• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1061

Analyse systématique du concept de comportement linéaire équivalent en ingénierie sismique / Systematic analysis of the concept of equivalent linear behavior in sismic ingenierie

Nguyen, Thuong Anh 20 December 2017 (has links)
En ingénierie sismique, il est admis que le comportement d’une structure soumise à de forts séismes soit caractérisé par des boucles d’hystérésis qui peuvent être amples ou étroites selon le type de structure impactée. La prise en compte de ce type de comportement non-linéaire dans un calcul temporel présente des difficultés liées à l’identification des paramètres, au coût numérique élevé, au risque de non-convergence. Dans ce contexte, la méthode de linéarisation équivalente, a été introduite en géotechnique dès les années 70. Elle reste peu utilisée dans le domaine des structures malgré les efforts de nombreux auteurs. Ce travail de thèse a pour objet l’étude du comportement linéaire équivalent dans le contexte des méthodes simplifiées d'évaluation de la réponse non-linéaire d'une structure en ingénierie sismique. Nous passons en revue les critères de linéarisation adoptés par les différentes méthodes qui recherchent l’équivalence (1) du déplacement maximum ou (2) de la quantité d’énergie dissipée ou (3) de la force de rappel. Nos analyses montrent que ces trois critères ne sont pas pertinents et/ou efficaces, conduisant à des méthodes peu robustes qui conduisent dans certains cas à des résultats inexplicables. Nous montrons le rôle important, négligé par toutes les méthodes disponibles, du contenu fréquentiel respectif des signaux et du système dans la détermination de la ductilité appelée. Sur cette constatation, nous introduisons une nouvelle méthode de linéarisation équivalente basée sur la fonction de transfert. Nous utilisons cette méthode pour explorer un plan d’expérience numérique dans lequel nous calculons les caractéristiques de fréquence et d’amortissement équivalents en fonction de la ductilité appelée pour différente configurations caractérisées par (a) le rapport entre fréquence de l’oscillateur et fréquence centrale du signal excitateur, (b) la pente d’écrouissage et (c) le modèle de comportement qui varie continument de élastoplastique à endommageant. Nous proposons deux nouvelles approches du comportement linéaire équivalent. La première, visant à améliorer la procédure statique non-linéaire de l’ATC40, utilise la rigidité sécante et le déplacement maximal. Elle fait intervenir une estimation de l’amortissement différente de celle de l’ATC40. Sa pertinence est établie par le fait qu’elle permet d’évaluer avec exactitude le déplacement maximal de systèmes canoniques non-linéaires. La seconde consiste à restituer la dynamique de la réponse d'un oscillateur non-linéaire au travers de la fonction de transfert. Sa pertinence est démontrée au travers des critères d’Anderson, avec notamment un critère relatif au spectre transféré. La détermination du comportement linéaire équivalent par fonction de transfert est validée sur des structures réelles au travers des essais sur voiles en béton armé (SAFE) et sur systèmes des tuyauteries (BARC et EPRI) / In earthquake engineering, it is common that the behaviour of a structure undergoing a strong motion is characterized by wise or narrow hysteresis loops depending on the type of behaviour of the structure. Considering this non-linear behaviour in a transient calculation requires a huge need of resources in terms of calculation time and memory. In this context, the method of equivalent linearization, consisting in the evaluation of the non-linear response of the structure has been introduced by geotechnical engineers In the 1970s. Despite efforts of many authors, this method is still not used in structural field. The goal of this research is to examine the linear equivalent behaviour in the context of the simplified method of evaluating the non-linear response of a structure in earthquake engineering. We review the criteria of equivalence adopted by many methods searching for the equivalence of (1) the maximum of displacement or (2) quantity of dissipated energy or (3) the restore force. Our argumentative analyses carry out that these three criteria are not pertinent and/or efficient. This leads, in some cases, to some unexplained results. We show the important role, which is mostly neglected in existing method, of frequency content while evaluating the ductile demand. Based on this recognition, we introduce a new method of equivalent linearization based on the transfer function. We use this method in order to explore a numerical experimental plan in which we calculate the equivalent characteristics (frequency and damping) versus the ductile demand for different configuration characterized by (a) the ratio between the frequency of the oscillator and the central frequency of the input signal, (b) the hardening and (c) the behaviour which covers the elastoplastic and damaged ones. We propose two new approaches of the linear equivalent behaviour. The first one, aiming to improve the non-linear static procedure of ATC40, use the secant stiffness and the maximal displacement. This approach consists in an estimation of damping which is different to ATC40. Its pertinence is established by evaluating with accuracy the maximal displacement of the canonical non-linear systems. The second approach consists in restitution of the dynamic of the response of a non-linear oscillator by using the transfer function. The pertinence of this proposition is shown through the criteria of Anderson, especially in terms of transferred motion. In this effect, the linear equivalent behaviour based on the transfer function allows to cope the transferred motion through the non-linear oscillator without performing the non-linear transient calculation. The validation of the linear equivalent behaviour based on the transfer function has been examined on real structures through some experimental tests such as the reinforced concrete wall (SAFE) or piping systems (BARC and EPRI)
1062

