Spelling suggestions: "subject:"dotierung"" "subject:"kotierung""
61 |
Herstellung und Charakterisierung von Feldeffekttransistoren mit epitaktischem GraphenWehrfritz, Peter 17 July 2015 (has links) (PDF)
Als Graphen bezeichnet man eine einzelne freistehende Lage des Schichtkristalls Graphit. Im Gegensatz zur mechanischen Isolation von Graphit bietet die Züchtung auf Siliziumkarbid eine Methode zur großflächigen Herstellung von Graphen. Aufgrund der besonderen physikalischen Eigenschaften werden für Graphen viele verschieden Einsatzmöglichkeiten in diversen Bereichen prognostiziert. Mit seiner hohen Ladungsträgerbeweglichkeit ist Graphen besonders als Kanalmaterial für Feldeffekttransistoren (FET) interessant. Allerdings muss hierfür unter anderem ein geeignetes FET-Isolatormaterial gefunden werden.
In dieser Arbeit wird eine detaillierte, theoretische Beschreibung der Graphen-FETs vorgestellt, die es erlaubt die steuerspannungsabhängige Hall-Konstante zu berechnen. Mit der dadurch möglichen Analyse können wichtige Kenngrößen, wie z. B. die Grenzflächenzustandsdichte des Materialsystems bestimmt werden. Außerdem wurden zwei Methoden zur Isolatorabscheidung auf Graphen untersucht. Siliziumnitrid, welches mittels plasmaangeregter Gasphasenabscheidung aufgetragen wurde, zeichnet sich durch seine n-dotierende Eigenschaft aus. Damit ist es vor allem für quasi-freistehendes Graphen auf Siliziumkarbid interessant. Bei der zweiten Methode handelt es sich um einen atomaren Schichtabscheidungsprozess, der ohne eine Saatschicht auskommt. An beiden Graphen- Isolator-Kombinationen wurde die neue Charakterisierung mittels der Hall-Datenanalyse angewandt.
|
62 |
Polarization Doping and Work Function of Epitaxial Graphene on Silicon CarbideMammadov, Samir 06 October 2020 (has links)
Graphen ist eine einatomar dünne Schicht von Kohlenstoffatomen mit besonderen elektronischen Eigenschaften. Epitaktisches Wachstum von Graphen auf der Silizium-terminierten Oberfläche von Siliziumkarbid (SiC) wird weithin als eine der geeignetsten Methoden zur Herstellung von großflächigem Graphen für elektronische Anwendungen angesehen.
In dieser Arbeit werden verschiedene Dotierungsmechanismen von Graphen auf SiC theoretisch beschrieben und experimentell untersucht. Auf der Silizium-terminierten SiC-Oberfläche gewachsenes Graphen besitzt einen Überschuss an Elektronen (n-Dotierung). Wird die SiC/Graphen-Grenzfläche mit Wasserstoff passiviert und das Graphen vom Substrat entkoppelt, liegt dagegen Löcherleitung vor (p-Dotierung). Die p-Dotierung von quasifreistehendem Graphen (QFG) auf hexagonalem SiC wird durch die spontane Polarisation des Substrats erklärt. Dieser Mechanismus basiert auf einer Volumeneigenschaft von SiC, die bei jeden hexagonalem Polytyp des Materials vorhanden und unabhängig von Einzelheiten der Grenzflächenbildung ist. Die n-Dotierung des epitaktischen Graphens (EG) wird durch Grenzflächenzustände erklärt, die die Polarisationsdotierung überkompensieren.
