Spelling suggestions: "subject:"dualphase"" "subject:"dual_phase""
71 |
Estudo sobre o uso do aço bifásico como matéria-prima em componentes estampados de carrocerias veicularesCastro, Marcos Roberto de 27 January 2012 (has links)
Made available in DSpace on 2016-03-15T19:36:35Z (GMT). No. of bitstreams: 1
Marcos Roberto de Castro.pdf: 4644159 bytes, checksum: f40f63d43113b21cb1a927d0acc6160b (MD5)
Previous issue date: 2012-01-27 / In this work it was analyzed a dual phase steel concerning its mechanical properties, the microstructure and its performance comparing with micro alloyed steel. These steels have the potential to achieve cost and weight savings while improving performance. The trend for the use of AHSS (Advanced high strength steels) in automotive industry has grown in the last decades in an exponential way and has encouraged researches around the world to study processes that enhance the characteristics of actual steel, in order to optimize weight for fuel economy and structural stiffness in safety. This work analyzed the DP 800 steel (1.2 mm thickness) as a potential replacement for steel HSLA (micro alloyed steel) HX 260 PD (1.5 mm thickness) as a component of a vehicle body production. This replacement allowed 20% mass reduction of the vehicle. It was studied the following characteristics: processing, chemical composition, microstructure and mechanical properties. For microstructure analysis has been used optical. The chemical element analysis was made by an optical emission spectrometer instrument. Tensile tests were made in both materials. The obtained mechanical values were the input to the CAE software: simulation of stamping and virtual crash test. With the results of the tests and simulations were able to evaluate the feasibility of replacing steel micro alloyed steel for dual phase steel. Dual phase steel showed similar formability and service performance (structural integrity in the crash test simulation). / Neste trabalho foi analisado um aço conhecido comercialmente por dual phase, compreendendo a obtenção deste tipo de aço, suas propriedades mecânicas, a relação entre sua microestrutura e seu desempenho e um comparativo com um aço microligado. Comparados aos aços convencionais, os aços bifásicos, em virtude do melhor desempenho em serviço, podem proporcionar redução de peso e consequentemente de custo nos componentes. O trabalho analisou o aço DP 800 (espessura = 1,2 mm) como potencial material em substituição a um aço microligado H260 PD (espessura = 1,5 mm) em um componente estampado de carroceria de um veiculo em produção. Esta troca possibilitou a redução de 20% de massa da peça. Foram estudadas as seguintes características: processamento, composição química, microestrutura e propriedades mecânicas. Para análise micro estrutural foi utilizada microscopia óptica. A caracterização química foi feita por meio de um espectrômetro de emissão óptica. Foram feitos ensaios de tração nos dois materiais em estudo. O ensaio de tração serviu para a obtenção de curvas tensão-deformação cujos valores alimentaram softwares de CAE visando simulação de estampagem e crash-test virtual. Com os resultados dos ensaios e das simulações foi possível verificar a viabilidade da substituição do aço microligado pelo aço bifásico (dual phase). O aço bifásico apresentou similar conformabilidade e desempenho em serviço (integridade estrutural na simulação do teste de impacto frontal).
