informatique n'a permis de clairement les aider dans l'analyse de leurs données. Ainsi, pour exploiter des données issues d'une fouille archéologique, nous avons identifié trois critères : la rapidité et la facilité d'utilisation, la possibilité de faire évoluer les données dans le système (les interprétations de l'archéologue suivant des heuristiques qui ne peuvent pas toujours être formalisées de façon absolue) et la visualisation tridimensionnelle. L'outil d'analyse en ligne de type SOLAP est optimisé pour une analyse interactive dite multidimensionnelle où les requêtes, même celles de types agrégatives sont simples et leurs réponses sont rapides. Reste donc à l'optimiser sur les deux autres critères retenus pour exploiter les données issues d'une fouille archéologique et qui marquent les principales faiblesses de l'outil : l'évolution des données pendant la phase d'analyse et l'intégration de la 3e dimension. Ce projet de maîtrise vise à apporter des nouveaux concepts permettant à un utilisateur de réviser ces données pendant sa phase d'analyse. Par la suite, un prototype appliqué à l'archéologie a été élaboré afin de vérifier simplement si les efforts pour réviser des données pouvaient être compatibles avec les efforts d'un outil d'analyse en ligne en conservant la fluidité d'exploration interactive. D'autre part, ce projet de maîtrise a permis d'étudier la faisabilité d'un SOLAP 3D et de soulever une interrogation sur la nécessité d'introduire la 3e dimension à un outil d'analyse en ligne.
2

Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'information changeant au cours du temps / Analysis of stationary and emerging properties in information flows changing over time

Kassab, Randa 11 May 2009 (has links)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps. L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples. / Many applications produce and receive continuous, unlimited, and high-speed data streams. This raises obvious problems of storage, treatment and analysis of data, which are only just beginning to be treated in the domain of data streams. On the one hand, it is a question of treating data streams on the fly without having to memorize all the data. On the other hand, it is also a question of analyzing, in a simultaneous and concurrent manner, the regularities inherent in the data stream as well as the novelties, exceptions, or changes occurring in this stream over time. The main contribution of this thesis concerns the development of a new machine learning approach - called ILoNDF - which is based on novelty detection principle. The learning of this model is, contrary to that of its former self, driven not only by the novelty part in the input data but also by the data itself. Thereby, ILoNDF can continuously extract new knowledge relating to the relative frequencies of the data and their variables. This makes it more robust against noise. Being operated in an on-line mode without repeated training, ILoNDF can further address the primary challenges for managing data streams. Firstly, we focus on the study of ILoNDF's behavior for one-class classification when dealing with high-dimensional noisy data. This study enabled us to highlight the pure learning capacities of ILoNDF with respect to the key classification methods suggested until now. Next, we are particularly involved in the adaptation of ILoNDF to the specific context of information filtering. Our goal is to set up user-oriented filtering strategies rather than system-oriented in following two types of directions. The first direction concerns user modeling relying on the model ILoNDF. This provides a new way of looking at user's need in terms of specificity, exhaustivity and contradictory profile-contributing criteria. These criteria go on to estimate the relative importance the user might attach to precision and recall. The filtering threshold can then be adjusted taking into account this knowledge about user's need. The second direction, complementary to the first one, concerns the refinement of ILoNDF's functionality in order to confer it the capacity of tracking drifting user's need over time. Finally, we consider the generalization of our previous work to the case where streaming data can be divided into multiple classes.
3

Developing a model and a language to identify and specify the integrity constraints in spatial datacubes

