Spelling suggestions: "subject:"doseresponse 1relationship"" "subject:"doseresponse 2relationship""
61 |
Dieldrin Induces Cytosolic [3H]7, 12-Dimethylbenz[a]Anthracene Binding but Not Multidrug Resistance Proteins in Rainbow Trout LiverCurtis, L. R., Hemmer, M. J., Courtney, L A. 01 June 2000 (has links)
Previously it was demonstrated that biliary excretion of a single dose of [14C]dieldrin or [3H]7, 12-dimethylbenz/alanthracene (DMBA) was stimulated up to 700% and 300%, respectively, in rainbow trout fed 0.3-0.4 mg dieldrin/kg/d for 9-12 wk. This was not explained by increased activities of hepatic microsomal xenobiotic-metabolizing enzymes or increased amounts of any of six cytochrome P-450 isozymes quantitated by Western blots. It was hypothesized that stimulated excretion was explained by induction of (1) cytosolic binding proteins that facilitated intracellular trafficking of DMBA to sites of metabolism, or (2) ATP-dependent proteins that transport xenobiotic metabolites from liver to bile. Binding of 15 and 60 nmol [3H]DMBA/mg protein increased about 200% in hepatic cytosol from dieldrin-fed fish. A 50-fold molar excess of unlabeled DMBA reduced binding of 15 nmol [3H]DMBA/mg protein (nonspecific binding) by the same amount in cytosol from control and dieldrin-fed fish, indicating that dieldrin induced specific binding. Liver sections from control and dieldrin-fed fish were treated with multidrug resistance (MDR) protein monoclonal antibodies C494, C219, and JSB-1, and polyclonal antibody MDR Ab-1. There were no marked differences in optical densities of immunohistochemical staining near bile canaliculi of control and dieldrin-fed fish. Induction of xenobiotic binding capacity in cytosol of dieldrin-fed rainbow trout at least partially explained altered DMBA disposition in fish pretreated with this cyclodiene insecticide.
|
62 |
Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membraneXue, J., He, M., Niu, Y., Liu, H., Crawford, A., Coates, Philip D., Chen, D., Shi, R., Zhang, L. January 2014 (has links)
No / Infection is the major reason of GTR/GBR membrane failure in clinical application. In this work, we developed GTR/GBR nanofiber membranes with localized drug delivery function to prevent infection. Metronidazole (MNA), an antibiotic, was successfully incorporated into electrospun polycaprolactone (PCL) nanofibers at different concentrations (0, 1, 5, 10, 20, 30, and 40 wt% polymer). To obtain the optimum anti-infection membrane, we systematically investigated the physical-chemical and mechanical properties of the nanofiber membranes with different drug contents. The interaction between PCL and MNA was identified by molecular dynamics simulation. MNA released in a controlled, sustained manner over 2 weeks and the antibacterial activity of the released MNA remained. The incorporation of MNA improved the hydrophilicity and in vitro biodegradation rate of PCL nanofibers. The nanofiber membranes allowed cells to adhere to and proliferate on them and showed excellent barrier function. The membrane loaded with 30% MNA had the best comprehensive properties. Analysis of subcutaneous implants demonstrated that MNA-loaded nanofibers evoked a less severe inflammatory response than pure PCL nanofibers. These results demonstrate the potential of MNA-loaded nanofiber membranes as GTR/GBR membrane with antibacterial and anti-inflammatory function for extensive biomedical applications.