Die Austrittsarbeit und elektronische Struktur von EG sowie QFG werden ebenfalls untersucht. Es wird beobachtet, dass die Austrittsarbeit gegen den Wert von Graphit konvergiert, wenn die Anzahl der Graphenschichten erhöht wird. Außerdem, Messungen der Oberflächenphotospannung werden im Zusammenhang mit verschiedenen Rekombinationsraten an der Grenzfläche von EG und QFG diskutiert.
|
63 |
Micro- and tip-enhanced Raman spectroscopy of single-wall carbon nanotubes: from material studies to device applicationsKalbacova, Jana 21 December 2018 (has links)
Einwandige Kohlenstoffnanoröhrchen wurden aufgrund ihrer einzigartigen elektrischen, mechanischen und thermischen Eigenschaften 1991 in den Fokus der Forschung gerückt. In dieser Dissertation wird gezeigt, dass Ramanspektroskopie eine der besten Methoden ist, um die unterschiedlichen Eigenschaften der Nanoröhrchen wie ihren elektrischen Charakter (halbleitend oder metallisch), ihren Durchmesser, die Chiralität, Defekte oder auch Dotierung zu untersuchen. Die Charakterisierung dieser Eigenschaften wird sowohl für das reine Material als auch im elektrischen Bauteil, in diesem Fall einem Feldeffekttransistor, durchgeführt.
Der erste Teil der Arbeit vermittelt einen Überblick und gibt eine Einführung in Ramanspektroskopie und in die Struktur von Kohlenstoffnanoröhrchen. Es wird erklärt, welche Eigenschaften speziell mit Hilfe von Position und Intensität der Raman-Modi untersucht werden können und welche Aussagen über die Eigenschaften getroffen werden können. Im experimentellen Teil der Arbeit wurde eine Methode entwickelt, die eine rückstandslose Abscheidung von Dünnschichten aus Kohlenstoffnanoröhrchen ermöglicht. Die Quantifizierung von Defekten wurde durch die in den untersuchten Proben vorhandenen metallischen und halbleitenden Kohlenstoff-Nanoröhrchen ermöglicht. Mittels spitzenverstärkter Ramanspektroskopie wurden außerdem Defekte mit hoher Ortsauflösung (unterhalb von 10 nm) an einzelnen Nanoröhrchen charakterisiert. Der letzte Teil widmet sich den Eigenschaften in elektrische Bauteile, speziell Feldeffekttransistoren, die integrierten Kohlenstoffnanoröhrchen.:Bibliographische Beschreibung 3
Table of Contents 5
1 Introduction 7
2 Background 9
2.1 Structure of carbon nanotubes 9
2.2 Raman spectroscopy basics 10
2.3 Raman spectroscopy on graphene 14
2.4 Raman spectroscopy on carbon nanotubes 16
2.4.1 First-order Raman bands 18
2.4.2 Second-order Raman bands 20
2.5 How to analyze Raman spectra of single-wall carbon nanotubes 21
2.5.1 Diameter and chirality identification 22
2.5.2 Defect characterization 23
2.5.3 Doping and its connection to defects 25
2.5.4 Other effects that can cause frequency shifts 27
2.6 Tip-enhanced Raman spectroscopy 27
2.6.1 TERS experimental requirements 30
2.6.2 Tip and the signal enhancement 30
2.6.3 Brief summary of TERS on single-wall carbon nanotubes 31
3 Materials and Methods 33
3.1 Raman spectroscopy 33
3.2 Ion beam irradiation 34
3.3 SWCNT samples 35
3.4 SWCNT thin film preparation by vacuum filtration 36
3.5 Field effect transistor fabrication and electrical characterization 37
3.6 Tip-enhanced Raman spectroscopy 39
3.6.1 Preparation of the TERS tips 39
3.6.2 Instrumentation 39
3.6.3 SWCNT sample preparation 40
4 Preparation of carbon nanotube thin films 41
4.1 Removal of SDS 42
4.2 Removal of the density gradient medium 43
4.3 Summary 44
5 Quantifying defects in single-wall carbon nanotubes 45
5.1 Parameters of the defect creation 46
5.2 Reference measurement on ion irradiated graphite 47
5.3 Qualitative description of SWCNT defect development 48
5.3.1 Quantitative analysis of the SWCNT defects 57
5.3.2 Summary 59
6 Raman spectroscopy applied to investigate carbon nanotube transistors 61
6.1 Effect of chemical and thermal cleaning of SWCNTs 61
6.2 Effect of temperature and doping on SWCNTs in a Field-effect transistor 65