Salehi, Mehrdad January 2009 (has links)
La qualité des données dans les cubes de données spatiales est importante étant donné que ces données sont utilisées comme base pour la prise de décision dans les grandes organisations. En effet, une mauvaise qualité de données dans ces cubes pourrait nous conduire à une mauvaise prise de décision. Les contraintes d'intégrité jouent un rôle clé pour améliorer la cohérence logique de toute base de données, l'un des principaux éléments de la qualité des données. Différents modèles de cubes de données spatiales ont été proposés ces dernières années mais aucun n'inclut explicitement les contraintes d'intégrité. En conséquence, les contraintes d'intégrité de cubes de données spatiales sont traitées de façon non-systématique, pragmatique, ce qui rend inefficace le processus de vérification de la cohérence des données dans les cubes de données spatiales. Cette thèse fournit un cadre théorique pour identifier les contraintes d'intégrité dans les cubes de données spatiales ainsi qu'un langage formel pour les spécifier. Pour ce faire, nous avons d'abord proposé un modèle formel pour les cubes de données spatiales qui en décrit les différentes composantes. En nous basant sur ce modèle, nous avons ensuite identifié et catégorisé les différents types de contraintes d'intégrité dans les cubes de données spatiales. En outre, puisque les cubes de données spatiales contiennent typiquement à la fois des données spatiales et temporelles, nous avons proposé une classification des contraintes d'intégrité des bases de données traitant de l'espace et du temps. Ensuite, nous avons présenté un langage formel pour spécifier les contraintes d'intégrité des cubes de données spatiales. Ce langage est basé sur un langage naturel contrôlé et hybride avec des pictogrammes. Plusieurs exemples de contraintes d'intégrité des cubes de données spatiales sont définis en utilisant ce langage. Les designers de cubes de données spatiales (analystes) peuvent utiliser le cadre proposé pour identifier les contraintes d'intégrité et les spécifier au stade de la conception des cubes de données spatiales. D'autre part, le langage formel proposé pour spécifier des contraintes d'intégrité est proche de la façon dont les utilisateurs finaux expriment leurs contraintes d'intégrité. Par conséquent, en utilisant ce langage, les utilisateurs finaux peuvent vérifier et valider les contraintes d'intégrité définies par l'analyste au stade de la conception.
4

Infrastructure adaptable pour les entrepots de données

Benitez Guerrero, Edgard-Iván 26 September 2002 (has links) (PDF)
Un entrepôt de données est une collection de données historiqucs exploitées par les applications d'aide à la décision. Il centralise des données d'intérêts pour un groupe d'utilisateurs afin de rendre leur accès rapide, peu coûteux et efficace. Dans cette thèse, noue nous intéressons à l'évolution des entrepôts dédiée aux applications d'analyse inultidiinerisioriilelle. Voue proposons une infrastructure pour la construction de gestionnaires d'entrepôt autorisant la création et l'évolution d'entretrepôts de données. Un gestionnaire d'entrepôt autorise la création du shéma d'un entrepôt et fournit les moyens pour le faire évoluer. Il offre également des outils pour construire l'entrepôt à partir des données provenant de multiples sources hétérogènes et autonomes. Il se base sur un modèle de données multidimensionnelles, pivot permettant d'un côté la manipulation du schéma à un niveau abstrait, et d'un autre côté, la fusion de données hétérogènes. Nous avons spécifié un modèle de données utilisé pour la définition de schemas multidimensionnels. Nous proposons un ensemble de primitives d'évolution de schéma qui assurent la cohérence d'un tel schéma entre deux évolutions successives. Nous avons proposé MDL, un langage associé à notre modèle, qui offre des expressions pour créer et faire évoluer des schémas multidimensionnels. Pour valider notre approche, nous avons implanté un prototype de gestionnaire d'entrepôt. Il assure la création et l'évolution d'un entrepôt de données relationnelles. Ce gestionnaire, développé en Java, intègre des données au format XML provenant de sources hétérogènes.
5

Gestion et visualisation de données hétérogènes multidimensionnelles : application PLM à la neuroimagerie / Management and visualisation oh heterogeneous multidimensional data : PLM application to neuroimaging