|
72 |
Soldagem a laser e caracterização microestrutural do aço avançado de alta resistência DP1000 / Laser beam welding and microstructural characterization of advanced high strength steel DP1000Paulo Henrique de Oliveira Monteiro Alves 12 April 2018 (has links)
O desenvolvimento dos veículos atuais vem sendo impulsionado pela necessidade de redução de massa associada com o aumento da segurança para os passageiros. Na procura de novos materiais e processos para atender estas exigências, os aços bifásicos ferrítico-martensíticos ou DP vêm se destacando entre os aços avançados de alta resistência (AHSS), por apresentar elevada resistência mecânica e boa ductilidade. Da mesma forma, a soldagem a laser vem se mostrando promissora para junção desta classe de materiais. Este processo permite unir os aços DP com boa qualidade metalúrgica sem significativas distorções dimensionais. Embora os aços DP apresentem boa soldabilidade, um amolecimento localizado na zona afetada pelo calor (ZAC) também é observado, especialmente no aço DP1000, que apresenta elevada fração de martensita. Desta forma, esta Tese propõe a soldagem a laser do aço DP1000 de espessura 1,80 mm, seguida de uma sistemática caracterização microestrutural, visando a produção de juntas soldadas suficientemente resistentes. Para isto, foram produzidos cordões numa chapa de aço DP1000, variando a potência nominal de soldagem entre 0,4 e 2,0 kW e a velocidade de soldagem entre 20 e 150 mm/s. A caracterização microestrutural foi conduzida com o auxílio das técnicas de microscopia óptica (MO), microscopia eletrônica de varredura (MEV), difração de raios X (DRX) e difração de elétrons retroespalhados (EBSD). As juntas soldadas mais representativas foram submetidas a ensaios de dureza Vickers e tração uniaxial. Os resultados mostram que é possível produzir juntas soldadas resistentes no aço DP1000. Todavia, é fundamental que a combinação de parâmetros gere soldas com penetração total e mínima largura de ZAC, limitando a quantidade de amolecimento da martensita prévia e a fração volumétrica de austenita retida. Na presente Tese, os melhores resultados foram obtidos para uma potência de 2,0 kW e velocidade de 150 mm/s. / The development of modern vehicles has been driven by the need of mass reduction associated with the increase of the safety of passengers. In the search for new materials and processes to meet these requirements, ferritic-martensitic dual-phase (DP) steels are potential candidates among advanced high-strength steels (AHSS), because of their high mechanical strength and good ductility. In that sense, laser beam welding has been shown promising for joining this class of materials. This process allows joining DP steels with good metallurgical quality without large dimensional distortions. Although DP steels show good weldability, a localized softening in the heat affected zone (HAZ) is also observed, especially in DP1000 steel which contains large amounts of martensite. Thus, laser beam welding has been performed in DP1000 steel with thickness of 1.80 mm, followed by a systematic microstructural characterization, aiming at the production of resistant welded joints. For this, bead-on-plate welds were carried out in DP1000 steel, varying the welding power between 0.4 and 2.0 kW and the welding speed between 20 and 150 mm/s. The microstructural characterization was conducted with the aid of light optical microscopy (LOM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD). The most representative welded joints were tested for Vickers hardness and uniaxial tensile test. Results show that it is possible to produce sound and resistant welded joints in DP1000 steel. However, it is critical that the combination of parameters allows the obtainment of welds with full penetration and minimum HAZ width, limiting the amount of softening of prior martensite and the volume fraction of retained austenite. In the present Thesis, this was achieved using a power of 2.0 kW and a welding speed of 150 mm/s.
|
73 |
Modelling of plasticity and fracture behaviors of dual-phase steel / Modélisation de la plasticité et la rupture de l’acier à double phaseHou, Yuliang 26 October 2016 (has links)
L’acier à double phase (DP) a été développé par l'industrie automobile pour le but de réduire le poids, l'amélioration de la performance de la sécurité et l'efficacité énergétique. Habituellement, l'acier DP contient des îlots de martensite dure noyée dans une matrice de ferrite doux. La synergie entre ces deux phases avec la microstructure inhomogène présente d'excellentes propriétés mécaniques. Les propriétés mécaniques (comportements de plasticité et de dégâts) d'acier DP sont principalement dérivés de sa microstructure, par exemple, la fraction de volume, la taille, la distribution et la morphologie de chaque phase constituante. Les approches micromécaniques sont largement appliquées pour prédire la plasticité et d'autres propriétés mécaniques de l'acier DP selon divers scénarios de chargement. Dans ce travail, la modélisation micromécanique de l'acier DP a été réalisée en utilisant des microstructures réelles ou artificielles. Une véritable microstructure est obtenue à partir de l'image métallographique, tandis qu'un générateur de microstructure artificielle à l'aide d'un algorithme d'affectation de phase améliorée basée sur l'optimisation de la topologie matériau est proposé d'étudier les propriétés mécaniques. Dans ce générateur artificiel, un processus d'affectation de phase est réalisé sur une mosaïque de Voronoï modifié pour obtenir une