6.2.1 Investigation of temperature effect 66
6.2.2 In operando CNT-FET Raman spectroscopy measurement 67
6.3 Summary 71
7 TERS on SWCNTs 73
7.1 Preparation of TERS tips 73
7.1.1 Corrosion protection for silver TERS probes 73
7.2 Spatial resolution 76
7.3 Raman spectra of an individual nanotube at the nanoscale 77
7.4 Summary 81
8 Conclusions 83
References 85
Acknowledgement 97
Selbstständigkeitserklärung 99
Lebenslauf 101
Publication list 103
|
64 |
Herstellung und Charakterisierung von Feldeffekttransistoren mit epitaktischem GraphenWehrfritz, Peter 01 July 2015 (has links)
Als Graphen bezeichnet man eine einzelne freistehende Lage des Schichtkristalls Graphit. Im Gegensatz zur mechanischen Isolation von Graphit bietet die Züchtung auf Siliziumkarbid eine Methode zur großflächigen Herstellung von Graphen. Aufgrund der besonderen physikalischen Eigenschaften werden für Graphen viele verschieden Einsatzmöglichkeiten in diversen Bereichen prognostiziert. Mit seiner hohen Ladungsträgerbeweglichkeit ist Graphen besonders als Kanalmaterial für Feldeffekttransistoren (FET) interessant. Allerdings muss hierfür unter anderem ein geeignetes FET-Isolatormaterial gefunden werden.
In dieser Arbeit wird eine detaillierte, theoretische Beschreibung der Graphen-FETs vorgestellt, die es erlaubt die steuerspannungsabhängige Hall-Konstante zu berechnen. Mit der dadurch möglichen Analyse können wichtige Kenngrößen, wie z. B. die Grenzflächenzustandsdichte des Materialsystems bestimmt werden. Außerdem wurden zwei Methoden zur Isolatorabscheidung auf Graphen untersucht. Siliziumnitrid, welches mittels plasmaangeregter Gasphasenabscheidung aufgetragen wurde, zeichnet sich durch seine n-dotierende Eigenschaft aus. Damit ist es vor allem für quasi-freistehendes Graphen auf Siliziumkarbid interessant. Bei der zweiten Methode handelt es sich um einen atomaren Schichtabscheidungsprozess, der ohne eine Saatschicht auskommt. An beiden Graphen- Isolator-Kombinationen wurde die neue Charakterisierung mittels der Hall-Datenanalyse angewandt.:1 Einleitung
2 Graphen
3 Methoden
4 Die Hall-Konstante von Graphen
5 Siliziumnitrid als Dielektrikum für Graphentransistoren
6 Aluminiumoxid auf epitaktischem Graphen
7 Zusammenfassung
A Anhang
|
65 |
Oberflächenanalytische Untersuchungen von Segregationseffekten an dotierten oxidischen Feinstpulvern und EinkristallenDobler, Dorota 17 October 2002 (has links)
Reine und dotierte SnO2 Feinstpulver und Einkristalle wurden mit verschiedenen Methoden hergestellt. Die Abhängigkeit der Eigenschaften von der Dotierungsart und der Dotierungskonzentration wurde untersucht. Die Dotierung mit fünfwertigen Elementen (Sb, Nb) führt zur Erniedrigung des spezifischen elektrischen Widerstandes und die Dotierung mit dreiwertigen Elementen (z.B. In) zu seiner Erhöhung. An den dotierten Materialien kann mittels XPS eine Segregationsschicht nachgewiesen werden. Der Umfang dieser Schicht ist abhängig sowohl von dem Dotierungselement, als auch von den Herstellungsbedingungen (z.B. Temperatur und Temperungszeit). Für die Pulver wird, im Gegensatz zu den Einkristallen, kein thermodynamisches Gleichgewicht für Segregationsprozess im untersuchten Zeitfenster gefunden. In der vorliegenden Arbeit wird ein Model vorgestellt, dass es erlaubt, die Dicke der Segregationsschicht, als auch der verbleibenden Volumenkonzentration der Dotierungselement im SnO2 Kristallit zu berechnen. Die Volumenkonzentration beträgt in Abhängigkeit von der Dotierungsart und Temperatur bis zu 70% der gesamten Dotierungskonzentration. Die sich ausbildende Segregationsschicht erreicht einen Bedeckungsgrad von bis zu einer Monolage. Die Aktivierungsenergie der Diffusion, sowie die freie Enthalpie des Segregationsprozesses können für die hier untersuchten Dotierungselemente in SnO2 bestimmt werden.
