Spelling suggestions: "subject:"drug delivery systems."" "subject:"rug delivery systems.""
361 |
Veiculação do quimioterápico paclitaxel em nanoemulsões lipídicas no tratamento da aterosclerose experimental: importância do tamanho das partículas da nanoemulsão / Paclitaxel chemotherapy usinglipid nanoemulsionsas carriers in the treatment of experimental atherosclerosis: importance of the particle size of the nanoparticlesFreitas, Sheila Cristina Monteiro Paiva 18 August 2016 (has links)
INTRODUÇÃO: Sistemas nanométricos carreadores de fármacos, ao alcançarem a circulação sanguínea, se concentram em seus sítios de ação (\"drug-targeting\"), evitando tecidos saudáveis. O diâmetro médio e a polidispersidade de nanopartículas são parâmetros relevantes, pois podem influenciar no percurso pelo fluxo sanguíneo da partícula e na interação celular. A LDE, uma nanopartícula lipídica que mimetiza a lipoproteína de baixa densidade (LDL), é capaz de carrear fármacos como o quimioterápico paclitaxel para tecidos com alta taxa de proliferação celular, como por exemplo, lesões ateroscleróticas e tecidos neoplásicos. Assim, é relevante investigar a influência de diferentes tamanhos da LDE na captação celular e na eficácia terapêutica em aterosclerose experimental. OBJETIVO: Avaliar a influência de duas faixas de tamanhos da nanopartícula lipídica carreadora do quimioterápico paclitaxel (LDE-paclitaxel), na captação celular e na resposta terapêutica do tratamento da aterosclerose em coelhos submetidos à dieta rica em colesterol. MÉTODOS: A associação LDE-paclitaxel foi preparada por emulsificação por alta pressão. A separação da LDE-paclitaxel original em LDE-paclitaxel grande e LDE-paclitaxel pequena foi feita por ultracentrifugação por gradientes de densidade. Nos estudos com células endoteliais HUVEC foram avaliados citotoxicidade, internalização celular e detecção de apoptose/necrose. Para estudo em animal, foram utilizados coelhos New Zealand machos, com aterosclerose induzida por dieta, divididos em dois grupos: LDE-paclitaxel-grande (n=9) e LDE-paclitaxel-pequena (n=10). O tratamento com LDE-paclitaxel foi iniciado após 4 semanas da dieta. Aortas dos coelhos foram coletadas para análise macro e microscópica das lesões ateroscleróticas. RESULTADOS: A LDE-paclitaxel original foi caracterizada com diâmetro médio de 75nm; após a ultracentrifugação, a LDE-paclitaxel grande apresentou diâmetro médio de 83nm e a LDE-paclitaxel pequena de 40nm. Os ensaios de citotoxicidade mostraram que, após incubação por 24 horas, a LDE-paclitaxel pequena alcançou o IC50 com menor concentração que a LDE-paclitaxel grande. No ensaio de internalização, a LDE-paclitaxel pequena foi internalizada em menores concentrações e em menor tempo em comparação com as partículas da LDE-paclitaxel original ou LDE-paclitaxel grande. Nos ensaios para detecção de apoptose/necrose, LDE-paclitaxel, independentemente do tamanho, aumentou a porcentagem de células necróticas. A LDE-paclitaxel pequena também aumentou a percentagem de células apoptóticas, em comparação às outras partículas. No estudo in vivo, não houve diferença entre os tratamentos LDE-paclitaxel grande e LDEpaclitaxel pequena: a razão área de lesão/área total foi igual entre os grupos, assim como a quantificação de macrófagos e de células de músculo liso na íntima das aortas. CONCLUSÃO: O tamanho da LDE, apesar de ser um relevante parâmetro físico-químico, não influenciou no efeito antiaterosclerótico da associação LDE-paclitaxel. Portanto, em relação ao tamanho das partículas, a LDE-paclitaxel original, que possui ambas as populações, é eficienteno tratamento da aterosclerose experimental induzida por dieta rica em colesterol / INTRODUCTION: As nanometric drug carriers enter the blood circulation, they concentrate on their action sites, avoiding healthy tissue. The average diameter and polydispersity of nanoparticles are relevant parameters because they have influence on the particles course through the blood flow and on cell interaction. LDE, a lipid nanoparticle that mimics low-density lipoprotein (LDL), is capable of carrying chemotherapeutic drugs such as paclitaxel, for tissues with a high rate of cell proliferation, such as atherosclerotic lesions. Thus, it is important to investigate the influence of different sizes in the cellular uptake of LDE and therapeutic efficacy in experimental atherosclerosis. OBJECTIVE: To evaluate the influence of two size ranges of the lipid nanoparticle carrier of the chemotherapeutic drug paclitaxel (LDE-paclitaxel) in cellular uptake and therapeutic response in experimental atherosclerosis. METHODS: LDEpaclitaxel was prepared by emulsification by