mesure représentative de l'élément de volume (VER) avec une bonne convergence. La méthode proposée comprend également une réduction appropriée décomposition orthogonale (POD) des courbes de débit (instantanés), qui sont calculés en utilisant le schéma asymptotique homogénéisation d'extension (AEH), pour identifier le contrôle des paramètres optimaux pour l'acier DP. Cette méthode numérique est vérifiée en utilisant DP590 et DP980 aciers qui indiquent un bon accord avec la contrainte d'écoulement à partir de mesures et prédiction de RVE basés sur de vraies microstructures. Les prédictions des modèles de déformation plastique, y compris des bandes de cisaillement en utilisant la microstructure artificielle ressemblent étroitement le comportement mécanique réel dans des conditions de chargement similaires. En outre, une interpolation a été adoptée pour obtenir une corrélation entre ces paramètres de contrôles basés sur l'identification des différents aciers DP. En outre, un modèle de substitution bi-niveau réduit est élaboré et présenté pour identifier les paramètres matériels du critère de rupture de Mohr-Coulomb (MMC). En utilisant cette méthode, le processus d'identification devient possible avec un nombre limité de tests Expérimentaux. La méthode combine des éléments critiques locaux associés à des modèles globaux. Le modèle de substitution de la souche de fracture construit en utilisant l'approximation diffuse et les éléments locaux, réduit le coût de calcul pour la recherche des paramètres matériels. Des simulations de fracturation sont effectuées globales pour mettre à jour la déformation à la rupture de la cible et pour calculer le déplacement de l'apparition de la panne correspondante. Des résultats probants sont obtenus par application successive de la conception de l'expérience (DOE) et l'amélioration des algorithmes de transformation de l'espace de conception. Le protocole d'identification proposée est validé avec de l'acier DP590. Robustesse de la méthode est confirmée par des valeurs initiales différentes. Ces investigations numériques fournissent nouvelle direction pour les simulations multi-échelles de la plasticité et de dégâts des comportements d'acier DP. De plus, ils contribuent efficacement à combler le fossé entre la recherche scientifique et à l'application de l'ingénierie des matériaux hétérogènes. / Dual-phase (DP) steel has been developed by automotive industry for the purpose of weight reduction, improvement in safety performance and fuel efficiency. Usually, DP steel contains hard martensite islands embedded in a soft ferrite matrix. Synergy between these two phases with the inhomogeneous microstructure exhibits excellent mechanical properties. The mechanical properties (plasticity and damage behaviors) of DP steel are mostly derived from its microstructure, e.g., volume fraction, size, distribution and morphology of each constituent phase. Micromechanical approaches are vastly applied to predict plasticity and other mechanical properties of DP steel under various loading scenarios. In this work, micromechanical modelling of DP steel has been performed using real or artificial microstructures. A real microstructure is obtained from metallographic image, while an artificial microstructure generator with an enhanced phase assignment algorithm based on material topology optimization is proposed to investigate the mechanical properties. In this artificial generator, phase assignment process is performed on a modified Voronoï tessellation to achieve the tailored representative volume element (RVE) with a good convergence. The proposed method also includes a proper orthogonal decomposition (POD) reduction of flow curves (snapshots), which are computed using the asymptotic extension homogenization (AEH) scheme, to identify the optimal controlling parameters for DP steel. This numerical method is verified using DP590 and DP980 steels that indicate a good agreement with the flow stress from measurements and RVE prediction based on real microstructures. Predictions of plastic strain patterns including shear bands using the artificial microstructure closely resemble the actual mechanical behavior under similar loading conditions. Moreover, an interpolation has been adopted to obtain a correlation between these controlling parameters based on the identification for various DP steels. Additionally, a bi-level reduced surrogate model is developed and presented to identify the material parameters of the Mohr-Coulomb (MMC) fracture criterion. Using this method, the identification process becomes feasible with a limited number of experimental tests. The method combines local critical elements associated with global models. The surrogate model of fracture strain constructed using the diffuse approximation and the local elements, reduced the computational cost for searching material parameters. Global fracture simulations are performed to update the target fracture strain and to compute the corresponding failure onset displacement. Convincing results are obtained via successive application of design of experiment (DOE) and enhanced design space transformation algorithms. The proposed identification protocol is validated with DP590 steel. Robustness of the method is confirmed with different initial values. These numerical investigations provide new direction for multiscale simulations of the plasticity and damage behaviors of DP steel. Moreover, they efficiently contribute to bridge the gap between scientific research and engineering application of heterogeneous materials.