Allanic, Marianne 17 December 2015 (has links)
La neuroimagerie est confrontée à des difficultés pour analyser et réutiliser la masse croissante de données hétérogènes qu’elle produit. La provenance des données est complexe – multi-sujets, multi-analyses, multi-temporalités – et ces données ne sont stockées que partiellement, limitant les possibilités d’études multimodales et longitudinales. En particulier, la connectivité fonctionnelle cérébrale est analysée pour comprendre comment les différentes zones du cerveau travaillent ensemble. Il est nécessaire de gérer les données acquises et traitées suivant plusieurs dimensions, telles que le temps d’acquisition, le temps entre les acquisitions ou encore les sujets et leurs caractéristiques. Cette thèse a pour objectif de permettre l’exploration de relations complexes entre données hétérogènes, ce qui se décline selon deux axes : (1) comment gérer les données et leur provenance, (2) comment visualiser les structures de données multidimensionnelles. L’apport de nos travaux s’articule autour de trois propositions qui sont présentées à l’issue d’un état de l’art sur les domaines de la gestion de données hétérogènes et de la visualisation de graphes. Le modèle de données BMI-LM (Bio-Medical Imaging – Lifecycle Management) structure la gestion des données de neuroimagerie en fonction des étapes d’une étude et prend en compte le caractère évolutif de la recherche grâce à l’association de classes spécifiques à des objets génériques. L’implémentation de ce modèle au sein d’un système PLM (Product Lifecycle Management) montre que les concepts développés depuis vingt ans par l’industrie manufacturière peuvent être réutilisés pour la gestion des données en neuroimagerie. Les GMD (Graphes Multidimensionnels Dynamiques) sont introduits pour représenter des relations complexes entre données qui évoluent suivant plusieurs dimensions, et le format JGEX (Json Graph EXchange) a été créé pour permettre le stockage et l’échange de GMD entre applications. La méthode OCL (Overview Constraint Layout) permet l’exploration visuelle et interactive de GMD. Elle repose sur la préservation partielle de la carte mentale de l’utilisateur et l’alternance de vues complètes et réduites des données. La méthode OCL est appliquée à l’étude de la connectivité fonctionnelle cérébrale au repos de 231 sujets représentées sous forme de GMD – les zones du cerveau sont représentées par les nœuds et les mesures de connectivité par les arêtes – en fonction de l’âge, du genre et de la latéralité : les GMD sont obtenus par l’application de chaînes de traitement sur des acquisitions IRM dans le système PLM. Les résultats montrent deux intérêts principaux à l’utilisation de la méthode OCL : (1) l’identification des tendances globales sur une ou plusieurs dimensions et (2) la mise en exergue des changements locaux entre états du GMD. / Neuroimaging domain is confronted with issues in analyzing and reusing the growing amount of heterogeneous data produced. Data provenance is complex – multi-subjects, multi-methods, multi-temporalities – and the data are only partially stored, restricting multimodal and longitudinal studies. Especially, functional brain connectivity is studied to understand how areas of the brain work together. Raw and derived imaging data must be properly managed according to several dimensions, such as acquisition time, time between two acquisitions or subjects and their characteristics. The objective of the thesis is to allow exploration of complex relationships between heterogeneous data, which is resolved in two parts : (1) how to manage data and provenance, (2) how to visualize structures of multidimensional data. The contribution follow a logical sequence of three propositions which are presented after a research survey in heterogeneous data management and graph visualization. The BMI-LM (Bio-Medical Imaging – Lifecycle Management) data model organizes the management of neuroimaging data according to the phases of a study and takes into account the scalability of research thanks to specific classes associated to generic objects. The application of this model into a PLM (Product Lifecycle Management) system shows that concepts developed twenty years ago for manufacturing industry can be reused to manage neuroimaging data. GMDs (Dynamic Multidimensional Graphs) are introduced to represent complex dynamic relationships of data, as well as JGEX (Json Graph EXchange) format that was created to store and exchange GMDs between software applications. OCL (Overview Constraint Layout) method allows interactive and visual exploration of GMDs. It is based on user’s mental map preservation and alternating of complete and reduced views of data. OCL method is applied to the study of functional brain connectivity at rest of 231 subjects that are represented by a GMD – the areas of the brain are the nodes and connectivity measures the edges – according to age, gender and laterality : GMDs are computed through processing workflow on MRI acquisitions into the PLM system. Results show two main benefits of using OCL method : (1) identification of global trends on one or many dimensions, and (2) highlights of local changes between GMD states.
6

Fouille de données complexes et logique floue : extraction de motifs à partir de bases de données multidimensionnelles