high energy. The separation of original-LDE-paclitaxel in large-LDE-paclitaxel particles and small-LDEpaclitaxel particles was performed by ultracentrifugation by density gradients. In studies with HUVEC endothelial cells, cytotoxicity, cell internalization and detection of apoptosis/necrosis were assessed. In in vivo study, New Zealand male rabbits, with atherosclerosis induced by cholesterol-rich diet, were divided into two groups: large-LDE-paclitaxel (n=9) and small-LDE-paclitaxel (n=10). Treatment with LDE-paclitaxel started after 4 weeks of diet. Aortas of the rabbits were collected for macroscopic and microscopic analysis of atherosclerotic lesions. RESULTS: The original-LDE-paclitaxel was characterized with an average diameter of 75nm. After ultracentrifugation, the large-LDE-paclitaxel showed average diameter of 83nm and small-LDE-paclitaxel 40nm. The cytotoxicity assay showed that, after incubation for 24 hours, small-LDE paclitaxel reached the IC50 in lower concentration than large-LDE paclitaxel. In internalization assays, small-LDE-paclitaxel was internalized in lower concentrations and shorter time as compared with the original and large particles. LDE-paclitaxel, independently of particle size, increased the percentage of necrotic cells. Small-LDE-paclitaxel was also able to increase the percentage of apoptotic cellsas compared with the original and large particles. In experimental study, there was no difference between large-LDE-paclitaxel and small-LDE-paclitaxel treatment: lesion area / total area ratio was similar between groups as well as the quantification of macrophages and smooth muscle cells of the intima of aortas.CONCLUSION: The size of the LDE, although an important physicochemical parameter, did not influence the antiatherosclerotic effect of LDE-paclitaxel. Therefore, with respect to particle size, the original-LDE-paclitaxel that has both populations is efficient to treat experimental atherosclerosis induced by a cholesterol-rich diet
|
362 |
Targeted release from lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumoursLyon, P. C. January 2016 (has links)
No description available.
|
363 |
Biopanning, identification and application of peptides targeting the vasculature of orthotopic colorectal cancer based on in vivo phage display technology. / 基于体内噬菌体展示技术、靶向结肠直肠癌血管的多肽的筛选、鉴定及应用 / CUHK electronic theses & dissertations collection / Ji yu ti nei shi jun ti zhan shi ji shu, ba xiang jie chang zhi chang ai xue guan de duo tai de shai xuan, jian ding ji ying yongJanuary 2010 (has links)
Colorectal cancer (CRC) is one of the most common malignancies worldwide. However, adjuvant chemotherapeutic agents exhibit poor accumulation in the tumor mass and frequently result in serious side effects due to nonspecific damage to normal organs. Therefore, the development of more selective anticancer drugs with targeted delivery to tumor sites is the current trend in cancer therapies. Among these sites, tumor neovasculature is an attractive target for anticancer agents. It is because tumor growth is largely limited by blood supply which is dependent on the extent of angiogenesis in the tumor. / Experimental analysis suggested that TCP-1 phage and synthetic TCP-1 peptide specifically homed to colorectal cancer tissues and co-localized with the tumor vasculature. Moreover, TCP-1 peptide also recognized the vasculature of human colorectal cancer specimens. Subsequently, the homing abilities of TCP-1 phage were extensively tested in other cancer models. Results showed that TCP-1 peptide could also target the vasculature of orthotopic gastric cancer induced by human colon cancer cell line (MKN45) in BALB/c nude mice. Meanwhile, TCP-1 phage exhibited binding activity to colorectal cancer cells such as colon 26 and SW1116. TCP-1 peptide could carry a pro-apoptotic peptide into these cells and markedly enhanced its pro-apoptotic action. / In summary, we have used the phage display technology to isolate two unique peptides TCP-1 and TCP-2, which targeted the vasculature of orthotopic colorectal cancer and also recognized the vasculature of human colorectal cancer. Moreover, they could deliver fluorescein or pro-apoptotic peptide only to the tumor vasculature but not to other normal tissues, for imaging detection and targeted therapy. In conclusion, both TCP-1 and TCP-2 may have significant clinical applications as carriers in diagnostic imaging and ligand-mediated targeted therapy for human colorectal cancer. / Similarly, TCP-2 phage or its peptide also targeted specifically the orthotopic colorectal cancer, and co-localized with the tumor vasculature in mice. Meanwhile, TCP-2 peptide recognized