• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 12
  • 9
  • 8
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 99
  • 40
  • 39
  • 22
  • 22
  • 19
  • 18
  • 18
  • 17
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Generation and analysis of T cell receptor transgenic rats to model CNS autoimmunity

Kitz, Alexandra 29 October 2013 (has links)
No description available.
32

Modulation of Notch in an Animal Model of Multiple Sclerosis

Munshi, Manit Nikhil 07 November 2016 (has links)
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disease that affects millions of people worldwide. Although the exact cause of MS is unknown, it is clear that CD4+ T helper cells play a significant role, namely T helper 1 (Th1) and T helper 17 (Th17) cells. The Notch family of proteins plays a role in the development and differentiation of T helper cells. Previous data has shown that inhibition of Notch impairs the ability of T helper cell differentiation. Additionally specific inhibition of certain Notch members inhibits specific T helper cell differentiation, for example the inhibition of Notch 1 inhibits Th1 and iTreg polarization [Samon et al., 2008]. However, the effects of the other Notch family members on CD4+ T cells are not fully studied. We propose that Notch 3 plays an extensive role in the regulation of Th1, Th2, Th17, and iTreg polarizations. In addition, we propose that Notch 3 regulates function of T helper cell function in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Data in this thesis show that Notch 3 plays a significant role in the polarization of Th1, Th17 and iTreg polarization [Karlsson et al., 2011]. We present evidence that the heterozygous and homozygous Notch 3 knockout exhibits a significant decrease in polarization toward Th1, Th17 and iTreg cell fates. Exopolysaccharide (EPS) is a compound that has been previously shown to play a protective role in other inflammatory diseases. EPS has been shown to produce anti-inflammatory macrophages. We propose that a similar anti-inflammatory effect might be possible in EAE. We found that EPS had a significant effect on EAE induction, decreasing the onset and peak disease score. EPS also reduced the concentration of IFN-γ, IL17A, and GM-CSF in the supernatants of the splenocytes after restimulation with MOG. Further experimental data is needed to prove the effects of EPS on EAE and the method by which EPS function. These data indicate that Notch 3 could be crucial in regards to EAE due to the effects on Th1 and Th17 which are instrumental in EAE induction [Raphael et al., 2015].
33

The role of the lung in shaping CNS autoimmunity

Hosang, Leon 01 July 2019 (has links)
No description available.
34

Pathological role of double-stranded DNA antibodies in multiple sclerosis.

Rowton, Sharon January 2009 (has links)
Multiple sclerosis is a complex disease and one for which the aetiology remains largely unanswered. Anti-dsDNA antibodies have been found intrathecally and bordering lesions in multiple sclerosis patients and in view of their known pathogenity in lupus nephritis the aim of this project was to further investigate their role in multiple sclerosis. Using the acute experimental allergic encephalomyelitis (EAE) model in the Lewis rat, the inflammatory phase of disease was profiled using immunohistological and ELISA methods and was related to clinical sign severity. The parameters of interest were central nervous system deposits of IgM, IgG, B cells and C3 and anti-DNA antibodies in sera, cerebrospinal fluid and in situ. In situ evaluation of anti-dsDNA antibodies was also performed in tissue taken from Biozzi (AH) mice (relapsing/remitting EAE model) and from a multiple sclerosis patient. Inflammatory deposits specifically at sites of perivascular cuffing were found to increase with increasing clinical sign severity. At the time clinical signs had plateaued in the Lewis rat, intrathecal anti-dsDNA antibodies were at their highest level and anti-ssDNA antibodies at their lowest. The latter possibly due to their involvement in the `clearing-up¿ process following tissue damage. Using novel DNA probes fluorescence suggestive of the presence of anti-dsDNA iii antibodies was seen in both animal and human tissue. Within human tissue the antibodies appeared to accumulate around active lesions and within vessels, raising the question of these antibodies having differing location dependent functions. EAE models have the potential to investigate these findings further and to evaluate new therapies. / Covance Laboratories Ltd.
35