Neotectonics of Java, Indonesia: Crustal Deformation in the Overriding Plate of an Orthogonal Subduction System

January 2016 (has links)
abstract: Shallow earthquakes in the upper part of the overriding plate of subduction zones can be devastating due to their proximity to population centers despite the smaller rupture extents than commonly occur on subduction megathrusts that produce the largest earthquakes. Damaging effects can be greater in volcanic arcs like Java because ground shaking is amplified by surficial deposits of uncompacted volcaniclastic sediments. Identifying the upper-plate structures and their potential hazards is key for minimizing the dangers they pose. In particular, the knowledge of the regional stress field and deformation pattern in this region will help us to better understand how subduction and collision affects deformation in this part of the overriding plate. The majority of the upper plate deformation studies have been focused on the deformation in the main thrusts of the fore-arc region. Study of deformation within volcanic arc is limited despite the associated earthquake hazards. In this study, I use maps of active upper-plate structures, earthquake moment tensor data and stress orientation deduced from volcano morphology analysis to characterize the strain field of Java arc. In addition, I use sandbox analog modeling to evaluate the mechanical factors that may be important in controlling deformation. My field- and remotely-based mapping of active faults and folds, supplemented by results from my paleoseismic studies and physical models of the system, suggest that Java’s deformation is distributed over broad areas along small-scale structures. Java is segmented into three main zones based on their distinctive structural patterns and stress orientation. East Java is characterized by NW-SE normal and strike-slip faults, Central Java has E-W folds and thrust faults, and NE-SW strike-slip faults dominate West Java. The sandbox analog models indicate that the strain in response to collision is partitioned into thrusting and strike-slip faulting, with the dominance of margin-normal thrust faulting. My models test the effects of convergence obliquity, geometry, preexisting weaknesses, asperities, and lateral strength contrast. The result suggest that slight variations in convergence obliquity do not affect the deformation pattern significantly, while the margin shape, lateral strength contrast, and perturbation of deformation from asperities each have a greater impact on deformation. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2016
1063

Otimização de amortecedores de massa sintonizados em estruturas submetidas a um processo estacionário

Rossato, Luciara Vellar January 2017 (has links)
Atualmente as estruturas estão sendo avaliadas para um maior número de ações em relação há algumas décadas. Esta melhoria ao longo da fase de concepção é dada devido ao fato de que está se tornando mais competitivo o fornecimento de estruturas leves e esbeltas, sendo solicitados, cada vez mais, projetos com menor custo de implantação. Devido a isto, é necessário avaliar as estruturas não apenas sujeitas a cargas estáticas, mas também a carregamentos dinâmicos. As ações dinâmicas que atuam sobre uma estrutura podem ser muito mais prejudiciais do que as estáticas quando não são bem consideradas e dimensionadas. Ações dinâmicas podem ser provenientes de tremores de terra, vento, equipamentos em funcionamento, deslocamento de pessoas, veículos em movimento, motores desbalanceados, entre outras fontes, o que pode causar vibrações na estrutura, podendo levar a mesma ao colapso. A fim de controlar e reduzir as amplitudes de vibração, entre outras alternativas é possível a instalação de amortecedores de massa sintonizado (AMS), que é um dispositivo de controle passivo. O AMS tem várias vantagens, tais como a grande capacidade de reduzir a amplitude de vibração, fácil instalação, baixa manutenção, baixo custo, entre outras. Para se obter a melhor relação custo-benefício, ou seja, a maior redução de amplitude aliada a um menor número de amortecedores ou a uma menor massa, a otimização dos parâmetros do AMS tornase fundamental. Neste contexto, este trabalho visa, através de simulação numérica, propor um método para otimizar parâmetros de AMSs quando estes devem ser instalados em edifícios submetidos à excitação sísmica. Inicialmente é considerado apenas um único AMS instalado no topo do edifício e em seguida também são feitas simulações com múltiplos AMSs (MAMS), e por fim são descartados os AMSs desnecessários, obtendo assim a melhor resposta da estrutura. Para tanto, uma rotina computacional é desenvolvida em MatLab usando o método de integração direta das equações de movimento de Newmark para determinar a resposta dinâmica da estrutura. Para fins de análise podem ser considerados tanto sismos reais quanto artificiais. Os acelerogramas artificias são gerados a partir do espectro proposto por Kanai e Tajimi. Primeiramente, a estrutura é analisada somente com o seu amortecimento próprio para fins comparativos e de referência. Em seguida, a otimização do ou dos AMSs é feita, na qual a função objetivo é minimizar o deslocamento máximo no topo do edifício, e as variáveis de projeto, são a relação de massas (AMS - Estrutura), rigidez e amortecimento do ou dos AMSs. Para a otimização são utilizados os algoritmos Firefly Algotithm e Backtracking Search Optimization Algorithm. De acordo com as configurações do AMS, após a otimização dos seus parâmetros são determinadas as novas respostas dinâmicas da estrutura. Finalmente, pode-se observar que o método proposto foi capaz de otimizar os parâmetros do ou dos AMSs, reduzindo consideravelmente as respostas da estrutura após a instalação do mesmo, minimizando o risco de dano e colapso do edifício. Desta forma, este trabalho mostra que é possível projetar AMS e MAMS de forma econômica e eficaz. / Currently, structures are being evaluated for a greater number of actions when compared to a few decades ago. This improvement in designing stage is happening because projects providing lightweight and slender structures, with lower implantation costs, are being more requested. Thus, evaluating structures not only subjected to static loads, but also to dynamic loads has become necessary. Dynamic loads acting on a structure are more damaging than static loads, if they are not well considered and dimensioned. Dynamic loads could occur from earthquakes, wind, equipment, movement of people or vehicles, among other sources, which cause vibrations in structures and may lead to a collapse. Tuned mass damper (TMD), a passive control device, can be installed as an alternative to reduce vibration amplitudes. TMD has several advantages, such as large capacity to reduce amplitude of vibration, easy installation, low maintenance, low cost, among others. Optimizing TMD parameters is fundamental for obtaining best cost-benefit relation, i.e., greater amplitude reduction along with lower number of dampers or lower mass. In this context, this study aims at proposing, through numerical simulation, a method for optimizing TMD parameters when installing them on buildings under seismic excitation. Initially, a single-TMD case is considered, then simulations with multiple-TMDs (MTMDs) are run; lastly, unnecessary TMDs are discarded, obtaining the best structural response. For this purpose, a computational routine is developed on MatLab using Newmark direct integration method for equations of motion to determine the dynamic structural response. Both real and artificial earthquakes are considered for purposes of analysis. Artificial accelerograms are generated from proposed Kanai-Tajimi spectrum. First, structure is analyzed only with its own damping for comparison and reference. Second, a single or multiple-TMD optimization is carried out, in which the objective function is to minimize the maximum displacement at the top of the building, and the design variables are modal mass ratio (Structure-TMD), stiffness and damping of a single or multiple-TMD. Firefly and Backtracking Optimization algorithms are used for optimization. According to TMD settings, new dynamic structural responses are determined after optimizing parameters. Finally, the proposed method could optimize parameters of single or multiple-TMDs, considerably reducing structural responses after their installation, minimizing the risk of damage and building collapse. Thus, this study shows the possibility of designing TMDs or MTMDs both economically and effectively.
1064