the vasculature of human colorectal cancer specimens. FITC-labeled TCP-2 peptide could also be used to detect cancer tissues in tumor-bearing mice. / To identify specific ligands targeting the tumor neovasculature, in vivo phage display technology has been extensively used. Several dozens of peptides homing to normal or diseased vasculature have been identified through this technology. However, these peptides target mainly the tumors growing at distant sites but not at the primary organ, thus limiting their clinical application. To obtain specific peptides targeting the neovasculature of colorectal cancer growing in situ, we established an orthotopic colorectal cancer model in normal BALB/c mice by using syngeneic colon cancer cells (colon 26). Subsequently, in vivo phage display technology was utilized to isolate peptides which specifically recognized the vasculature of the cancer. Four peptides (termed TCP-1, 2, 3, 4) were enriched more than once after four-round selections. Further investigation disclosed that TCP-1 and TCP-2 phages had relatively stronger binding abilities to cancer tissues among the four phage clones. They were chosen for further study. / We further demonstrated that TCP-1 could serve as a carrier for image detection and drug delivery. FITC-labeled TCP-1 could specifically produce a strong fluorescence signal in the tumors after intravenous injection into the orthotopic tumor-bearing mice. Moreover TCP-1, when conjugated with a pro-apoptotic peptide, could also specifically induce apoptosis of tumor vasculature in vivo. / Li, Zhijie. / Adviser: Cho Chiltin. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 194-221). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
364 |
1) Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating method 2) Pharmacokinetic modeling and Monte Carlo simulations in context of additional criteria for bioequivalence assessments 3) Pharmacokinetic prediction of levofloxacin accumulation in tissue and its association to tendinopathyPham, Loan 07 June 2014 (has links)
The thrust of this thesis is to study oral solid dosage formulation using hot melt coating method and to use pharmacokinetic modeling and simulation (PK M&S) as a tool that can help to predict pharmacokinetics of a drug in human and the probability of passing various bioequivalence criteria of the formulation based on the PK of the drug.
Hot-melt coating using a new method, direct blending, was performed to create immediate and sustained release formulations (IR and SR). This new method was introduced to offer another choice to produce IR and SR drug delivery formulations using single and double coating layer of waxes onto sugar beads and/or drug loaded pellets.
Twelve waxes were applied to coat sugar cores. The harder the wax the slower the drug was released from single coated beads. The wax coating can be deposited up to 28% of the weight of the core bead with 58% drug loading efficiency in the coating
The cores were coated with single or double wax layers containing acetaminophen. Carnauba wax coated beads dissolved in approximately 6 hrs releasing 80% of loaded drug. However, when covered with another layer, the drug loaded beads released drug for over 20 hrs. When drug loaded pellets were used as cores, 33-58% drug loading was achieved. Double coated pellets exhibited a near zero order drug release for up to 16 hrs.
Hot melt coating by direct blending using waxes is a simple process compared to conventional hot melt coating using coating pan or fluid bed coating machines. It offers an alternative way of making immediate, sustained drug release (IR, SR) and modified release (IR+SR) oral dosage forms of drugs which are stable at high temperature (100°C). The pellet-containing-drug coated formulations provide options when higher drug loading is warranted.
It is required by the US Food and Drug Administration (FDA) that a new modified –release (MR) product or identical generic product be regarded as bioequivalent (BE) to the originators reference drug product. However, there are concerns that current regulatory criteria are not sufficient when evaluating bioequivalence (BE) for many MR products, and additional metrics for BE assessment of the products should be applied to ensure therapeutic equivalence. This study used pharmacokinetic modeling and simulation (M&S) to investigate 1) the probability of BE occurring between the MR test and reference products 2) the rates of false positive and true negative of the BE test; and 3) the estimation of the sample size in pivotal BE studies; all of which when partial area under the curves (pAUCs) were applied as additional BE criteria.