ON THE ROLE OF CD24 IN THE PATHOGENICITY OF MYELIN ANTIGEN SPECIFIC T CELLS

Carl, Joseph William, Jr 24 June 2008 (has links)
No description available.
36

Development of Immunosupressant and Peptide Loaded Microparticles as Tolerogenic Vaccines for Treatment of Autoimmune Diseases

Kanthamneni, Naveen 19 June 2012 (has links)
No description available.
37

Beteiligung der Indolamin 2,3-Dioxygenase (IDO) an Immunregulation des zentralen Nervensystems

Kwidzinski, Erik 13 February 2006 (has links)
In Europa stellt die Multiple Sklerose (MS) die häufigste neuroimmunologische Erkrankung des zentralen Nervensystems (ZNS) dar. Relevante Daten zum Krankheitsverlauf der MS wurden durch Untersuchungen im Tiermodell der experimentellen autoimmunen Enzephalomyelits (EAE) gewonnen. Nach gegenwärtigem Kenntnisstand wandern autoreaktive T-Zellen vom T-Helfer-1 (Th-1) Typ in das ZNS ein und lösen eine gegen Bestandteile der Markscheide gerichtete Entzündung aus. Diese Zellen exprimieren große Mengen des für sie typischen Zytokin Interferon-gamma (IFN-gamma), was in zahlreichen Zelltypen die Expression des Tryptophan degradierenden Enzyms Indolamin 2,3-Dioxygenase (IDO) induziert. Seit 1998 ist bekannt, dass die Inhibition der IDO zu einer durch T-Zellen vermittelten Abstoßung allogener Feten führt. Diese immunregulatorische Funktion von IDO konnte auf den schnellen Abbau der essentiellen Aminosäure Tryptophan und der im folgenden Abbauweg synthetisierten T-Zell-toxischen Metabolite zurückgeführt werden. Da im entzündeten ZNS-Gewebe während der MS und der EAE das IDO induzierende Zytokin IFN-gamma ebenfalls exprimiert wird, sollte in der vorliegenden Arbeit untersucht werden in wie weit die IDO an der Immunregulation des ZNS unter autoimmuner Neuroinflammation während EAE, beteiligt ist. Mittels HPLC konnte gezeigt werden, dass die relative IDO Aktivität im ZNS während der akuten und der Erholungsphase der Erkrankung signifikant gesteigert ist. Erfolgte ab dem Ausbruch der Erkrankung die systemische Inhibition der IDO Aktivität mit dem spezifischen IDO-Inhibitor 1-Methyl-Tryptophan, so führte dies zu einem signifikant schwereren Krankheitsverlauf im Vergleich zu Kontrolltieren. Mittels Immunzytochemie wurde gezeigt, dass aktivierte Mikroglia IDO im entzündeten ZNS und in Zellkultur nach IFN-gamma Stimulation exprimieren. Aufgrund von RT-PCR Analysen weiterer Enzyme des Kynureninweges konnte dessen Regulation während EAE nachgewiesen werden Entlang dieses Stoffwechselweges werden T-zell-toxische Tryptophanmetabolite gebildet die an der Eliminierung autoreaktiver T-Zellen im ZNS während der Erholungsphase der EAE beteiligt sein könnten und somit die aktivierten Th1 Zellen im ZNS einen antiinflammatorischen Rückkopplungsmechanismus auslösen. / Multiple sclerosis (MS) is the most widespread neuroimmunological disease of the central nervous system (CNS) in Europe. By applying the animal model of MS, experimental autoimmune encephalomyelitis (EAE), important insights into the disease course of MS have been gained. At present it is accepted that at the onset of the disease myelin-reactive T helper type 1 (Th1) cells infiltrate the CNS and induce autoimmune neuroinflammation. Activated Th1 cells express high amounts of the cytokine interferon-gamma (IFN-gamma). This pro-inflammatory signaling molecule is known to induce the expression of the tryptophan-degrading enzyme Indolmaine 2,3- Dioxygenase (IDO) in several cell types. Since 1998 it is known that inhibition of IDO induces the T cell-mediated rejection of allogeneic concepti in mice. The mechanism of this immunregulatory function of IDO was shown to be due to the degradation of the essential amino acid tryptophan and the subsequent synthesis of T cell toxic metabolites. Since the IDO-inducing cytokine IFN-gamma is also expressed within inflamed CNS tissue during MS and EAE, the present work investigated the role of IDO in immunregulation of the CNS during autoimmune neuroinflammation in the EAE model. A significant increase in relative IDO activity within the CNS during the acute and remission phases of EAE was identified by HPLC analysis. Systemic inhibition of IDO activity by the specific IDO inhibitor 1-methyl-tryptophan reduced the remission and exacerbated the progression of the disease in comparison to control animals. Activated microglia were identified by immunocytochemistry as IDO-expressing cells within the acute inflamed CNS and in cell culture after IFN-gamma stimulation. Enzymes following IDO in the kynurenine pathway were shown by RT-PCR to be up-regulated in the disease course. The analyzed enzymes are known to produce T cell toxic tryptophan metabolites and might therefore be involved in the elimination of autoreactive T cells from CNS tissue. In conclusion, the presented data support the view that autoreactive Th1 cells in the CNS induce a self-limiting negative feedback mechanism which limits the spread of inflammation, thereby reducing bystander damage in the CNS.
38