|
66 |
Infrarot-optische, elektrische und strukturelle Charakteristika spektralselektiver Funktionsschichten auf der Basis dotierter Metalloxide / Infrared-optical, electrical and structural characteristics of spectrally selective functional coatings based on doped metal oxidesRydzek, Matthias January 2012 (has links) (PDF)
Optisch transparente und elektrisch leitfähige Funktionsschichten auf der Basis dotierter Metalloxid-Halbleiter spielen eine bedeutende Rolle als wärmestrahlungsreflektierende Schichten in der modernen Architektur. Über die im Material vorhandenen freien Ladungsträger wird eine kollektive Anregung im infraroten Spektralbereich ermöglicht, die zu einem Anstieg der Reflektivität der Metalloxidschicht führt. Dies geht einher mit einer Reduktion der Wärmeabstrahlung der Funktionsschicht. Die Motivation der vorliegenden Dissertation lag in der Herstellung, sowie in einer umfassenden Analyse der infrarot-optischen, elektrischen und strukturellen Charakteristika von nasschemisch abgeschiedenen Funktionsschichten auf Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid. Die Prämisse war hierbei, dass die Funktionsschichten einen möglichst hohen Reflexionsgrad, respektive einen geringen thermischen Emissionsgrad im infraroten Spektralbereich aufweisen. Im Rahmen der Arbeit wurden deshalb vorrangig die Einflüsse der Sol-Parameter und der Art der Probenpräparation auf die infrarot-optischen Schichteigenschaften hin untersucht. Hierbei hat sich gezeigt, dass es verschiedene Möglichkeiten gibt, die Eigenschaften der Funktionsschichten im infraroten Spektralbereich zu beeinflussen. Dies kann einerseits bereits bei der Herstellung der Beschichtungslösungen über eine Variation von Parametern wie dem Grad der Dotierung bzw. der Konzentration des Sols erfolgen. Andererseits lassen sich gewünschte infrarot-optische Schichteigenschaften direkt über eine Anpassung der Kristallisationstemperaturen unter Zuhilfenahme geeigneter oxidierender und reduzierender Prozessgase einstellen. Im Verlauf der Optimierung der Probenpräparation konnte zudem gezeigt werden, dass eine Variation der Anzahl der Funktionsschichten und die damit verbundene Veränderung der Schichtdicke maßgebliche Einflüsse auf die infrarot-optischen Eigenschaften hat. Die umfassende optische Charakterisierung der optimierten Proben vom UV über den sichtbaren Spektralbereich bis hin zum IR ergab, dass der Gesamtemissionsgrad eines Glassubstrats durch die Aufbringung eines Mehrschichtsystems deutlich gesenkt werden kann, wobei sich die visuelle Transparenz nur geringfügig ändert. Im Falle des verwendeten Indium-Zinn-Oxids genügt eine vierfache Beschichtung mit einer Dicke von rund 450 nm, um den Emissionsgrad von unbeschichtetem Glas (0.89) auf unter 0.20 zu senken, wobei die visuelle Transparenz mit 0.85 nur um rund 6 % abnimmt. Bei Aluminium-Zink-Oxid ergibt sich ein Optimum mit einer rund 1 µm dicken Beschichtung, bestehend aus 11 Einzelschichten, die den Emissionsgrad der Oberfläche auf unter 0.40 senkt. Die optische Transparenz liegt hierbei mit 0.88 nur geringfügig unter dem unbeschichteten Glas mit einem Wert von 0.91. Neben der ausführlichen Charakterisierung der Einflüsse auf die IR-optischen Schichteigenschaften lag der Fokus der Arbeit auf der Analyse der strukturellen und elektrischen Eigenschaften der optimierten Proben. Mittels REM- und AFM-Aufnahmen konnten Einblicke in die Schichtstruktur und Oberflächenbeschaffenheit der erzeugten Funktionsschichten gewonnen werden. Es hat sich gezeigt, dass bedingt durch dicht beieinanderliegende Kristallite eine geringe Porosität innerhalb der Funktionsschicht entsteht, wodurch eine relativ hohe elektrische Leitfähigkeit gewährleistet ist. Dabei resultiert eine homogene Oberflächenstruktur mit einer geringen Oberflächenrauheit. Die Homogenität der Funktionsschichten, speziell im Hinblick auf eine gleichmäßige