|
74 |
Friction Stir Welding of High-Strength Automotive SteelOlsen, Eric Michael 05 July 2007 (has links) (PDF)
The following thesis is a study on the ability to create acceptable welds in thin-plate, ultra-high-strength steels (UHSS) by way of friction stir welding (FSW). Steels are welded together to create tailor-welded blanks (TWB) for use in the automotive industry. Dual Phase (DP) 590, 780, and 980 steel as well as Transformation-Induced Plasticity (TRIP) 590 steel with thicknesses ranging from 1.2 mm to 1.8 mm were welded using friction stir welding under a variety of processing conditions, including experiments with dissimilar thicknesses. Samples were tested under tensile loads for initial determination if an acceptable weld had been created. Acceptable welds were created in both TRIP 590 and DP 590 at speeds up to 102 centimeters-per-minute. No acceptable welds were created in the DP 780 and DP 980 materials. A series of microhardness measurements were taken across weld samples to gain understanding as to the causes of failure. These data indicate that softening, caused by both excessive heat and insufficient heat can result in weld failure. Not enough heat causes the high concentration of martensite in these materials to temper while too much heat can cause excessive hardening in the weld, through the formation of even more martensite, which tends to promote failure mode during forming operations. Laser welding is one of the leading methods for creating tailor-welded blank. Therefore, laser welded samples of each material were tested and compared to Friction Stir Welded samples. Lower strength and elongation are measured in weld failure while the failure location itself determines the success of a weld. In short, an acceptable weld is one that breaks outside the weld nugget and Heat Affected Zone (HAZ) and where the tensile strength (both yield and ultimate) along with the elongation are comparable to the base material. In unacceptable welds, the sample broke in the weld nugget or HAZ while strength and elongations were well below those of the base material samples.
|
75 |
The Causes of “Shear Fracture” of Dual-Phase SteelsSung, Ji-Hyun 23 August 2010 (has links)
No description available.
|
76 |
New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranesBalaguer Ramírez, María 02 September 2013 (has links)
Los materiales conductores mixtos de electrones e iones (oxígeno o
protones) son capaces de separar oxígeno o hidrógeno de los gases de combustión
o de corrientes de reformado a alta temperatura. La selectividad de este proceso
es del 100%. Estos materiales, óxidos sólidos densos, pueden usarse en la
producción de electricidad a partir de combustibles fósiles, así como formar parte
de los procesos que forman parte del sistema de captura y almacenamiento de
CO2. Las membranas de transporte de oxígeno (MTO) se pueden utilizar en las
plantas energéticas con procesos de oxicombustión, así como en reactores
catalíticos de membrana (RCM), mientras que las membranas de transporte de
hidrógeno (MTH) se aplican en procesos de precombustión. Además, estos
materiales encuentran aplicación en componentes de sistemas energéticos, como
electrodos o electrolitos de pilas de combustible de óxido sólido, de ambas clases
iónicas y protónicas (SOFC y PC-SOFC).
Los procesos mencionados implican condiciones de operación muy
severas, como altas temperaturas y grandes gradientes de presión parcial de
oxígeno (pO2), probablemente combinadas con la presencia de CO2 and SO2. Los
materiales más que mayor rendimiento de separación presentan y más
ampliamente investigados en este campo son inestables en estas condiciones. Por
tanto, existe la necesidad de encontrar nuevos materiales inorgánicos estables que
proporcionen alta conductividad electrónica e iónica.
La presente tesis propone una búsqueda sistemática de nuevos
conductores iónicos-electrónicos mixtos (MIEC, del inglés) con diferente
estructura cristalina y/o diferente composición, variando la naturaleza de los
elementos y la estequiometría del cristal. La investigación ha dado lugar a materiales capaces de transportar iones oxígeno, protones o cargas electrónicas y
que son estables en las condiciones de operación.
La caracterización de una amplia serie de cerias (CeO2) dopadas con
lantánidos proporciona una comprensión general de las propiedades estructurales
y de transporte, así como la relación entre ellas. Además, se estudia el efecto de la
adición de cobalto a dicho sistema. Se ha completado el análisis con la
optimización de las propiedades de trasporte a partir de la microestructura. Todo
esto permite hacer una clasificación inicial de los materiales basada en el
comportamiento de transporte principal y permite adecuar la estructura y las
condiciones de operación para obtener las propiedades deseadas para cada
aplicación.