|
63 |
Childhood Adversity and Adult Work Life : Insights into job satisfaction and tenure in the UK Biobank cohortLillström Stenroos, Kevin January 2024 (has links)
Aim: This study aimed to address an important gap in the current state of the literature on adverse childhood experiences and work-related outcomes in adulthood. The research investigates whether childhood adversity is associated with job satisfaction and tenure in adulthood and explores potential mediating factors underlying the association. Method: Utilizing a cross-sectional design, this research draws upon data from the UK Biobank, a large population-based cohort study. The study sample comprised 12,391 participants with an average age of 54.72 years (SD = 5.95), and 52.38% of participants were females, and 90.37% were white. Furthermore, 25.91% had experienced at least one adversity while 1.59% had experienced three or more. Results: Using logistic and gamma regression models adjusted for age, sex, education, and household income, the results confirmed the hypotheses that early adversity is negatively associated with both job satisfaction and tenure in a dose-response fashion. Moreover, neuroticism, social support, avoidant coping, perception of life meaningfulness, and health satisfaction were identified as potential underlying mechanisms. Only neuroticism and social support did not mediate the relationship between adverse childhood experiences and tenure. Conclusion: The findings of this study emphasize the long-term relationships between childhood adversity and work-related outcomes in adulthood and highlights the importance of trauma- informed workplaces to support individuals that has a history of childhood adversity. / Syfte: Denna studie syftade till att undersöka en viktig lucka i den nuvarande forskningen gällande traumatiska barndomsupplevelser och utfall i arbetslivet. De forskningsfrågor som formar denna studie fokuserar på hur barndomstrauman påverkar arbetstillfredsställelse samt anställningstid och huruvida det finns några medierande mekanismer. Metod: Studien använde sig av en tvärsnittsdesign med data från UK Biobank som är en populationsbaserad kohortstudie. Medelåldern för urvalet (12,391 deltagare) i studien var 54,72 år (SD = 5,95), 52,38% av deltagarna var kvinnor, och 90,37% var vita. Dessutom hade 25,91% upplevt minst en traumatisk upplevelse medan endast 1,59% hade upplevt tre eller fler. Resultat: Det användes bland annat en logistisk och gamma regressionsmodell justerade för ålder, kön, utbildning och hushållsinkomst för att bekräfta hypoteserna om att tidiga barndomstrauman är negativt förknippade med arbetstillfredsställelse och anställningstid likt ett dos-responsförhållande. Dessutom visade sig neuroticism, socialt stöd, undvikande coping, uppfattning om livets meningsfullhet och hälsotillfredsställelse ha ett signifikant samband som underliggande mekanismer. Neuroticism och socialt stöd medierade däremot inte förhållandet mellan traumatiska barndomsupplevelser och anställningstid. Med anledning av detta blev hypoteserna om dessa medierande mekanismerna endast delvis bekräftade. Slutsats: Studiens resultat belyser den negativa inverkan barndomstrauman har på arbetsrelaterade utfall samt betonar vikten av att utforma arbetsplatser med ett traumamedvetet bemötande för att stödja individer som har en historia av traumatiska upplevelser.
|
64 |
In vitro partial-body dose assessment using a radiation responsive protein biomarker /Leidel, Jason M. January 2005 (has links) (PDF)
Thesis (M.S.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
|
65 |
Investigation des mécanismes qui sous-tendent les effets cliniques de la manipulation vertébrale dans la prise en charge des douleurs chroniques non spécifiques au rachis: rôle des réponses neuromécaniques et de la rigidité vertébralePagé, Isabelle 06 1900 (has links)
No description available.