Verteilung der maßgeblichen Atome, wurde mit Hilfe von SNMS- Messungen und einem EDX-Element-Mapping verifiziert. Mit Hilfe der Analyse des spezifischen Widerstands der optimierten Funktionsschichten konnte ein Zusammenhang zwischen den infrarot-optischen und elektrischen Schichteigenschaften über die Hagen-Rubens Relation erarbeitet werden. Darüber hinaus wurden an den besten, infrarot-optisch optimierten Proben charakteristische Parameter wie die Bandlückenenergie, die Ladungsträgerdichte und die Ladungsträgerbeweglichkeit ermittelt. Über die Ladungsträgerdichte war es zudem möglich, die spektrale Lage der Plasmawellenlänge zu bestimmen. Basierend auf den ermittelten Werten der optimierten Metalloxidschichten im Bereich der elektronischen Charakterisierung konnte eine Korrelation der infrarot-optischen und elektrischen Schichteigenschaften anhand charakteristischer Punkte im Spektrum der Funktionsschichten erarbeitet werden. Abschließend wurde der Verlauf des spektralen Reflexionsgrads theoretisch modelliert und über eine Parametervariation an den tatsächlich gemessenen Reflexionsgrad der infrarot-optisch optimierten Proben angefittet. Hierbei zeigte sich eine gute Übereinstimmung der in den physikalischen Grundlagen der vorliegenden Arbeit getroffenen Annahmen mit den experimentell ermittelten Werten. / Optically-transparent and electrically-conductive functional coatings based on doped metal oxide semiconductors play a significant role as thermally-reflective coatings. Their collective excitation in the infrared spectral range is enabled via the free charge carriers in the material, which leads to an increase in the metal oxide coating's reflectance. This is concurrent with a reduction in the thermal emittance of the functional coating. Various TCO deposition processes have been established for the majority of applications; the sol-gel process, however, is particularly significant since it is cost-efficient and flexible. The objective of this thesis was to thoroughly analyze the infrared optical, electrical and structural characteristics of functional coatings based on indium tin oxide and aluminium-doped zinc oxide produced by way of wet deposition. The intention was to create functional coatings with the highest possible reflectance, or rather lowest thermal emittance in the infrared spectral range. In this vein, an important aspect of this thesis was to investigate not only the influence of the sol parameters, but also of sample preparation on the infrared optical coating properties. It became evident that there are various ways of influencing the properties of the functional coatings in the infrared spectral range. Firstly, this can be achieved by varying parameters when the coating solutions are produced, such as the degree of doping or the concentration of the sol. Secondly, specific infrared optical coating properties can be directly modified by adjusting the crystallization temperatures with the aid of suitable oxidizing and reducing gases. During the course of optimizing sample preparation it also became apparent that variation in the number of functional coatings and therefore in the thickness of the metal oxide used has a decisive influence on the infrared optical properties. The individual steps involved in the production process were improved throughout the course of numerous parametric studies with respect to achieving the highest possible reflectance in the infrared range. Comprehensive optical characterization of the optimized samples in the spectral range from ultraviolet over the visible and up to the thermal infrared showed that the total emittance of a glass substrate can be clearly reduced by applying a multilayer coating, while the visual transparency is only slightly altered. In the case of the indium tin oxide used, a four-layer coating with a thickness of approximately 450 nm was sufficient to reduce