Algunos de los materiales extraídos de este estudio alcanzaron las
expectativas. Las familias de materiales basadas en Ce1-x
Tbx
O2-¿
y Ce1-x
Tbx
O2-¿
+2 mol% Co proporcionan flujos de oxígeno bajos pero competitivos, ya que son
estables en atmósferas con CO2. Además, la inclusión de estos materiales en
membranas de dos fases aumenta el flujo de oxígeno. La combinación con una
espinela libre de cobalto y de metales alcalinotérreos como es el Fe2
NiO4, ha
dado lugar a un material prometedor en cuanto a flujo de oxígeno y estabilidad en
CO2 y en SO2, que podría ser integrado en el proceso de oxicombustión.
Por otra parte, se ha añadido metales como codopantes en el sistema
Ce0.9-x
Mx
Gd0.1O1.95. Estos materiales, en combinación con la perovskita La1-
x
Srx
MnO3 usada comúnmente como cátodo de SOFC, han sido capaces de
disminuir la resistencia de polarización del cátodo. La mejora es consecuencia de
la introducción de conductividad iónica por parte de la ceria.
Las perovskitas dopadas basadas en CaTiO3 forman el segundo grupo de
materiales investigados. La dificultad de obtener perovskitas estables y que presenten conducción mixta iónica y electrónica se ha hecho evidente. De entre
los dopantes utilizados, el hierro y la combinación hierro-magnesio han sido los
mejores candidatos. Ambos materiales presentan conductividad principalmente
iónica a alta temperatura, mientras que a baja predomina la conductividad
electrónica tipo p. CaTi0.73Fe0.18Mg0.09O3-¿ se ha mostrado como un material
competente en la fabricación de membranas de oxígeno, que proporciona flujos
adecuados a la par que estabilidad en CO2.
Finalmente, la perovskita La0.87Sr0.13CrO3 (LSC) ha sido dopada con el
objetivo de aumentar la conductividad mixta protónica electrónica. Este estudio
ha llevado al desarrollo de una nueva generación de ánodos para PC-SOFC
basadas en electrolitos de LWO. Las perovskitas dopadas con Ce en el sitio del
La (LSCCe) y con Ni en el sitio del Cr (LSCN) son estables en condiciones de
operación reductoras, así como en contacto con el electrolito. El uso de ambos
materiales como ánodo disminuye la resistencia de polarización con respecto al
LSC. El LSCCe está limitado por los procesos que ocurren a baja frecuencia
(BF), relacionados con los procesos superficiales, y que son atenuados en el caso
del LSCN debido a la formación de nanopartículas de Ni metálico en la
superficie. La infiltración posterior con nanopartículas de Ni permite disminuir la
resistencia a BF lo que sugiere que la reacción superficial de oxidación del H2
está siendo catalizada. La infiltración más concentrada en Ni (5Ni) elimina
completamente la resistencia a BF en ambos ánodos, de forma que los procesos
que ocurren a altas frecuencias son ahora limitantes. El ánodo constituido por
LSCNi20+5Ni dio una resistencia de polarización de 0.26 ¿·cm
2
at 750 ºC en H2
húmedo. / Mixed ionic (oxygen ions or protons) and electronic conducting materials
(MIEC) separate oxygen or hydrogen from flue gas or reforming streams at high
temperature in a process 100% selective to the ion. These solid oxide materials
may be used in the production of electricity from fossil fuels (coal or natural gas),
taking part of the CO2 separation and storage system. Dense oxygen transport
membranes (OTM) can be used in oxyfuel combustion plants or in catalytic
membrane reactors (CMR), while hydrogen transport membranes (HTM) would
be applied in precombustion plants. Furthermore, these materials may also be
used in components for energy systems, as advanced electrodes or electrolytes for
solid oxide fuel cells (SOFC) and proton conducting solid oxide fuel cells (PCSOFC)
working at high and moderate temperature.
The harsh working conditions stablished by the targeted processes
include high temperatures and low O2 partial pressures (pO2), probably
combined with CO2 and SO2 containing gases. The instability disadvantages
presented by the most widely studied materials for these purposes make them
impractical for application to gas separation. Thus, the need to discover new
stable inorganic materials providing high electronic and ionic conductivity is
still present.