Das 20S Proteasom in Astrozyten und seine Rolle bei Entzündungsprozessen im Zentralnervensystem

Siele, Dagmar 06 November 2009 (has links)
Das Proteasom ist das zentrale proteolytische System in eukaryontischen Zellen, welches die Mehrzahl der intrazellulären Proteine abbaut. Da viele essentielle Prozesse in der Zelle proteolytisch reguliert werden, besitzt das Proteasom eine außerordentliche biologische Bedeutung. Die Erforschung des Proteasoms im ZNS steht erst am Anfang, dennoch zeigen zahlreiche Untersuchungen, dass Inhibition bzw. Störung des Ubiquitin-Proteasom-Systems mit vielen neurologischen oder neurodegenerativen Erkrankungen einhergeht. Deshalb wurde in der vorliegenden Arbeit nach Veränderungen des Proteasoms in Entzündungsprozessen im ZNS am Beispiel der experimentellen autoimmunen Encephalomyelitis (EAE) in der Maus gesucht. Schwerpunkt der Untersuchungen war das Proteasom in Astrozyten. Astrozyten stellen die größte Gruppe unter den Gliazellen dar und besitzen vielfältige Funktionen, zu denen neben klassischen housekeeping Funktionen auch Aufgaben bei der Immunantwort zählen. Der enge und für Neurone essentielle Kontakt prädestiniert Astrozyten, neuronale Erkrankungen mit auszulösen und zu modulieren. In dieser Arbeit wurden in primär isolierten Astrozyten Immunproteasomen (IP) detektiert. Durch Experimente mit der Astrozytenzelllinie TSA-3 konnte gezeigt werden, dass Astrozyten im unstimulierten Zustand nur Standardproteasom besitzen, auf Stimulation jedoch mit der Bildung von IP reagieren. Das Fehlen von IP in Astrozyten unter in vivo Bedingungen deckte sich mit den Strukturanalysen von Proteasomen aus dem Großhirn von Mäusen verschiedener Altersstufen, den mRNA-Expressionsanalysen sowie immunhistologischen Untersuchungen von Hirngewebe aus EAE Mäusen. Die aus dem Großhirn isolierten Proteasomen nach Induktion einer EAE durch Myelin-Oligodendrocyten-Glycoprotein (MOG) enthielten keine IP. Dennoch erfolgt eine Aktivitätsveränderung im Proteasom vor dem Auftreten der ersten EAE Symptome, die in vitro zu einer effizienteren Epitopgenerierung aus einem MOG-Peptid führt. / The proteasome is the central proteolytic system in all eukaryotic cells catalysing the degradation of the majority of intracellular proteins. Since many essential processes are proteolytically controlled, the proteasome is of crucial biological importance. Yet numerous investigations show that many neurological or neurodegenerative diseases go along with inhibition and/or changes of the ubiquitin-proteasome-system. Therefore the present thesis investigates the proteasome system during inflammatory processes in the CNS, namely during experimental autoimmune encephalomyelitis (EAE), a widely used animal model for human multiple sclerosis. Main focus of the investigations was the proteasome in astrocytes. Astrocytes embody the largest group of glial cells in the CNS and possess various functions. Apart from classical housekeeping functions astrocytes take part in the immune reaction in the CNS. Their close and essential contact to neurons predestines astrocytes to cause and modulate neural diseases. In the present work immune proteasome subunits were detected in primary astrocytes isolated from newborn mice. On the other hand, when grown under resting conditions the murine astrocyte cell line, TSA-3, contains standard proteasome only, however, when treated with interferon gamma, these cells produce immune proteasomes, too. Subunit analyses of proteasomes isolated from the cerebrum of mice of different age, measurement of the mRNA expression level of proteasome subunits as well as immune-histological investigations of brain tissue from mice confirmed the absence of immune proteasome in astrocytes under in vivo conditions. Proteasomes isolated from mouse brain after induction of EAE by active immunization with myelin oligodendrocyte glycoprotein (MOG) did not contain immune subunits. Nevertheless an activity change in the proteasomes isolated from brains before onset of EAE was observed, which lead to a more efficient epitope generation from MOG peptide.
39