Advanced Numerical Techniques for Dynamic and Aerodynamic Analysis of Bridges

Naderian, Hamidreza January 2017 (has links)
To meet the economic, social and infrastructure needs of the community for safe and efficient transportation systems, long span bridges have been built throughout the world. Long span bridges are one of the most challenging kinds of structures in civil engineering. The cable-stayed bridges are of great interest mainly as an alternative and a more economic solution than the one of suspension bridges. In addition, the fiber reinforced polymer (FRP) composites are, nowadays, successfully used for constructing modern bridges, where the significant weight saving provides additional benefits. Because of the great flexibility, modern long-span cable-stayed bridges are usually very susceptible to dynamic loads especially to the earthquake and strong winds. Therefore, the earthquake-resistant and wind-resistant designs become one of key issues for successful construction of bridges. The objective of the present research is to develop a very efficient spline finite strip technique, for modelling and analysis of both conventional and hybrid FRP cable-stayed bridges. The study falls into the categories of bending, free vibration, seismic, and aerodynamic flutter analysis. The spline finite strip method (SFSM) is one of the most efficient numerical methods for structural analysis of bridges, reducing the time required for estimating the structural response without affecting the degree of accuracy. In the finite strip method, the degrees of freedom could be significantly reduced due to the semi-analytical nature of this method. However, the previous versions of SFSM are not able to model the entire bridge system. For that reason, the structural interactions between different structural components of the bridge could not be handled. In addition, the vibrations and displacements of the towers and cables could not be investigated. In the present formulation, all these obstacles have been eliminated. Moreover, the proposed finite strip technique is very efficient and accurate due to the drastic reduction in the formulation time, simplicity of data preparation, rapid rate convergence of the results, and the semi-analytical nature. Last but not least, and for the first time, a fully finite strip solution is extended to the area of wind engineering. Using the spline finite strip discretization, the aerodynamic stiffness and mass properties of the long-span cable-stayed bridge are derived. The aerodynamic properties along with the structural properties of long-span plates and bridges are formulated in the aerodynamic equation of motion and are used to analyze the flutter problem. The accuracy and efficiency of the proposed advanced finite strip method is verified against the finite element and field measurement results. The results demonstrate that this methodology and the associated computer code can accurately predict the dynamic and aerodynamic responses of the conventional and FRP long-span cable-stayed bridge systems. The outcome of the present research will lead to a comprehensive structural analysis of bridges in the framework of the proposed discretization which is more efficient and straightforward than the finite element analysis.
1065

Micro-seismicity and deep seafloor processes in the Western Sea of Marmara : insights from the analysis of Ocean Bottom Seismometer and Hydrophone data / Micro-séismicité et processus de fond de mer dans la partie ouest de la Mer de Marmara : nouveaux résultats fondés sur l'analyse des données de sismographes et hydrophones sous-marins