the emittance of the uncoated glass (0.89) to 0.20, while the visual transmittance of 0.85 only deteriorated by about 6 %. In the case of the aluminium-doped zinc oxide used, an optimum was achieved with an approximately 1 µm thick coating comprising 11 individual layers which reduced the surface emittance to less than 0.40. The optical transmittance of 0.88 in this case is only slightly less than the uncoated glass with a value of 0.91. Besides extensively characterizing the influences on IR optical coating properties, this work focused on analyzing the structural and electrical properties of the optimized samples. Insights into the structure and surface composition of the functional coatings produced were gained by way of SEM and AFM. It became evident that densely packed crystallites cause low porosity within the functional coating, which ensures relatively high electrical conductivity. A homogeneous surface structure with low surface roughness results from the relatively small crystallite size (compared to the coating thickness measured) of both metal oxide systems. The homogeneity of the functional coatings, especially with respect to the uniform distribution of the decisive atoms, was verified with the aid of SNMS measurements and EDX elemental mapping. Correlation between the infrared optical and electrical coating properties was successfully shown by analyzing the specific resistance of the optimized functional coatings and then implementing the Hagen-Rubens relation. Moreover, characteristic parameters such as band gap energy, charge carrier density and charge carrier mobility were determined for the best infrared-optically-optimized samples. It was also possible to ascertain the spectral position of the plasma wavelength via the charge carrier density. On the basis of values determined for the optimized metal oxide coatings within the realm of electronic characterization, further correlation between the infrared optical and electrical coating properties became evident due to characteristic points in the spectrum of the functional coatings. To conclude, the curve of spectral reflectance was theoretically modelled and fitted to the measured reflectance of the infrared-optically-optimized samples by way of parameter variation. Good agreement was shown between the hypotheses made within this thesis and the values determined in the experiments.
|
67 |
Organic p-i-n Homojunctions: Fundamentals and ApplicationsHarada, Kentaro 25 July 2008 (has links) (PDF)
In this thesis, we study the physical properties of doped organic semiconductors. We first demonstrate the impact of doping on C60 films. In contrast to previous reports for organic thin films, the n-doped C60 films show a decrease of mobility with increasing doping levels; i.e., they follow the well-known Matthiessen rule which is generally observed in inorganic semiconductors. Using further strong organic donors and acceptors, we realize p-i-n homojunctions of several organic matrices: zinc-phthalocyanine, pentacene, and an iridium-complex TER004. We observe stable and reproducible diode characteristics, which can be described by the standard Shockley theory with an exception concerning the temperature dependence of the diode parameters. The current-voltage characteristics of the pentacene homojunctions under illuminated conditions indicate that the thermodynamic limitation of the open-circuit voltage is determined by the built-in voltage of 1.65 V, and that the recombination process is influenced by the distinct charge transport properties of electrons and holes. The very high built-in voltage of 2.2 V in the TER004 homojunction allows a red phosphorescent homo-OLED, which shows visible emission around 650 nm with low operation voltage. We examine the charge balance status in the homojunction structure, revealing that TER004 has superior electron transport properties.