Mechanismen der Schädigung und der gestörten Regeneration im entzündeten zentralen Nervensystem

Topphoff, Ulf Schulze 16 April 2009 (has links)
Schädigungen im zentralen Nervensystem treten nicht nur bei der Multiplen Sklerose (MS), sondern auch bei einer Vielzahl weiterer entzündlicher Schadensparadigmen auf. Allgemeines Kennzeichen dieser primär wie auch sekundär entzündlichen neurodegenerativen Erkrankungen ist das Auftreten von oxidativem Stress in Verbindung mit einer eingeschränkten Regeneration von Nervenzellen und einem übermäßiges Auftreten von Astrozyten. Allerdings ist bislang nicht bekannt, welche Faktoren für eine frühe neuronale Schädigung verantwortlich sind, und welche Faktoren zu einem übermäßigen Auftreten von Astrozyten beitragen. Vorarbeiten belegten, dass Apoptose-regulierende Systeme, wie z.B. der TRAIL-Signalweg, sowohl an der Immunregulation als auch an Schädigungsprozessen im Gehirn beteiligt sein können. Im Rahmen dieser Arbeit wurde gezeigt, dass eine auf das ZNS beschränkte Blockade des TRAIL-Signalwegs in der EAE, dem Tiermodell der MS, zu einer signifikanten Verminderung des Erkrankungsgrades führte. Darüber hinaus wurde eine reduzierte Enzephalitogenität von TRAIL-defiziente Myelin-spezifischen Lymphozyten belegt. Die Ergebnisse deuten darauf hin, dass der TRAIL-vermittelte Schädigungsmechanismus die Pathogenese der Neuroinflammation entscheidend mitbestimmt und die immunregulatorische Wirkung eine eher untergeordnete Rolle spielt. Dagegen stellte sich im Tiermodell der bakteriellen Meningitis heraus, dass TRAIL hier eine anti-inflammatorische Rolle im ZNS spielt, die vor allem durch eine TRAIL-R-abhängige apoptotische Minderung der Entzündungsreaktion vermittelt wird. Eine Beeinflussung der Migration von Effektorzellen durch TRAIL konnte in diesem Modell ausgeschlossen werden. Anscheinend hängt die therapeutische Modulation des TRAIL-Systems entscheidend von der jeweils zu Grunde liegenden Ätiopathogenese ab und kann nicht allgemein auf entzündliche ZNS-Erkrankungen übertragen werden. Als mögliche Ursache für eine verminderte Regenerationsfähigkeit endogener Stammzellen konnte hier ein endogener Mechanismus aufgedeckt werden, der als Antwort auf oxidativen Stress zu einem quantitativen Überwiegen von Astrozyten führt. Dabei zeigte sich, dass nicht toxische oxidative Bedingungen das Proliferationsvermögen von neuralen Stammzellen deutlich hemmten und dazu führten, dass anstelle von Neuronen vornehmlich Astrozyten entstehen. Dieses veränderte Differenzierungsvermögen ließ sich sowohl in vitro als auch in vivo experimentell nachvollziehen und wies darauf hin, dass durch milde Entzündungsprozesse hervorgerufene basale metabolische Veränderungen die neuronale und astrogliale Entwicklung aus neuralen Stammzellen reziprok reguliert wird. In weiteren Untersuchungen stellte sich heraus, dass die Histondeacetylase Sirt1 in neuralen Stammzellen als Sensor für das Redox-Potenzial dient. Schon geringe metabolische Änderungen induzierten die Bindung an den bHLH-Transkriptionsfaktor Hes1, die zu einer direkten Modulation des pro-neuronalen Transkriptionsfaktors Mash1 führten und die Differenzierung von neuralen Stammzellen zugunsten der astroglialen