Batsi, Evangelia 15 November 2017 (has links)
Depuis les séismes dévastateurs de 1999 d’Izmit et de Duzce, la partie immergée de la Faille Nord Anatolienne (FNA)en Mer de Marmara fait l’objet d’une intense surveillance. Malgré cela, la micro-sismicité demeure mal connue. Par ailleurs, alors que la connexion avec le système pétrolier du Bassin de Thrace est établie, le rôle du gaz sur la sismicité n’a pas été identifié.Dans ce travail, nous avons analysé des données d’OBS (Ocean Bottom Seismometers) acquises dans la partie ouest de la Mer de Marmara (en avril-juillet 2011 et septembre-novembre 2014), à partir de méthodes non-linéaires –NonLinLocet d’un modèle 3D de vitesses. Une grande partie de la sismicité se produit à des profondeurs inférieures à 6 km environ : le long de failles secondaires, héritées de l’histoire complexe de la FNA ; ou dans des couches de sédiments superficiels (< 1 km) riches en gaz. Cette sismicité superficielle semble être associée à des processus liés au gaz, déclenchés par les séismes profonds de magnitude M1 > 4.5 qui se produisent régulièrement le long de la MMF.Par ailleurs, 2 familles de signaux de courte durée (<1s), dits ≪ SDE ≫ (pour Short Duration Event) apparaissent sur les enregistrements : 1) les SDE se produisant à raison de quelques dizaines de SDE/jour, en réponse à des causes locales (i.e. bioturbation, activité biologique, micro-bullage de fond de mer, mouvements à l’interface eau/sédiment), etc ; 2) lesSDE se produisant par ≪paquets≫, dont certains sont enregistrés sur les 4 composantes (y compris l’hydrophone) et apparaissent de manière périodique, toutes les 1.8 s environ, en réponse à diverses causes qui restent à déterminer (parmi lesquelles : les mammifères marins ; l’activité humaine ; la sismicité ; le dégazage ; les ≪trémors≫ sismiques ; etc). / Since the devastating earthquakes of 1999, east of Istanbul, the submerged section of the North Anatolian Fault (NAF), in the Sea of Marmara (SoM) has been intensively monitored, mainly using land stations. Still, the micro-seismicity remains poorly understood. In addition, although the connection of the SoM with the hydrocarbon gas system from the Thrace Basin is now well established, along with the presence of widespread gas within the sedimentary layers, the role of gas on seismicity is still not recognized.Here, we have analyzed Ocean Bottom Seismometer (OBS) data from two deployments (April-July 2011 and September-November 2014) in the western SoM. Based on a high-resolution, 3D-velocity model, and on non-linear methods (NonLinLoc), our location results show that a large part of the micro-seismicity occurs at shallow depths (< 6 a 8 km): along secondary faults, inherited from the complex history of the North-Anatolian shear zone; or within the uppermost (< 1 km), gas-rich, sediment layers. Part of this ultra-shallow seismicity is likely triggered by the deep earthquakes of intermediate magnitude (Ml > 4.5) that frequently occur along the western segments of the MMF.In addition, OBSs also record at least two families of short duration (<1 sec) events (SDEs): 1) “background SDEs” occurring on a permanent, at a rate of a few tens of SDEs/day, resulting from many possible, local causes, e. g.: degassing from the seafloor, biological activity near the seabed, bioturbation, etc; 2) “swarmed SDEs”, among which some are recorded also on the hydrophone, and characterized by a periodicity of ~ 1.8 seconds. The causes of these SDEs still remain to be determined (among which: anthropogenic causes, marine mammals, gas emissions, regional seismicity, tremors from the MMF, etc).
1066

Post-Disaster Gender Based Violence : An Abductive Case Study of Hurricane Katrina and the Haiti Earthquake

Tomasdotter, Villemo January 2018 (has links)
Previous research has shown a post-disaster increase of Gender Based Violence [GBV], suggesting a need for further investigation of the phenomena and its causes. This research draws together a wide-ranging collection of secondary data sets concerning disasters and gender based violence. It analyses the social environment in post-disaster settings that breeds an increase in GBV with focus on Sexual Gender Based Violence[SGBV] and Intra Personal Violence [IPV]. Through a comparison of two case studies: (a) post-earthquake Haiti and (b) post-hurricane Katrina. The cases are analysed through an analytical framework constructed out of three theories, Eco-feminism, Hyper-masculinity and Situational Theory, which together could give a trustworthy explanation of the phenomena. The findings show that similar factors were prevalent in both cases, and in turn provides insights for the abductively derived framework that relates the causal mechanisms behind the phenomena of post-disaster gender-based violence, building on the commonalities between social environments and structures in the cases. In particular, it was found that a patriarchal root structure and high rates of frustration both provided explanatory causal mechanisms for increased GBV. Though changes in environments can affect the prevalence of GBV as it can provide easier access of victims and lower the risk of penalties in relation to the crimes. In order to address GBV associated with future disasters, post-disaster plans need to adapt a gender mainstreamed approach with focus on safe housing and rapid rebuilding processes for the grass root level.
1067