|
68 |
Ein Beitrag zum Nachweis tiefer Störstellen in halbisolierendem Galliumarsenid mittels PICTSZychowitz, Gert 20 July 2009 (has links) (PDF)
Das PICTS-Verfahren ist eine der am häufigsten eingesetzten Methoden zur Charakterisierung semiisolierender Halbleiter. Die methodischen Fortschritte bei der Ermittlung von Störstellenparametern mit diesem Verfahren werden in dieser Arbeit vorgestellt. Als praktikable Methode für den Nachweis einer temperaturabhängigen Änderung des Besetzungsverhältnisses einer Haftstelle wird die Normierung auf die Emissionsrate der Elektronen eingeführt. Es wird gezeigt, dass Peaks, bei denen diese Normierung misslingt, nicht für die Ermittlung der Störstellenparameter herangezogen werden dürfen. Die Untersuchungen belegen, dass für die vollständige Umladung der Störstellen eine geeignete Anregungsintensität verwendet werden muss. Durch PICTS-Messungen an Kupfer-dotierten Proben wird eine systematische Abhängigkeit der Peakhöhen Kupfer-korrelierter Peaks vom Kupfergehalt der Proben nachgewiesen. Mit den Untersuchungen wird belegt, dass sich Kupfer mittels PICTS bis zu einer minimalen AES-Kupfer-Konzentration von [Cu]min ca. 5·1E14/cm^3 nachweisen lässt.
|
69 |
Punktdefekte und elektrische Kompensation in Galliumarsenid-EinkristallenKretzer, Ulrich 08 January 2008 (has links) (PDF)
In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen
Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen
Punktdefekte von der Konzentration der Dotierstoffe, der Stöchiometrieabweichung und der Lage
des Ferminiveaus abhängen. Dazu dienen die Ergebnisse der meßtechnischen Charakterisierung einer
großen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden.
Der Schwerpunkt der Arbeit liegt in der Entwicklung von Modellen, die eine quantitative Beschreibung
der experimentell untersuchten elektrischen und optischen Eigenschaften von Galliumarsenid-
Einkristallen ausgehend von den Punktdefektkonzentrationen erlauben. Da aus Punktdefekten
Ladungsträger freigesetzt werden können, bestimmt ihre Konzentration maßgeblich die Ladungsträgerkonzentration
in den Bändern. Im ionisierten Zustand wirken Punktdefekte als Streuzentren für freie
Ladungsträger und beeinflussen damit die Driftbeweglichkeit der Ladungsträger. Eine thermodynamische
Modellierung der Punktdefektbildung liefert Aussagen über die Gleichgewichtskonzentrationen
der Punktdefekte in Abhängigkeit von Dotierstoffkonzentration und Stöchiometrieabweichung. Es
wird gezeigt, daß die bei Raumtemperatur beobachteten elektrischen Eigenschaften der Kristalle aus
der kinetischen Hemmung von Prozessen folgen, über die die Einstellung eines thermodynamischen
Gleichgewichts zwischen den Punktdefekten vermittelt wird.
|
70 |
Elektronische Eigenschaften dotierter polyzyklischer aromatischer KohlenwasserstoffeMahns, Benjamin 28 January 2015 (has links) (PDF)
In der vorliegenden Arbeit wurde die elektronische Struktur verschiedener undotierter und mit Alkalimetallen beziehungsweise 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethan (F 4 TCNQ) dotierter, polyzyklischer aromatischer Kohlenwasserstoffe (PAK) untersucht. Diese Untersuchungen waren motiviert durch verschiedene Veröffentlichungen in denen supraleitendes Verhalten an unterschiedlichen alkalimetalldotierten PAK beschrieben wurde.
Erste Studien erfolgten an undotiertem 1,2:8,9-Dibenzopentacen (DBP) und Pentacen unter Nutzung von Photoelektronenspektroskopie (PES), Elektronenenergieverlustspektroskopie (EELS) und Dichtefunktionaltheorie (DFT). Die spektroskopischen Methoden zeigten für beide Materialien eine große Ähnlichkeit der elektronischen Zustände, vor allem im niederenergetischen Bereich, welche durch die theoretischen Ergebnisse bestätigt wurde. Die elektronische Ähnlichkeit beider Materialien ist im starken Gegensatz zu dem in der Literatur bei Dotierung beobachteten Verhalten, bei dem Pentacen zum Mott-Isolator wird, während DBP Supraleitung zeigt.