Entwicklung beeinflussten. Die Aufklärung dieses Mechanismus könnte somit zukünftig helfen, intrinsische Regenerationsprozesse nach Schädigung des ZNS zu verstärken und damit neue therapeutische Perspektiven bei neurologischen Erkrankungen zu öffnen. / Damage processes of the central nervous system (CNS) are not only found in Multiple sclerosis (MS) even in a variety of inflammatory diseases. A common feature of these inflammatory neurodegenerative disorders is the existence of oxidative stress in combination with a failure of neuronal replenishment and the predominant occurrence of astrocytes (known as astrogliosis). So far, factors, which are responsible for early neuronal damage and overwhelming generation of astrocytes, are not known. Recent studies could show that the tumor necrosis factor related apoptosis-inducing ligand (TRAIL) might be involved in immunregulation as well as damage processes in the CNS. Here, it could be shown that blockade of TRAIL in the CNS of animals suffering from experimental autoimmune encephalomyelitis (EAE) significantly ameliorates the disease. Furthermore, transfer of myelin-specific TRAIL-deficient T cells into wild type recipients lead to a significantly attenuated disease score. These findings underline the contribution of TRAIL to irreversible CNS damage. In the adult mammalian brain, multipotent and self-renewing neural progenitor cells (NPCs) have the capacity to generate new neurons, astrocytes and oligodendrocytes. NPCs may thus serve as a regenerative tool by which brain damage could be compensated. However, repair processes in response to all forms of neuronal injury, be they inflammatory, ischemic, metabolic, traumatic or other, are characterized by the failure of neuronal replenishment and the predominant occurrence of astrocytes. The common molecular pathways underlying this phenomenon are only poorly understood. Here, it could be shown that subtle alterations of the redox state, found in different brain damage scenarios, substantially regulate the fate of murine NPCs via the histone deacetylase silent mating type information regulation 2 homolog 1 (Sirt1). Mild oxidative conditions suppress proliferation of NPCs and direct their differentiation towards the astroglial at the expense of the neuronal lineage (and vice versa). Under oxidative conditions, NPCs upregulate Sirt1 in vitro and in vivo, which then binds to the transcriptional repressor Hes1 and finally downregulates the pro-neuronal basic helix-loop-helix transcription factor Mash1. Furthermore, it could be shown that targeted modulation of Sirt1 activity mimics the effects of subtle redox alterations. The results provide evidence for an as yet unknown metabolic master switch, which determines the fate of NPCs. Targeting these mechanisms may minimize undesired aspects of reactive astrogliosis as well as improve the success of therapeutic neural stem cell implantation.
40

Wirkmechanismen von Glukokortikoiden im Mausmodell der EAE – Einfluss auf Effektor- und Bystander-T-Zellen und Relevanz der T-Zell-Apoptose / Mechanisms of action of glucocorticoids in the mouse model of EAE - effect on effector and bystander T-cells and relevance of T-cell apoptosis