Data processing of induced seismicity : estimation of errors and of their impact on geothermal reservoir models / Traitement des données de sismicité induite : estimation d'erreurs et de leur impact sur les modèles de réservoirs géothermiques

Kinnaert, Xavier 16 September 2016 (has links)
La localisation de séismes induits ainsi que les mécanismes au foyer associés sont des outils fréquemment utilisés afin, entre autres, d’imager la structure d’un réservoir. Cette thèse présente une technique permettant de quantifier les erreurs associées à ces deux paramètres. Par cette méthode, incertitudes et imprécisions sont distinguées. La méthode a été appliquée aux sites de Soultz et de Rittershoffen pour étudier l’impact de plusieurs critères sur la localisation de la sismicité induite. Ainsi, il a été montré que l’utilisation de capteurs installés profondément dans des puits et qu’une bonne couverture sismique azimutale réduit sérieusement les incertitudes de localisation. Les incertitudes du modèle de vitesse, représentées par une distribution gaussienne des modèles avec un écart de 5% autour du modèle de référence, multiplient les incertitudes de localisation par un facteur 2 à 3. Des simplifications utilisées pour le calcul ou une mauvaise connaissance du milieu peuvent mener à des imprécisions de l’ordre de 10% spatialement non isotropes. Ainsi, les structures du sous-sol peuvent être déformées dans les interprétations. L’application d’un tir de calibration peut néanmoins corriger ce fait en grande partie. L’étude d’erreurs associées aux mécanismes au foyer ne semble cependant pas conduire aux mêmes conclusions. Le biais angulaire peut certes être augmenté par l’omission de la faille dans le modèle de vitesse, mais dans plusieurs cas il est le même que dans le cas idéal voire diminué. En outre, une meilleure couverture sismique améliorerait toujours le mécanisme au foyer obtenu. Ainsi, il n’est pas conseillé d’imager un réservoir en n’utilisant que la localisation de séismes, mais une combinaison de plusieurs paramètres sismiques pourrait s’avérer efficace. La méthode appliquée dans le cadre de cette thèse pourra servir pour d’autres sites à condition d’en avoir une bonne connaissance a priori. / Induced seismicity location and focal mechanisms are commonly used to image the sub-surface designin reservoirs among other tasks. In this Ph.D. the inaccuracies and uncertainties on earthquake location and focal mechanisms are quantified using a three-step method. The technique is applied to the geothermal sites of Soultz and Rittershoffen to investigate the effect of several criteria on thee arthquake location. A good azimuthal seismic coverage and the use of seismic down-hole sensors seriously decrease the location uncertainty. On the contrary, velocity model uncertainties, represented by a 5% Gaussian distribution of the velocity model around the reference model, will multiply location uncertainties by a factor of 2 to 3. An incorrect knowledge of the sub-surface or the simplifications performed before the earthquake location can lead to biases of 10% of the vertical distance separating the source and the stations with a non-isotropic spatial distribution. Hence the sub-surface design maybe distorted in the interpretations. To prevent from that fact, the calibration shot method was proved to be efficient. The study on focal mechanism errors seems to lead to different conclusions. Obviously, the angular bias may be increased by neglecting the fault in the velocity. But, it may also be the same as or even smaller than the bias calculated for the case simulating a perfect knowledge of the medium of propagation. Furthermore a better seismic coverage always leads to smaller angular biases. Hence,it is worth advising to use more than only earthquake location in order to image a reservoir. Other geothermal sites and reservoirs may benefit from the method developed here. / Die korrekte Lokalisierung von induzierter Seismizität und den dazugehörigen Herdflächenlösungensind sehr wichtige Parameter. So werden zum Beispiel die Verteilung der Erdbeben und die Orientierung ihrer Herdflächenlösungen dazu benutzt um in der Tiefe liegende Reservoirs zulokalisieren und abzubilden. In dieser Doktorarbeit wird eine Technik vorgeschlagen um diemethodisch bedingten Fehler zu quantifizieren. Mit dieser Methode werden die verschiedenen Fehlerquellen, die Unsicherheiten und die Fehler im Modell getrennt. Die Technik wird für die geothermischen Felder in Soultz und in Rittershoffen benutzt um den Einfluss verschiedener Parameter (Annahmen) auf die Lokalisierung der induzierten Seismizität zu bestimmen. Es wurde festgestellt, dass Bohrlochseismometer und eine gute azimutale Verteilung der seismischen Stationen die Unbestimmtheiten verkleinern. Die Geschwindigkeitsunbestimmheiten, die durch eine Gauss-Verteilung mit 5% Fehler dargestellt werden, vervielfachen die Lokalisierungsungenauigkeiten um einen Faktor 2 bis 3. Eine ungenaue Kenntnis des Untergrunds oder die verwendete vereinfachte Darstellung der Geschwindigkeitsverhältnisse im Untergrund (notwendig um die synthetischen Rechnungen durchführen zu können) führen zu anisotropen Abweichungen und Fehlern in der Herdtiefe von bis zu 10%. Diese können die Interpretationen des Untergrunds deutlich verfälschen. Ein “calibration shot” kann diese Fehler korrigieren. Leider können die Fehler für die Herdflächenlösungen nicht in derselben Weise korrigiert werden. Es erscheint daher als keine gute Idee, ein Reservoir nur über die Lokalisierung von Erdbeben zu bestimmen. Eine Kombination mehrerer seismischer Methoden scheint angezeigt. Die hier besprochene Methode kann als Grundlage dienen für die Erkundung anderer (geothermischer)
1068