|
66 |
Indirect Consequences of Exposure to Radiation in Doses Relevant to Nuclear Incidents and Accidents / INDIRECT CONSEQUENCES OF NUCLEAR INCIDENTS/ACCIDENTSFernando, Chandula 11 1900 (has links)
At low doses, relevant to nuclear incidents and accidental releases of radioactivity, the detriment of radiation extends beyond direct effects. This thesis investigates genomic instability, a subclass of non-targeted effects where damage and lethality is transmitted vertically and expressed in the progeny of cells many generations after initial radiation exposure. Through a series of experiments using clonogenic assay of human and fish cell culture, studies described in this thesis describe lethal mutations, hyper radiosensitivity and increased radioresistance – processes involving repair mechanisms that dictate survival in cells exposed to low doses. Further study investigates the difference in the relative biological effect of alpha particle radiation compared to what is expected at high doses. Results demonstrate increased radioresistance in a human cell line while also revealing increased lethality in a fish cell line confirming the need for consideration of dose-dependence as well as variance in behaviors of different cell lines and species. It is hoped the conclusions of this thesis will inspire the creation of protocols with greater attention to the indirect consequences of exposure to radiation at doses relevant to nuclear incidents and accidents. / Thesis / Master of Science (MSc)
|
67 |
The microtubule depolymerizing agent CYT997 causes extensive ablation of tumor vasculature in vivoBurns, C.J., Fantino, E., Powell, A.K., Shnyder, Steven, Cooper, Patricia A., Nelson, S., Christophi, C., Malcontenti-Wilson, C., Dubljevic, V., Harte, M.F., Joffe, M., Phillips, I.D., Segal, D., Wilks, A.F., Smith, G.D. January 2011 (has links)
No / The orally active microtubule-disrupting agent (S)-1-ethyl-3-(2-methoxy-4-(5-methyl-4-((1-(pyridin-3-yl)butyl)amino)pyrimidin-2- yl)phenyl)urea (CYT997), reported previously by us (Bioorg Med Chem Lett 19:4639-4642, 2009; Mol Cancer Ther 8:3036-3045, 2009), is potently cytotoxic to a variety of cancer cell lines in vitro and shows antitumor activity in vivo. In addition to its cytotoxic activity, CYT997 possesses antivascular effects on tumor vasculature. To further characterize the vascular disrupting activity of CYT997 in terms of dose and temporal effects, we studied the activity of the compound on endothelial cells in vitro and on tumor blood flow in vivo by using a variety of techniques. In vitro, CYT997 is shown to potently inhibit the proliferation of vascular endothelial growth factor-stimulated human umbilical vein endothelial cells (IC(50) 3.7 +/- 1.8 nM) and cause significant morphological changes at 100 nM, including membrane blebbing. Using the method of corrosion casting visualized with scanning electron microscopy, a single dose of CYT997 (7.5 mg/kg i.p.) in a metastatic cancer model was shown to cause destruction of tumor microvasculature in metastatic lesions. Furthermore, repeat dosing of CYT997 at 10 mg/kg and above (intraperitoneally, b.i.d.) was shown to effectively inhibit development of liver metastases. The time and dose dependence of the antivascular effects were studied in a DLD-1 colon adenocarcinoma xenograft model using the fluorescent dye Hoechst 33342. CYT997 demonstrated rapid and dose-dependent vascular shutdown, which persists for more than 24 h after a single oral dose. Together, the data demonstrate that CYT997 possesses potent antivascular activity and support continuing development of this promising compound.
|
68 |
Resveratrol modulates interleukin-1beta-induced phosphatidylinositol 3-kinase and nuclear factor kappaB signaling pathways in human tenocytesBusch, F., Mobasheri, A., Shayan, P., Lueders, C., Stahlmann, R., Shakibaei, M. January 2012 (has links)
No / Resveratrol, an activator of histone deacetylase Sirt-1, has been proposed to have beneficial health effects due to its antioxidant and anti-inflammatory properties. However, the mechanisms underlying the anti-inflammatory effects of resveratrol and the intracellular signaling pathways involved are poorly understood. An in vitro model of human tenocytes was used to examine the mechanism of resveratrol action on IL-1beta-mediated inflammatory signaling. Resveratrol suppressed IL-1beta-induced activation of NF-kappaB and PI3K in a dose- and time-dependent manner. Treatment with resveratrol enhanced the production of matrix components collagen types I and III, tenomodulin, and tenogenic transcription factor scleraxis, whereas it inhibited gene products involved in inflammation and apoptosis. IL-1beta-induced NF-kappaB and PI3K activation was inhibited by resveratrol or the inhibitors of PI3K (wortmannin), c-Src (PP1), and Akt (SH-5) through inhibition of IkappaB kinase, IkappaBalpha phosphorylation, and inhibition of nuclear translocation of NF-kappaB, suggesting that PI3K signaling pathway may be one of the signaling pathways inhibited by resveratrol to abrogate NF-kappaB activation. Inhibition of PI3K by wortmannin attenuated IL-1beta-induced Akt and p65 acetylation, suggesting that p65 is a downstream component of PI3K/Akt in these responses. The modulatory effects of resveratrol on IL-1beta-induced activation of NF-kappaB and PI3K were found to be mediated at least in part by the association between Sirt-1 and scleraxis and deacetylation of NF-kappaB and PI3K. Overall, these results demonstrate that activated Sirt-1 plays an essential role in the anti-inflammatory effects of resveratrol and this may be mediated at least in part through inhibition/deacetylation of PI3K and NF-kappaB.