Reference data of two MR forms of methylphenydate HCl (MPH) were simulated and obtained from literature (formulation Q and Metadate CD, respectively). Monte Carlo simulations were performed to simulate the test drug concentration profiles and BE assessment was carried out utilizing the mean (method 1) and individual concentration time curves (method 2).
For formulation Q, adding pAUC₀₋[subscript Tmax] to current BE criteria reduced the possibility of passing BE from approximately 98% to 85%, with a true negative rate of 5%. The earlier the time points used to determine for pAUC before Tmax, the lower the chance of passing BE for the test product. The possibility of passing BE varied and depended on the coefficient of variations (CV) of T[subscript lag], K[subscript a] and K[subscript e] and that considerable variability in the parameters affected the earlier segments of the drug concentration profile curves more. Similar drug concentration time profiles between the test and reference products is recommended to ensure bioequivalence occurs with a reasonable subject sample size. A similar scenario was seen when Metadate CD was used as the reference product.
PK M&S can help provide appropriate additional metrics to assure the BE test is a better tool ensuring therapeutic equivalence for MR products with little negative impact to generic manufacturers. Predictions can also be made about the required sample size and the chances of passing BE with any addition to the conventional three criteria for the test product.
PK M&S was also used to predict drug concentrations of levofloxacin in tissue. Levofloxacin has been widely used in clinical practice as an effective broad-spectrum antimicrobial, however tendonitis and tendon rupture have been reported with increasing use of this agent. Here, these incidents will be assessed by investigating pharmacokinetic behavior of the compound to see if they are related to drug's tissue disposition. The PK model for levofloxacin was established. Mean concentration time profiles of single or multiple dosing of 500 mg levofloxacin following oral and IV infusion administration were simulated. Monte Carlo simulation was used to simulate the drug concentration time profiles in plasma (compartment 1) and tissue (compartment 2) after seven dosing regimens while varying the drug's elimination and distribution rates to see the effect of changing those rates have on the drug accumulation in tissue. Monte Carlo Simulation shows that low elimination rates affect the drug concentration in plasma and tissue significantly with the level in plasma rising up to 35 μg/mL at day 7. A normal elimination rate together with escalation of distribution rates from plasma to tissue could increase the tissue concentration after 7 doses to 9.5 µg/mL, a value that is more than twice that of normal. PK M&S can be used as an effective tool to evaluate drug concentration in different compartments (plasma and tissues, for example). The unexpectedly high concentration values in some cases may explain, at least in part, the reason of tendinopathy occurs in the clinical setting. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from June 7, 2012 - June 7, 2014
|
365 |
Quantifying nisin adsorption behavior at pendant polyethylene oxide brush layersDill, Justen K. 01 June 2012 (has links)
A more quantitative understanding of peptide loading and release from polyethylene oxide (PEO) brush layers will provide direction for development of new strategies for drug storage and delivery. The antimicrobial peptide nisin shows potent activity against Gram-positive bacteria including the most prevalent implant-associated pathogens, its mechanism of action minimizes the opportunity for the rise of resistant bacteria and it does not appear to be toxic to
humans, suggesting good potential for its use in antibacterial coatings for selected medical devices. In this work, optical waveguide lightmode spectroscopy was used to record changes in adsorbed mass during cyclic adsorption-elution experiments with nisin, at uncoated and PEO-coated surfaces. PEO layers were prepared by radiolytic grafting of Pluronic® surfactant F108 or F68 to silanized silica surfaces, producing long- or short-chain PEO layers, respectively. Kinetic patterns were interpreted with reference to a model accounting for history-dependent adsorption, in order to evaluate rate constants for nisin adsorption and desorption, as well as the effect of pendant PEO on the lateral clustering behavior of nisin. Lateral rearrangement and clustering of adsorbed nisin was apparent on uncoated and F68-coated surfaces, but not on F108-coated surfaces. In addition, nisin showed greater resistance to elution by peptide-free buffer from uncoated and F68-coated surfaces. These results are consistent with shorter PEO chains allowing for peptide adsorption to the base substrate in the case of F68-coated surfaces, while adsorption to the F108-coated surfaces is apparently governed by the presence of a hydrophobic core within the brush layer itself. Further, these results suggest that while peptide location within the hydrophobic core provides stability against lateral rearrangement, the pendant PEO chains themselves provide no steric barrier to nisin rearrangement within the brush layer. / Graduation date: 2012