Understanding the evolution of channeling and fracturing in tight rocks due to fast fluid flow / Comprendre l'évolution de la formation de canaux et de la fracturation des roches dures liée à l'écoulement à grande vitesse d'un fluide

Turkaya, Semih 10 November 2016 (has links)
Depuis de nombreuses années, la compréhension de l'influence des fluides dans la déformation des roches est un enjeu majeur pour de nombreux scientifiques. Dans le cadre de ce projet de recherche, notre attention s’est focalisée sur l’observation et la modélisation des mécanismes d’interaction entre les parties fluide et solide lors de l’aérofracturation d’un milieu poreux. Notre dispositif expérimental reproduit le phénomène à basse pression et dans un système pertinent pour l’analyse optique, grâce à une cellule de Hele‐Shaw rectangulaire dans laquelle se trouve un milieu granulaire soumis à des écoulements de fluide interstitiel. Dans les expériences et les simulations nous avons observé ce que l’amplitude de la partie de fréquence basse du spectre puissance diminue avec la fracturation en progrès. Aussi, nous avons développé une méthode pour focaliser les ondes ce qui peut être utiliser pour estimer la position de la source. / Fluid induced brittle deformation of porous medium is a phenomenon commonly present in everyday life. From an espresso machine to volcanoes it is possible to see traces of this phenomenon. In a rectangular Hele‐Shaw cell we inject air into a loose porous medium. Then, we monitor this system using optical imaging using a high speed camera (1000 fps) and 4 high frequency resolution accelerometers. Using the numerical and experimental acoustic emissions, different sources of the recorded signal (vibrations due to air, changes in the effective stress due to fluid‐solid interactions) are analyzed. We found that, the peaks in the low frequency range (f < 20 kHz) diminishes while the medium fractures. Furthermore, we propose a new signal localization method based on energy amplitude attenuation and inversed source amplitude comparison. Furthermore, using optical and acoustic datasets and numerical simulations, the mechanics leading Type‐A and Type‐B earthquakes are explained.
1069

Analyse probabiliste et multi-données de la source de grands séismes / Probabilistic and multi data analysis of large earthquakes source physics

Bletery, Quentin 27 November 2015 (has links)
Les séismes sont le résultat de glissements rapides le long de failles actives chargées en contraintes par le mouvement des plaques tectoniques. Il est aujourd'hui établi, au moins pour les grands séismes, que la distribution de ce glissement rapide le long des failles pendant les séismes est hétérogène. Imager la complexité de ces distributions de glissement constitue un enjeu majeur de la sismologie en raison des implications potentielles dans la compréhension de la genèse des séismes et la possibilité associée de mieux anticiper le risque sismique et les tsunamis. Pour améliorer l'imagerie de ces distributions de glissement co-sismique, trois axes peuvent être suivis: augmenter les contraintes sur les modèles en incluant plus d'observations dans les inversions, améliorer la modélisation physique du problème direct et progresser dans le formalisme de résolution du problème inverse. Dans ce travail de thèse, nous explorons ces trois axes à travers l'étude de deux séismes majeurs: les séisme de Tohoku-Oki (Mw 9.0) et de Sumatra-Andaman (Mw 9.1-9.3) survenus en 2011 et 2004, respectivement. / Earthquakes are the results of rapid slip on active faults loaded in stress by the tectonic plates motion. It is now establish - at least for large earthquakes - that the distribution of this rapid slip along the rupturing faults is heterogeneous. Imaging the complexity of such slip distributions is one the main challenges in seismology because of the potential implications on understanding earthquake genesis and the associated possibility to better anticipate devastating shaking and tsunami. To improve the imaging of such co-seismic slip distributions, three axes may be followed: increase the constraints on the source models by including more observations into the inversions, improve the physical modeling of the forward problem and improve the formalism to solve the inverse problem. In this PhD thesis, we explore these three axes by studying two recent major earthquakes: the Tohoku-Oki (Mw 9.0) and Sumatra-Andaman (Mw 9.1-9.3) earthquakes, which occured in 2011 and 2004 respectively.
1070

Anwendung der Hypoplastizität bei numerischen Berechnungen von bodendynamischen Problemen / Application of hypoplasticity in numerical calculations for soil dynamics