This thesis presents a systematic search for new mixed ionic-electronic
conductors. It includes different crystalline structures and/or composition of the
crystal lattice, varying the nature of the elements and the stoichiometry of the
crystal. The research has yielded new materials capable to transport oxygen ions
or protons and electronic carriers that are stable in the working condition to
which they are submitted. / Balaguer Ramírez, M. (2013). New solid state oxygen and hydrogen conducting materials. Towards their applications as high
temperature electrochemical devices and gas separation membranes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31654 / Premios Extraordinarios de tesis doctorales
|
77 |
Élaboration et genèse des microstructures dans les "aciers" fer-azote / Preparation and genesis of microstructures in iron-nitrogen "steels"Xiong, Xiao Chuan 13 November 2008 (has links)
L’industrie automobile cherche constamment à augmenter la part des pièces fabriquées à partir de tôles minces en aciers plus résistants et à plus bas coût. Le parallèle entre les diagrammes de phases Fe-N et Fe-C montre qu’il est possible de développer des aciers similaires dans le système Fe-N. Les objectifs de cette étude étaient l’élaboration des aciers binaires Fe-N et le développement des structures équivalentes à celles dans les aciers au carbone. Les approches envisagées s’articulent autour de : Elaboration : la nitruration gazeuse en phase austénitique suivie de traitements d’homogénéisation ont permis de charger des tôles minces de fer pur en concentrations importantes d’azote. Une simulation de la diffusion de l’azote a été proposée. Genèse des microstructures : Le refroidissement lent de l’austénite Fe-N conduit à des structures perlitiques lamellaires et globulaires, constituées de ferrite et du nitrure non-stoechiométrique Fe4N. Une structure aciculaire particulière a été identifiée. Il s’agit de la ferrite se développant dans le nitrure Fe4N. Le refroidissement lent de la ferrite Fe-N sursaturée conduit à la précipitation des nitrures stables Fe4N et métastable Fe16N2. Des microstructures multiphasées [alpha+alpha'+gamma] ont été obtenues par des maintiens dans le domaine intercritique suivis de trempe. Le domaine intercritique a été réexaminé en utilisant le modèle des sous-réseaux. Des essais in-situ en MET ont relevé l’évolution des précipités de Fe16N2 dans la ferrite au cours du vieillissement à 85 °C. Des proportions importantes de l’austénite résiduelle ont été relevées, ce qui serait à la base du développement des aciers TRIP à l’azote / Car designers are seeking ways to increase the proportion of parts made of sheet steels of higher strength and lower cost. The parallel between the Fe-N and Fe-C phase diagrams shows that it is possible to develop similar steels in the Fe-N system. The objective of this study was to prepare binary Fe-N steels and to develop structures equivalent to those in carbon steels. Approaches to meet the objectives are considered: Preparations of Fe-N steels: gas nitriding in austenite domain followed by homogenization treatments allowed to introduce high amount of nitrogen in pure iron sheet. A simulation of the nitrogen diffusion was proposed to describe the weight increase during nitriding. Genesis of microstructures: The slow cooling of the Fe-N austenite led to lamellar and globular pearlitic structures composed of ferrite and nitrideFe4N. An acicular microstructure, which is the consequence of the precipitation of the ferrite in the nitride Fe4N, was also identified. The slow cooling of the supersaturated Fe-N ferrite led to the precipitation of the stable nitride Fe4N and the metastable nitride Fe16N2, which witnessed a rapid diffusion of nitrogen in ferrite at low temperature, comparable to that of carbon. The multiphase microstructures [alpha+alpha'+gamma] were obtained by intercritical treatments followed by quenching. The intercritical domain was reviewed using the sub-lattice model. In-situ TEM investigations have identified the precipitation of Fe16N2 nitride in the ferrite during the aging at 85 °C. High amount of the residual austenite have been identified, which would be the basis for development of TRIP nitrogen steels
|
78 |
Évolution microstructurale d'un acier Dual Phase. Optimisation de la résistance à l'endommagement / Microstructural evolution of Dual Phase steel. Improvement of damage resistancePushkareva, Irina 13 November 2009 (has links)