Laurent, Anne 27 April 2009 (has links) (PDF)
Ce mémoire décrit mes activités de recherche et d'animation de recherche depuis ma thèse, soutenue en 2002. Les travaux décrits ici ont été principalement menés au LIRMM (Université Montpellier 2, CNRS UMR 5506), au sein de l'équipe TATOO. Dans ce contexte, je me suis attachée à concilier des visions trop souvent vues comme divergentes au sein des communautés liées à la fouille de données complexes : gérer l'approximation (à la fois dans les données et dans les résultats produits), la fouille de données et les bases de données complexes et volumineuses, notamment les entrepôts de données. Plus précisément, mes travaux visent à montrer qu'il est possible de relever le défi jusqu'à présent non totalement solutionné d'extraire des connaissances exploitables par les experts non informaticiens à partir d'entrepôts de données, en prenant en compte au mieux les particularités de ce domaine. En particulier, j'ai porté d'une part une grande attention à exploiter la dimension temporelle des entrepôts et d'autre part à montrer autant que faire se peut que flou et passage à l'échelle ne sont pas des notions antagonistes. Dans cet objectif, j'ai mené, dirigé, encadré et valorisé à travers des collaborations scientifiques et industrielles des travaux dont je rapporte ici une synthèse.
7

Efficient Content-based Retrieval in Parallel Databases of Images

Manjarrez Sanchez, Jorge 26 October 2009 (has links) (PDF)
Cette thèse porte sur le traitement des requêtes par similarité sur les données de haute dimensionnalité, notamment multimédias, et, parmi elles, les images plus particulièrement. Ces requêtes, notamment celles des k plus proches voisins (kNN), posent des problèmes de calcul de par la nature des données elles-mêmes et de la taille de la base des données. Nous avons étudié leurs performances quand une méthode de partitionnement est appliquée sur la base de données pour obtenir et exploiter des classes. Nous avons proposé une taille et un nombre optimaux de ces classes pour que la requête puisse être traitée en temps optimal et avec une haute précision. Nous avons utilisé la recherche séquentielle comme base de référence. Ensuite nous avons proposé des méthodes de traitement de requêtes parallèles sur une grappe de machines. Pour cela, nous avons proposé des méthodes d'allocation des données pour la recherche efficace des kNN en parallèle. Nous proposons de même, un nombre réduit de noeuds sur la grappe de machines permettant néanmoins des temps de recherche sous-linéaires et optimaux vis-à-vis des classes déterminées précédemment. Nous avons utilisé des donnés synthétiques et réelles pour les validations pratiques. Dans les deux cas, nous avons pu constater des temps de réponse et une qualité des résultats supérieurs aux méthodes existantes, lesquelles, au-delà d'un faible nombre des dimensions, deviennent inefficaces.
8

Cubes Émergents pour l'analyse des renversements de tendances dans les bases de données multidimensionnelles

Nedjar, Sébastien 23 November 2009 (has links) (PDF)
Découvrir des renversements de tendances entre deux cubes de données offre aux utilisateurs une connaissance nouvelle et intéressante lors des fluctuations de l'univers réel modélisé : quelles sont les nouveautés ? Quelle tendance apparaît ou disparaît ? Nous introduisons le nouveau concept de Cube Émergent. Il capture les renversements de tendances en mettant en œuvre une contrainte d'émergence (conjonction de contrainte monotones et antimonotones). Les bordures, classiques en fouille de données, sont reprises pour le Cube Émergent. Dans un second temps, nous proposons un nouveau couple de bordures pour optimiser à la fois l'espace de stockage et le temps de calcul. Cette nouvelle représentation fournit une caractérisation simple de la taille du Cube Émergent aussi bien que des outils de classification et de navigation dans les cubes. La connexion entre les bordures classiques et celles proposées est formellement établie en utilisant le concept de cube transversal. Connaître la taille du Cube Émergent est d'un grand intérêt, en particulier pour ajuster au mieux la contrainte d'émergence sous-jacente. Cette problématique est traitée en étudiant une borne supérieure et en caractérisant la taille exacte du Cube Émergent. Deux stratégies sont proposées pour estimer rapidement cette taille : la première est basée sur une estimation analytique, sans accès à la base de données, la seconde s'appuie sur un comptage probabiliste utilisant les bordures proposées comme entrée de l'algorithme proche de l'optimal HYPERLOGLOG. Grâce à la particulière efficacité de cet algorithme, plusieurs itérations peuvent être réalisées pour calibrer au mieux la contrainte d'émergence. De plus, des nouvelles représentations réduites et sans perte d'information du Cube Émergent sont proposées en utilisant le concept de fermeture cubique.
9