Hleibieh, Jamal 27 November 2017 (has links) (PDF)
Das Bodenverhalten unter dynamischer Beanspruchung ist sehr komplex, wird jedoch in der Praxis häufig mit Hilfe von vereinfachten Modellen abgebildet. Die Gültigkeit solcher Modelle ist jedoch aufgrund des spannungs- und dehnungsabhängigen Bodenverhaltens sehr begrenzt. Alternativ dazu bieten sich dynamische numerische Berechnungen mit fortgeschrittenen Stofmodellen, die das Bodenverhalten in einem großen Dehnungs- und Spannungsbereich realitätsnah repräsentieren können. In dieser Arbeit wurde untersucht, inwieweit sich das komplexe Bodenverhalten unter dynamischen Einwirkungen mit Hilfe der Hypoplastizität abbilden lässt. Dabei wurde die entscheidende Rolle der Parameterermittlung veranschaulicht und zusätzlich ein angemessener Vorgang zur Bodenparameterbestimmung beschrieben. Zunächst wurde das Verhalten einer trockenen Sandschicht infolge von Erdbebenbeanspruchungen numerisch untersucht. Die Ergebnisse der Berechnungen zeigen, dass die Beschleunigungsamplifikation in der Nähe zur Bodenoberfläche von der Frequenz und der Amplitude der Grundbeschleunigung abhängt. Weiterhin nimmt die berechnete Eigenfrequenz und die entsprechende Amplifikation mit zunehmender Beschleunigungsamplitude ab. Des Weiteren wurde ein Zentrifugenversuch an einem im Sand eingebeteten Tunnel unter Erdbebeneinwirkungen nachgerechnet. Die berechneten Ergebnisse zeigen eine ausreichende Übereinstimmung mit dem Experiment. Mit der numerischen Nachrechnung wurde auch eine Abhängigkeit zwischen den Änderungen der Biegemomente in der Tunnelschale und der Oberflächensetzung im umliegenden Boden festgestellt. Die Standsicherheit von Böschungen unter Erdbebenbeanspruchungen stellt wegen des komplexen Bodenverhaltens eine weitere Herausforderung für die Berechnungen dar. Zunächst wurde überprüft, inwieweit sich das Böschungsverhalten mit der in der Praxis häufig eingesetzten pseudo-statischen Methode abbilden lässt. Hierfür wurde für eine in der Zentrifuge untersuchte Modellböschung die pseudostatische Analyse durchgeführt. Die im Zentrifugenversuch aufgetretenen oberflächennahen Gleitfläche lässt sich durch die pseudo-statische Methode nicht prognostizieren. Für eine oberflächennahe Gleitfläche wurde hingegen ein sehr hoher Standsicherheitsfaktor ermittelt. Mit einer numerischen Nachrechnung mit einem hypoplastischen Stoffmodell mit Betrachtung der intergranularen Dehnungen konnte das Verhalten der Modellböschung qualitativ und quantitativ sehr gut abgebildet werden. Somit wurden sowohl die oberflächennahe Gleitfläche als auch die Vertikal- und Horizontalverschiebungen realitätsnah wiedergegeben. In dieser Arbeit wurde des Weiteren ein Vorgang als Kombination zwischen den dynamischen numerischen Berechnungen und der pseudo-statischen Methode zur Bewertung der Standsicherheit von Böschungen unter dynamischer Einwirkung vorgeschlagen. Damit ließ sich ebenso ein realitätsnäher Stansicherheitsfaktor ermitteln. Da die Anwendung der pseudo-statischen Methode bei den Böschungen aus wassergesättigten kohäsionslosen Böden problematisch ist, lassen sich solche Böschungen entweder mit Zentrifugenmodellen oder numerisch mit fortgeschrittenen Stoffmodellen untersuchen. In dieser Arbeit wurden Nachrechnungen von Zentrifugenversuchen durchgeführt. Es handelt sich um einen Erddamm aus einem wassergesättigten, dicht gelagerten Nevada Sand unter Erdbebeneinwirkung. Mit der numerischen Berechnung wurde das Dammverhalten qualitativ und quantitativ sehr gut abgebildet. Sowohl die Dammverschiebungen als auch der Aufbau des Porenwasserdrucks zeigen eine sehr gute Übereinstimmung mit den Messungen. Weiterhin wurden mit den gleichen Bodenparametern zwei weitere Zentrifugenversuche unter Erdbebeneinwirkung nachgerechnet. Beide Modellversuche wurden mit einem locker gelagerten, wassergesättigten Nevada Sand durchgeführt. Bei einem Versuch wurde ein Erddamm und bei dem anderen eine Sandschicht untersucht. In den numerischen Nachrechnungen ließen sich sowohl die Verschiebungen als auch die Porenwasserdrücke in beiden Randwertproblemen realistisch abbilden. Weiterhin wurde die Wirkung von Schottersäulen zur Verhinderung der Bodenverflüssigung numerisch untersucht. Zunächst wurden die Dränage- und die Aussteifungswirkung der Schottersäulen unabhängig voneinander betrachtet. Die Dränagewirkung ist vernachlässigbar, da sich während eines Erdbebens der Porenwasserdruck sehr schnell aufbaut. Wegen der hohen Steifigkeit der Schottersäulen wird zwar weniger Porenwasserdruck in den Boden aufgebaut. Die effektive Spannung nimmt jedoch trotzdem unverhindert ab. Dies lässt sich damit begründen, dass die hohe Säulensteifigkeit zu einer Spannungsumlagerung in Richtung Säulen führt und ein Siloeffekt entsteht. Somit wird der Boden zum Teil von den Säulen getragen und die totale Spannung im Boden nimmt ab. In der 3D-Berechnungen ist dieser Siloeffekt deutlich geringer als in den 2D-Berechnungen. Nichtsdestotrotz zeigen sowohl die 2D- als auch die 3D-Berechnungen, dass die Säulensteifigkeit eine nur mäßige Wirkung zur Verhinderung der Bodenverflüssigung aufweist. In weiteren 3D-Berechnungen wurde der Einfluss der Säulenherstellung untersucht. Hierfür wurden Berechnungen mit erhöhter Bodendichte und Seitenspannung durchgeführt. Sowohl die Verdichtung als auch die Erhöhung der Seitenspannung