|
366 |
Novel formulation : development of oral microparticulate non-viral DNA vaccine delivery system against infectious hematopoetic necrosis virus (IHNV) in Rainbow Trout, statistical design in matrix tablets formulationTantituvanont, Angkana 07 May 2003 (has links)
This dissertation describes two different projects. The first is the development
of an oral DNA vaccine delivery system for fish. A novel oral DNA vaccine delivery
system was developed for Rainbow Trout by combining non-viral vectors
(polycationic liposomes or polycationic polymer) to facilitate the DNA vaccine's
uptake by cell membranes along with enteric-coated protection of the DNA embedded
in microparticles to prevent DNA degradation in the gastrointestinal tract. Spray
drying and spray coating bead techniques were employed in the preparation of the
DNA vaccine microparticles. The spray drying technique allowed production of
spherical shape enteric-coated microparticles with a particle size range of 0.18 to 20
��m. Larger particle sizes of 40-50 mesh were obtained from the spray-coated bead
technique. The resultant DNA vaccine microparticles were granulated with regular
fish feed and given to fish to investigate the efficacy of the delivery system in
providing protection against IHNV, and to demonstrate the ease of administration in
fish. An in vivo fish trial experiment showed improvement in fish survival rate when
fish were immunized with larger particle size DNA vaccine microparticles. Further
research to find effective vector carriers for the DNA vaccine delivery system and to
seek modifications of the delivery system that will still prevent the denaturation of
plasmid DNA that will also facilitate membrane uptake of the DNA vaccine is needed
in order to develop a safe, effective, and commercially viable vaccine to control the
outbreak of IHNV.
The second project of the dissertation is prediction of in vitro drug release
profiles from a novel matrix tablet spray-coated with a barrier membrane using
mathematical and statistical models. Tablets were prepared by direct compression
followed by spray coating. The relationship of the amount of hydrophilic materials in
the core tablets and barrier thickness on drug release mechanism was investigated
using factorial design and regression analysis. Drug release characteristics were
influenced and can be controlled by modifying the amount of hydrophilic materials in
the core tablet and the barrier thickness. Mathematical equation generated from
regression analysis of n-value, lag time, and percent drug release as a function of the
amount of hydrophilic material and the amount of coating material applied can now be
used as a tool for predicting and optimizing in vitro drug release from matrix tablets
spray-coated with a barrier membrane. / Graduation date: 2003
|
367 |
Self-Assembly of Poly(N-isopropylacrylamide) Microgel Thin FilmsSerpe, Michael Joseph 04 October 2004 (has links)
The assembly of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) microgel thin films into disordered and ordered arrays was investigated. Disordered pNIPAm-co-AAc microgel arrays were assembled based on electrostatic attractions between polyanionic pNIPAm-co-AAc microgels and polycationic poly(allylamine hydrochloride) (PAH). These interactions were studied in solution and subsequently used to assemble thin films following a Layer-by-Layer assembly protocol. Thin films were assembled as a function of pNIPAm-co-AAc microgel solution temperature and the resultant film thermoresponsivity characterized as a function of microgel layer number and pH. The response of assembled thin films to pH 3.0 and 6.5 exposure was then characterized by quartz crystal impedance and surface plasmon resonance spectroscopy, which showed that the thin film solvation was highly dependent on the pH of the solution it was in. Assembled thin films were also shown to be useful as controlled drug delivery platforms, where it was found that small molecules could be released from the films in a temperature regulated fashion. Microgel thin films also exhibited unique optical properties and were used as microlens arrays, which were able to focus pattern in air as well as in solution and had focal lengths that could be tuned in response to pH and temperature changes. Ordered microgel arrays were assembled following a thermal annealing process, in order to make light diffracting materials. These ordered arrays were photopolymerized and exhibited temperature dependent Bragg diffraction properties.
|
368 |
Transdermal Drug Delivery Enhanced by Magainin PeptideKim, Yeu Chun 06 November 2007 (has links)
The world-wide transdermal drug delivery market is quite large, but only a small number of agents have FDA approval. The primary reason for such limited development is the difficulty in permeating the stratum corneum layer of human skin.