Weitere Untersuchungen erfolgten an Picen und Coronen. Bandstrukturrechnungen zeigten, dass Picen vermutlich ein stark korreliertes Elektronensystem besitzt. Neben dem mit PES ermittelten Ionisationspotential und der Austrittsarbeit waren auch die mit EELS gemessenen optischen Bandlücken der beiden Materialien sehr ähnlich. Unterschiede zeigten sich hingegen vor allem in der Dichte der gemessenen Zustände von Picen und Coronen am Ferminiveau. Bei der Untersuchung der elektronischen Eigenschaften von mit Kalium-dotierten Picen und Coronen wurde trotz der erfolgreichen Dotierung in keinem der untersuchten Filme eine Zustandsdichte am Ferminiveau beobachtet somit wurde auch keiner der untersuchten Filme metallisch. Dasselbe Verhalten konnte auch für Natrium-dotierte Filme beobachtet werden. Eine Diskussion dieses Ergebnisses, welches im Gegensatz zu der von anderen Gruppen in dotierten Molekülen beobachteten Supraleitung steht, erfolgte im Hinblick auf die Bildung unterschiedlich dotierter Phasen, Elektron-Phonon-Kopplung, der Formierung von Bi-Polaronen und Korrelationseffekten.
Für ein weitergehendes Verständnis der dotierungsinduzierten elektronischen Eigenschaften in den untersuchten Molekülen wurden diese nicht nur mit Alkalimetallen, sondern teilweise auch mit elektronenziehenden Molekülen wie F 4 TCNQ interkaliert. Dabei entstanden Kristalle verschiedener Ladungstransfersalze. Eine ausführliche Charakterisierung erfolgte für Picen/F 4 TCNQ-Kristalle, welche im Rahmen dieser Arbeit zum ersten Mal hergestellt und untersucht wurden. Dabei wurde zunächst deren Kristallstruktur mit Röntgendiffraktometrie (XRD) bestimmt. Eine Abschätzung der Größe des Ladungstransfers innerhalb der Molekülpaare aus Picen/ F 4 TCNQ erfolgte über Infrarot- und Bindungslängendaten, die auf diese Weise gefunden Werte wurden zusätzlich durch DFT-Rechnungen untermauert. Transportmessungen zeigten außerdem, dass die hergestellten Kristalle entlang ihrer Hauptwachstumsrichtung Isolatoren sind. Die Untersuchung der elektronischen Eigenschaften wurde mit EELS und PES an Picen/ F 4 TCNQ -Dünnfilmen durchgeführt, welche durch die Verdampfung der Einkristalle hergestellt wurden. Die Molekülpaare zeigen einen Ladungstransfer, der neue elektronische Anregungen im Niederenergiebereich der mit EELS gemessenen Verlustfunktion hervorruft.
Im weiteren Verlauf der Arbeit erfolgte eine Diskussion bezüglich des Charakters und der Lokalisierung dieser neuen Anregungen. Bei den PES-Messungen zeigte sich der Ladungstransfer durch energetische Verschiebungen in den gemessen Rumpfniveauspektren sowie durch im Vergleich zu den reinen Materialien deutlich veränderte Ionisationspotentiale. Trotz des erfolgreichen Ladungstransfers und der damit verbundenen Füllung von unbesetzten Zuständen mit Elektronen in F 4 TCNQ wurde jedoch in den Valenzbandspektren keine Emission am Ferminiveau beobachtet. DFT-Rechnungen ermöglichten schließlich Aussagen über den Charakter des Ladunstransfers und die daraus resultierende, fehlende Zustandsdichte am Ferminiveau.
|
Page generated in 0.0424 seconds