verlangsamen den Porenwasserdruckaufbau bzw. die Abnahme der effektiven Spannung. Der Einfluss der Bodenverdichtung ist jedoch wesentlich höher. Weiterhin weist die Wirkung der Schottersäulen eine Abhängigkeit von der dynamischen Belastung auf. Die Bodenverflüssigung infolge eines kleinen Erdbebens wird verhindert, während sich die Verflüssigung infolge eines stärkeren Erdbebens nur um wenige Sekunden verzögert. / The soil behavior under dynamic loading is very complex. However, in daily use it is often illustrated by means of simplified models. The validity of these models is very limited due to the stress and strain-dependent soil behavior. Alternatively, dynamic numerical calculations can be performed with advanced constitutive models which can represent soil behavior in a wide range of strain and stress. In this work it was investigated, to which extent the complex soil behavior can be reproduced using hypoplasticity.Furthermore,the important role of parameter determination was illustrated. In addition, an appropriate procedure for determining soil parameters was described. First, the behavior of a dry sand layer under earthquake load was investigated numerically. The results of the calculations show that the acceleration amplification near the ground surface depends on the frequency and the amplitude of the basic acceleration. Furthermore, the calculated natural frequency and the corresponding amplification decrease with increasing acceleration amplitude. In addition, a centrifuge test on a tunnel embedded in sand under earthquake effects was numerically calculated. The calculated results show a satisfactory agreement with the experiment. The numerical calculation also revealed a dependency between the changes in the bending moments in the tunnel lining and the surface settlement of the surrounding soil. Due to the complex soil behavior, the stability of slopes under earthquake loads poses a further challenge for the calculations. Firstly, it was examined, to which extent slope behavior can be represented with the frequently used pseudo-static method. For this purpose the pseudo-static analysis was carried out for a model earth dam examined in the centrifuge. The pseudo-static method predicts a deep seated sliding surface in contrast to the shallow sliding surface in the centrifuge test. However, for a shallow sliding surface, a very high stability safety factor was determined. With a numerical calculation using a hypoplastic material model considering the intergranular strains, the behavior of the earth dam could be reproduced qualitatively and quantitatively very well. Thus, the shallow sliding surface as well as the vertical and horizontal displacements were reproduced realistically. In this thesis, a combination of the dynamic numerical calculation and the pseudo-static method for assessing the stability of slopes under dynamic influence was proposed. So, a realistic stability safety factor can be determined. The application of the pseudo-static method is problematic in case of slopes in saturated non-cohesive soil. These slopes can either be investigated with centrifuge models or numerically with advanced material models. In this work, numerical recalculations of centrifuge tests were carried out. It is an earth dam from a saturated Nevada sand under an earthquake effect. With the numerical calculation the dam behavior was reproduced qualitatively and quantitatively in a satisfactory manner. Both the dam displacements as well as the build-up of pore water pressure show a very good agreement with the measurements. Two further centrifuge tests were also carried out using the same soil parameters. Both model tests were conducted with a loose saturated Nevada sand. One test was carried out on an earth dam and the other on a sand layer. With the numerical calculations, both displacements and pore water pressures were reproduced realistically in both boundary value problems. In addition the effect of stone columns to prevent soil liquefaction was studied numerically. First, the drainage and stiffening effects of stone columns were examined separately. The drainage effect has no significant influence because of the very rapid build-up of pore water pressure during the earthquake. Due to the high stiffness of the stone columns, less pore water pressure builds up in the soil. However, the effective stress continues to decrease unhindered. The high stiffness of the columns leads to a stress redistribution in the direction of the columns and a silo effect arises. In 3D calculations, the silo effect is significantly lower than in 2D calculations. The 2D and 3D calculations show that the column stiffness has a moderate effect to prevent soil liquefaction. In further 3D calculations, the influence of column installation was investigated. Calculations with increased soil density and lateral stress were carried out for this purpose. Both the compaction and the increase of the lateral stress slow down the build-up of pore water pressure and the decrease in effective stress. However, the impact of soil compaction is much higher. Furthermore, the effect of stone columns depends on the dynamic load. The soil liquefaction due to a small earthquake is prevented, while liquefaction due to a stronger earthquake is delayed only by a few seconds.

Page generated in 0.039 seconds