Müller, Lisa 16 November 2015 (has links)
In der vorliegenden Arbeit wurden die grundlegenden Mechanismen der Glukokortikoidtherapie bei der MS anhand des Tiermodells der MS, der EAE, untersucht. Hierzu wurde die EAE aktiv mithil-fe von MOG35-55 in C57Bl/6-Mäusen sowie GRdim- und lckGRdim-Mäusen induziert.  Zum einen sollte die Wirkung von Dexamethason auf Bystander- und Effektor-T-Zellen gesondert voneinander betrachtet werden. Hierzu sollte zunächst ein Modell etabliert werden, bei dem die GCs nur auf die Bystander- beziehungsweise nur auf die Effektor-T-Zellen wirkten. Trotz zahlrei-cher Experimente konnte kein Modell etabliert werden, dass den Ansprüchen für die Beantwor-tung der Frage genügte.  Zum anderen wurde in dieser Arbeit gezeigt, dass lckGRdim-Mäuse trotz fehlender Dimerisierungs-fähigkeit des GRs und somit fehlender Apoptose-Induktion in T-Zellen auf die GC-Therapie ebenso gut ansprachen wie Kontrolltiere. Ebenso konnte dies bei reinen GRdim-Tieren beobachtet werden. Zunächst wurde mithilfe von Zellzählungen, FACS-Analysen nach Anfärben der Splenozyten mit AxV und einem Apoptose-Assay ausgeschlossen, dass es in den Tieren mit dem veränderten GR doch zu einer Induktion von Apoptose kam. So konnte bestätigt werden, dass Apoptose nicht es-sentiell für die Therapie der EAE ist. Anhand eines Proliferations-Assays konnte ebenso ausgeschlossen werden, dass GCs unspezifisch die gesamte Funktionalität der Zellen beeinflussen. Im Folgenden wurden weitere mögliche Me-chanismen der Wirkung von GCs in der EAE untersucht.  Anhand von FACS-Analysen und qPCR sowie histologischen Untersuchungen konnte gezeigt wer-den, dass die eingeschränkte Migration der Zellen in das RM nach Dex-Gabe eine wichtige Rolle zu spielen scheint. So sahen wir eine Herunterregulierung von Adhäsionsmolekülen sowie die ver-minderte Expression von einigen Zytokinen. Im Falle der Chemokine, die jedoch nur als Neben-schauplatz in dieser Arbeit betrachtet werden, konnte keine Herunterregulierung von RANTES in GRdim-Tieren beobachtet werden. Andere Publikationen geben jedoch Hinweise darauf, dass auch die Beeinflussung der Chemokine entscheidend am Mechanismus der GC-Therapie beteiligt ist.   Zusammenfassend konnte mit dieser Arbeit gezeigt werden, dass Transaktivierungsprozesse, im Speziellen die Induktion von Apoptose, keinen entscheidenden therapeutischen Effekt von Dex darstellen. Der tatsächliche Mechanismus konnte auch im Rahmen dieser Arbeit nicht geklärt wer-den. Durch die Versuche an GRdim-Tieren gibt es jedoch entscheidende Hinweise darauf, dass vor allem repressive Effekte als Wirkungsmechanismus der Kortisontherapie entscheidend sind. Hierzu zählen zum Beispiel die verminderte Expression von Adhäsionsmoleküle sowie die verminderte Ausschüttung von Zytokinen bzw. Sekretion von Chemokinen. Zusammengenommen also Prozes-se, die die Migration von T-Zellen ins ZNS beeinflussen und steuern.  Dieser Aspekt hat eine große Bedeutung für die Therapie der MS, da gerade die Gene, die durch Transaktivierung induziert werden, zu den unerwünschten Nebenwirkungen der Therapie führen. Da diese keine Bedeutung in der Wirksamkeit der GC-Therapie zu haben scheinen, könnten Medi-kamente entwickelt werden, die selektiv die Gene, die durch Transrepression aktiviert werden, ansteuern. Dies würde ein großes Benefit für MS-Patienten nach sich ziehen, die im Rahmen der notwendigen Therapie ihrer Erkrankung mit teilweise gravierenden Nebenwirkungen zu kämpfen haben.

Page generated in 0.0205 seconds