Décomposition tensorielle de signaux luminescents émis par des biosenseurs bactériens pour l'identification de Systèmes Métaux-Bactéries / Tensor decomposition approach for identifying bacteria-metals systems

Caland, Fabrice 17 September 2013 (has links)
La disponibilité et la persistance à l'échelle locale des métaux lourds pourraient être critiques notamment pour l'usage futur des zones agricoles ou urbaines, au droit desquelles de nombreux sites industriels se sont installés dans le passé. La gestion de ces situations environnementales complexes nécessitent le développement de nouvelles méthodes d'analyse peu invasives (capteurs environnementaux), comme celles utilisant des biosenseurs bactériens, afin d'identifier et d'évaluer directement l'effet biologique et la disponibilité chimique des métaux. Ainsi dans ce travail de thèse, nous avons cherché à identifier, à l'aide d'outils mathématiques de l'algèbre multilinéaire, les réponses de senseurs bactériens fluorescents dans des conditions environnementales variées, qu'il s'agisse d'un stress engendré par la présence à forte dose d'un métal ou d'une carence nutritive engendrée par son absence. Cette identification est fondée sur l'analyse quantitative à l'échelle d'une population bactérienne de signaux multidimensionnels. Elle repose en particulier sur (i) l'acquisition de données spectrales (fluorescence) multi-variées sur des suspensions de biosenseurs multicolores interagissant avec des métaux et sur (ii) le développement d'algorithme de décomposition tensoriels. Les méthodes proposées, développées et utilisées dans ce travail s'efforcent d'identifier « sans a priori» a minima, la réponse fonctionnelle de biosenseurs sous différentes conditions environnementales, par des méthodes de décomposition de tenseurs sous contraintes des signaux spectraux observables. Elles tirent parti de la variabilité des réponses systémiques et permettent de déterminer les sources élémentaires identifiant le système et leur comportement en fonction des paramètres extérieurs. Elles sont inspirées des méthodes CP et PARALIND . L'avantage de ce type d'approche, par rapport aux approches classiques, est l'identification unique des réponses des biosenseurs sous de faibles contraintes. Le travail a consisté à développer des algorithmes efficaces de séparations de sources pour les signaux fluorescents émis par des senseurs bactériens, garantissant la séparabilité des sources fluorescentes et l'unicité de la décomposition. Le point original de la thèse est la prise en compte des contraintes liées à la physique des phénomènes analysés telles que (i) la parcimonie des coefficients de mélange ou la positivité des signaux source, afin de réduire au maximum l'usage d'a priori ou (ii) la détermination non empirique de l'ordre de la décomposition (nombre de sources). Cette posture a permis aussi d'améliorer l'identification en optimisant les mesures physiques par l'utilisation de spectres synchrones ou en apportant une diversité suffisante aux plans d'expériences. L'usage des spectres synchrones s'est avéré déterminant à la fois pour améliorer la séparation des sources de fluorescence, mais aussi pour augmenter le rapport signal sur bruit des biosenseurs les plus faibles. Cette méthode d'analyse spectrale originale permet d'élargir fortement la gamme chromatique des biosenseurs fluorescents multicolores utilisables simultanément. Enfin, une nouvelle méthode d'estimation de la concentration de polluants métalliques présents dans un échantillon à partir de la réponse spectrale d'un mélange de biosenseurs non-spécifiques a été développée / Availability and persistence of heavy metals could be critical for future use of agricultural or urban areas, on which many industrial sites have installed in the past. The management of these complex environmental situations requiring the development of new analytical methods minimally invasive, such as bacterial biosensors, to identify and directly assess the biological effects and the chemical availability of metals. The aims of this thesis was to identify the responses of fluorescent bacterial sensors various environmental conditions, using mathematical tools of algebra multi-linear, whether stress caused by the presence of high dose of a metal or a nutrient deficiency caused by his absence. This identification is based on quantitative analysis of multidimensional signals at the bacterial population-scale. It is based in particular on (i) the acquisition of multivariate spectral data on suspensions of multicolored biosensors interacting with metals and (ii) the development of algorithms for tensor decomposition. The proposed methods, developed and used in this study attempt to identify functional response of biosensors without \textsl{a priori} by decomposition of tensor containing the spectral signals. These methods take advantage of the variability of systemic responses and allow to determine the basic sources identifying the system and their behavior to external factors. They are inspired by the CP and PARALIND methods. The advantage of this approach, compared to conventional approaches, is the unique identification of the responses of biosensors at low constraints. The work was to develop efficient algorithms for the source separation of fluorescent signals emitted by bacterial sensors, ensuring the sources separability and the uniqueness of the decomposition. The original point of this thesis is the consideration of the physical constraints of analyzed phenomena such as (i) the sparsity of mixing coefficients or positivity of sources signals in order to minimize the use of a priori or (ii) the non-empirical determination of the order of decomposition (number of sources).This posture has also improved the identification optimizing physical measurements by the use of synchronous spectra or providing sufficient diversity in design of experiments. The use of synchronous spectra proved crucial both to improve the separation of fluorescent sources, but also to increase the signal to noise ratio of the lowest biosensors. This original method of spectral analysis can greatly expand the color range of multicolored fluorescent biosensors used simultaneously. Finally, a new method of estimating the concentration of metal pollutants present in a sample from the spectral response of a mixture of non-specific biosensor was developed
10