|
69 |
Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritisShakibaei, M., Csaki, C., Nebrich, S., Mobasheri, A. January 2008 (has links)
No / Osteoarthritis is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective on pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Resveratrol is a phytoalexin stilbene produced naturally by plants including red grapes, peanuts and various berries. Recent research in various cell models has demonstrated that resveratrol is safe and has potent anti-inflammatory properties. However, its potential for treating arthritic conditions has not been explored. In this study we provide experimental evidence that resveratrol inhibits the expression of VEGF, MMP-3, MMP-9 and COX-2 in human articular chondrocytes stimulated with the pro-inflammatory cytokine IL-1beta. Since these gene products are regulated by the transcription factor NF-kappaB, we investigated the effects of resveratrol on IL-1beta-induced NF-kappaB signaling pathway. Resveratrol, like N-Ac-Leu-Leu-norleucinal (ALLN) suppressed IL-1beta-induced proteasome function and the degradation of IkappaBalpha (an inhibitor of NF-kappaB) without affecting IkappaBalpha kinase activation, IkappaBalpha-phosphorylation or IkappaBalpha-ubiquitination which suppressed nuclear translocation of the p65 subunit of NF-kappaB and its phosphorylation. Furthermore, we observed that resveratrol as well as ALLN inhibited IL-1beta-induced apoptosis, caspase-3 activation and PARP cleavage in human articular chondrocytes. In summary, our results suggest that resveratrol suppresses apoptosis and inflammatory signaling through its actions on the NF-kappaB pathway in human chondrocytes. We propose that resveratrol should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.
|
70 |
The dual-acting chemotherapeutic agent Alchemix induces cell death independently of ATM and p53Thomas, A., Perry, T., Berhane, S., Oldreive, C., Zlatanou, A., Williams, L.R., Weston, V.J., Stankovic, T., Kearns, P., Pors, Klaus, Grand, R.J., Stewart, G.S. 06 January 2015 (has links)
Yes / Topoisomerase inhibitors are in common use as chemotherapeutic agents although they can display reduced efficacy in chemotherapy-resistant tumours, which have inactivated DNA damage response (DDR) genes, such as ATM and TP53. Here, we characterise the cellular response to the dual-acting agent, Alchemix (ALX), which is a modified anthraquinone that functions as a topoisomerase inhibitor as well as an alkylating agent. We show that ALX induces a robust DDR at nano-molar concentrations and this is mediated primarily through ATR- and DNA-PK- but not ATM-dependent pathways, despite DNA double strand breaks being generated after prolonged exposure to the drug. Interestingly, exposure of epithelial tumour cell lines to ALX in vitro resulted in potent activation of the G2/M checkpoint, which after a prolonged arrest, was bypassed allowing cells to progress into mitosis where they ultimately died by mitotic catastrophe. We also observed effective killing of lymphoid tumour cell lines in vitro following exposure to ALX, although, in contrast, this tended to occur via activation of a p53-independent apoptotic pathway. Lastly, we validate the effectiveness of ALX as a chemotherapeutic agent in vivo by demonstrating its ability to cause a significant reduction in tumour cell growth, irrespective of TP53 status, using a mouse leukaemia xenograft model. Taken together, these data demonstrate that ALX, through its dual action as an alkylating agent and topoisomerase inhibitor, represents a novel anti-cancer agent that could be potentially used clinically to treat refractory or relapsed tumours, particularly those harbouring mutations in DDR genes.
|
Page generated in 0.0857 seconds