Actuellement, l’industrie automobile est à la recherche d’une meilleure solution pour l’allégement de la structure de véhicule afin de diminuer la consommation de carburant et par conséquent diminuer les émissions nocives de CO2. Les aciers à très haute résistance (THR) mécanique permettent d’obtenir les tôles d’acier à section diminué avec les mêmes ou meilleurs propriétés fonctionnels. Les aciers Dual-Phase (DP), constitués majoritairement d’une phase ductile, la ferrite, et d’une phase dure, la martensite, occupent une place importante en tant que matériaux de structure destinés au challenge préoccupant l’industrie automobile. Une bonne résistance à l’endommagement est exigée pour leur utilisation en tant que des pièces de structures et de renfort pour l’automobile. Il a été bien établi que la résistance à l’endommagement des ces aciers Dual-Phase est contrôlée par leur microstructure. Ce travail de thèse s’est inscrit dans une logique de compréhension des mécanismes d’endommagement d’un acier Dual-Phase modèle, le DP 780, en fonction de différents paramètres microstructuraux. Deux mécanismes d’endommagement ont été identifiés pour l’acier DP 780 : la décohésion de l’interface ferrite/martensite et la formation de cavités autour des carbures, dans la martensite revenue. Un modèle qualitatif de mécanisme d’endommagement a été développé afin de pouvoir prédire l’endommagement de l’acier DP 780. Ce modèle qualitatif, développé pour l’acier DP 780, servira de base d’approfondissement de modèles plus élaborés et quantitatifs permettant la compréhension et la prédiction de l’endommagement des aciers Dual-Phase, de façon générale / In the automotive industry current environmental concerns require that the vehicle fuel consumption and CO2 emissions should be reduced as much as possible. It is therefore advantageous to reduce the weight of body in white components by replacing existing parts with higher strength, thinner gauge alternatives with equivalent or improved functional properties. Dual Phase (DP) steels are a class of high-strength low-alloy steels characterized by a microstructure consisting of martensite and ferrite. Dual Phase steels combine high strength levels with good ductility. Thus, DP steels are potentially very attractive for the automobile industry. In addition to the required high strength and ductility, DP steel has to be cold formed into complex shapes. It appears that DP steel damage behaviour is very complex and cannot be predicted using existing models based on standard mechanical properties. This work is concerned with the study of microstructural evolution and investigation of the relation between the microstructure and damage mechanisms in a reference DP 780 steel. Two damage mechanisms have been identified in this DP steel: ferrite/martensite interface decohesion and void formation at tempered carbides. A simple modeling for qualitative description of the observed damage formation mechanisms is proposed. This modeling permits a basic understanding of the experimentally observed trends and could be used as the starting point for a more detailed analysis in future
|
79 |
On some models in linear thermo-elasticity with rational material lawsMukhopadhyay, S., Picard, R., Trostorff, S., Waurick, M. 27 September 2019 (has links)
In the present work, we shall consider some common models in linear thermo-elasticity within a common structural framework. Due to the flexibility of the structural perspective we will obtain well-posedness results for a large class of generalized models allowing for more general material properties such as anisotropies, inhomogeneities, etc.
|
80 |
Influence des conditions de soudage sur le comportement en fatigue d'un acier THR Dual Phase soudé par pointRossillon, Frédérique 15 November 2007 (has links) (PDF)
Les principaux modèles de comportement en fatigue des assemblages soudés par point ne prennent en compte que des paramètres géométriques. Or, les contraintes résiduelles, la microstructure de la Zone Affectée Thermiquement et la forme du fond d'entaille sont, a priori, autant de facteurs d'influence supplémentaires. L'objectif de ce travail est la compréhension des facteurs prédominants de la tenue en fatigue des assemblages soudés par point en acier THR, afin de proposer des conditions de soudage permettant un comportement amélioré. Pour analyser finement les résultats d'essais, des méthodologies et des outils d'observation sont développés : suivi de fissure, fractographie MEB, analyse métallographique. En soudage, l'observation des structures primaires permet de comprendre la formation du point de soudure. Dans certains cas, la solidification débute alors que le courant est encore délivré à l'assemblage. De nombreux essais de fatigue sont réalisés sur des assemblages de traction-cisaillement en acier Dual Phase pour étudier l'influence des conditions de soudage. Par l'utilisation combinée des différents outils, l'effet des conditions de soudage et les principaux facteurs d'influence sur la durée de vie de l'assemblage sont dégagés. L'étape de propagation de fissure est peu sensible aux conditions de soudage, une modélisation fiabiliste de cette étape est proposée. L'amorçage de fissure se révèle être l'étape cruciale. Un cycle de soudage adapté permet d'obtenir un comportement en fatigue amélioré grâce à une modification favorable du champ de contraintes résiduelles en fond d'entaille , tout en gardant des séquences de soudage sur composant acceptables. Ces résultats ouvrent de réelles perspectives d'application industrielle.
|
Page generated in 0.0842 seconds