Trial design and analysis of endpoints in HIV vaccine trials / Schéma d’étude et analyses des données des essais vaccinaux du VIH

Richert, Laura 28 October 2013 (has links)
Des données complexes sont fréquentes dans les essais cliniques récents et nécessitent des méthodes statistiques adaptées. La recherche vaccinale du VIH est un exemple d’un domaine avec des données complexes et une absence de critères de jugement validés dans les essais précoces. Cette thèse d’Université concerne des recherches méthodologiques sur la conception et les aspects statistiques des essais cliniques vaccinaux du VIH, en particulier sur les critères de jugement d’immunogénicité et les schémas d’essai de phase I-II. A l’aide des données cytokiniques multiplex, nous illustrons les aspects méthodologiques spécifiques à une technique de mesure. Nous proposons ensuite des définitions de critères de jugement et des méthodes statistiques adéquates pour l'analyse des données d'immunogénicité multidimensionnelles. En particulier, nous montrons l’intérêt des scores multivariés non-paramétriques, permettant de résumer l’information à travers différents marqueurs d’immunogénicité et de faire des comparaisons inter- et intra-groupe. Dans l’objectif de contribuer à la conception méthodologique des nouveaux essais vaccinaux, nous présentons la construction d’un schéma d’essai optimisé pour le développement clinique précoce. En imbriquant les phases I et II d’évaluation clinique, ce schéma permet d’accélerer le développement de plusieurs stratégies vaccinales en parallèle. L’intégration d’une règle d’arrêt est proposée dans des perspectives fréquentistes et Bayesiennes. Les méthodes mises en avant dans cette thèse sont transposables à d’autres domaines d’application avec des données complexes, telle que les données d’imagerie ou les essais d’autres immunothérapies. / Complex data are frequently recored in recent clinical trials and require the use of appropriate statistical methods. HIV vaccine research is an example of a domaine with complex data and a lack of validated endpoints for early-stage clinical trials. This thesis concerns methodological research with regards to the design and analysis aspects of HIV vaccine trials, in particular the definition of immunogenicity endpoints and phase I-II trial designs. Using cytokine multiplex data, we illustrate the methodological aspects specific to a given assay technique. We then propose endpoint definitions and statistical methods appropriate for the analysis of multidimensional immunogenicity data. We show in particular the value of non-parametric multivariate scores, which allow for summarizing information across different immunogenicity markers and for making statistical comparisons between and within groups. In the aim of contributing to the design of new vaccine trials, we present the construction of an optimized early-stage HIV vaccine design. Combining phase I and II assessments, the proposed design allows for accelerating the clinical development of several vaccine strategies in parallel. The integration of a stopping rule is proposed from both a frequentist and a Bayesian perspective. The methods advocated in this thesis are transposable to other research domains with complex data, such as imaging data or trials of other immune therapies.

Page generated in 0.2259 seconds