In our study, we developed a novel percutaneous delivery enhancing approach. Magainin peptide was previously shown to disrupt vesicles from stratum corneum lipid components and this ability of magainin allows us to propose that magainin can increase skin permeability. Therefore, we tested the hypothesis that magainin, a pore-forming peptide, can increase skin permeability by disrupting stratum corneum lipid structure and that magainin¡¯s enhancement requires co-administration of a surfactant chemical enhancer to increase magainin penetration into the skin. In support of these hypotheses, synergistic enhancement of transdermal permeation can be observed with magainin peptide in combination of N-lauroyl sarcosine (NLS) in 50% ethanol-PBS solution. The exposure to NLS in 50% ethanol solution increased in vitro skin permeability to fluorescein 15 fold and the addition of magainin synergistically increased skin permeability 47 fold. In contrast, skin permeability was unaffected by exposure to magainin without co-enhancement by NLS-ethanol.
To elucidate the mechanism of this synergistic effect, several characterization methods such as differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction were applied. These analyses showed that NLS-ethanol disrupted stratum corneum lipid structure and that the combination of magainin and NLS-ethanol disrupted stratum corneum lipids even further. Furthermore, confocal microscopy showed that magainin in the presence of NLS-ethanol penetrated deeply and extensively into stratum corneum, whereas magainin alone penetrated poorly into the skin. Together, these data suggest that NLS-ethanol increased magainin penetration into stratum corneum, which further increased stratum corneum lipid disruption and skin permeability.
Finally, skin permeability was enhanced by changing the charge of magainin peptide via pH change. We modulated pH from 5 to 11 to change the magainin charge from positive to neutral, which decreased skin permeability to a negatively charged fluorescein and increased skin permeability to a positively charged granisetron. This suggests that an attractive interaction between the drug and magainin peptide improves transdermal flux.
|
369 |
Investigations On The Properties And Drug Releases Of Biodegradable Polymer Coatings On Metal Substrates As Drug CarriersBaydemir, Tuncay 01 September 2009 (has links) (PDF)
The use of various biodegradable polymers for the improvement of different controlled and long-lasting drug release systems is an active research area in recent years. The application of different metal prostheses, especially titanium based ones,
to the human body is also very common. A most important disadvantage of these prostheses is the risk of infection at the application areas that necessitates the removing of the prosthesis with a second surgical operation and reapplication of it after recovery. One of the best ways to solve this problem is to render metal prostheses infection free with controlled and sustainable drug (antibiotic) release systems.
The long term sustained release of relevant antibiotics from the various biodegradable polymer coated metal implants is studied in this thesis. Virtual fatigue analysis and drug loading capacities of titanium and stainless steel samples with different surface pattern and modifications were studied. Various biodegradable
polymer and drug combinations were examined and used for coating of metal prosthesis. The aim is to design polymer-drug coated metal implants that are capable of releasing a feasible amount of drug up to a period of at least 1 month. Various
coating techniques and surface modifications were also employed to improve the adhesional properties of the drug containing polymers. Their adhesion abilities on the metal substrates were tested by Lap-shear and T-peel tests. Polymer degradation
kinetics was followed by viscosity studies. Calibration lines for different drugs were obtained and drug releases on different systems were followed by using UV spectroscopy and microbial antibiotic sensitivity tests.
Among the techniques applied to prevent fast release of drugs initially, the coatings of Vancomycin absorbed & / #946 / -TCP (& / #946 / -tricalcium phosphate) homogeneously distributed in poly(D,L-lactide-co-glycolide) solution in chloroform followed by an inert coating with poly(L-lactide) system proved to be feasible. By this technique, initial burst release was minimized and drug release from implants lasted nearly 2 months. Multiple coatings on polymer plus drug coating layer also gave promising
results.
In vivo studies on dorsal muscles of native rabbits with antibiotic loaded implants gave no negative effect on the surrounding tissues with high compatibility free of infection.
|
370 |
Biomedical applications of cobalt-spinel ferrite nanoparticles for cancer cell extraction and drug deliveryScarberry, Kenneth Edward 06 April 2009 (has links)
In this presentation it is demonstrated that the unique magnetic properties of superparamagnetic cobalt-spinel ferrite nanoparticles can be employed in several novel applications. A method to selectively capture and remove pathogens from infected organisms to improve longevity is presented. Evidence is provided to show that automated methods using modified forms of hemofiltration or peritoneal dialysis could be used to eliminate the particle/pathogen or particle/infected cell conjugates from the organism postoperatively. It is shown that disparately functionalized nanoparticles can be used in concert as drug carrier and release mechanisms. Lastly, we provide preliminary evidence to support the use of magnetic nanoparticles for controlling reaction kinetics.
|
Page generated in 0.0908 seconds