• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 722
  • 78
  • 21
  • 17
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1205
  • 374
  • 237
  • 226
  • 217
  • 189
  • 182
  • 149
  • 145
  • 121
  • 121
  • 119
  • 82
  • 81
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

Erdbebenbeobachtung im Freistaat Sachsen : Dreijahresbericht

Buchholz, Petra, Korn, Michael, Wendt, Siegfried, Funke, Sigward, Hänel, Falk, Mittag, Reinhard, Burghardt, Thomas, Rappsilber, Ivo, Wallner, Olaf, Krentz, Ottomar, Witthauer, Brunhild, Novak, Elke January 2011 (has links)
Der Bericht dokumentiert Ort, Datum, Magnitude und Tiefe der Erdbeben in Sachsen über einen Zeitraum von drei Jahren. Bei der Auswertung der Registrierungen werden zusätzlich zu den Online-Stationen des seismologischen Sachsennetzes auch die Stationen der Nachbarländer einbezogen, deren Standorte in der Veröffentlichung dargestellt sind. Ein besonderes Ereignis stellt dabei der Erdbebenschwarm von Oktober bis Dezember 2008 dar. Das Kapitel »Induzierte Seismizität« befasst sich mit den Untersuchungen zur bergbauinduzierten Seismizität der Uranerzgrube Schlema-Alberoda und zur Böschungsbewegung des ehemaligen Braunkohletagebaues Nachterstedt.
812

Multi-hazard Perceptions at Long Valley Caldera, California, USA

Peers, Justin B., Lindell, Michael K., Gregg, Christopher E., Reeves, Ashleigh K., Joyner, T. A,, Johnston, David M. 01 January 2021 (has links)
Caldera systems such as Long Valley Caldera, California; Taupo, New Zealand; and Campi Flegrei, Italy, experience centuries to millennia without eruption, but have the potential for large eruptions. This raises questions about how local residents' behavioral responses to these low-probability high-consequence events differ from their responses to events, such as wildfires and earthquakes, that have higher probabilities. To examine this issue, a multi-hazard mail survey of 229 households explored perceptions of—and responses to—volcano, earthquake and wildfire hazards in the Long Valley Volcanic Region. Response efficacy was the only significant predictor of emergency preparedness, which suggests that hazard managers can increase household emergency preparedness by emphasizing this attribute of protective actions. In addition to response efficacy, expected personal consequences, hazard intrusiveness, and affective responses were all significantly related to information seeking. This indicates that hazard managers can also increase households’ information seeking about local hazards and appropriate protective actions by communicating the certainty and severity of hazard impacts (thus increasing expected personal consequences) and that they communicate this information repeatedly (thus increasing hazard intrusiveness) to produce significant emotional involvement (thus increasing affective response).
813

Long-term and short-term processes affecting inelastic deformation above subduction zone interfaces

Oryan, Bar January 2022 (has links)
Numerous observations suggest that the elastic description of the subduction earthquake cycles is incomplete. Micro-seismicity is recorded in active margins that are believed to be locked, while peculiar extensional earthquakes occur in convergent plate boundaries following tsunami earthquakes. The morphology of active margins, which evolves on time scales of 100s of kyr, shows similarities to ongoing deformation documented over 10–100 yrs and the coastal domains of Cascadia, Chile, and other subduction zones record long-term uplift. Lastly, the very threshold where faults break and earthquake nucleate has been vigorously debated for years. In this thesis, I combine various geophysical tools to study short- and long-term processes and learn how their interplay can shape the deformation field imparted by earthquake cycles, mainly in the upper plate of subduction zones. In the first chapter, I analyze surface heat flow measurements taken in the proximity of the southern Dead Sea fault to demonstrate its friction is 0.27±0.17. In the second chapter, I compute an updated horizontal and vertical GNSS velocity field for Bangladesh, Myanmar, and adjacent regions. I show that the Kabaw fault, which lies east of the primary thrust system, is accommodating shortening that was initially attributed to the main thrust and demonstrate that the Indo-Burma subduction is locked, converging, and capable of hosting great megathrust events. In the third chapter, I use thermomechanical models to show that reducing the dip angle of a subducting slab, on a timescale of millions of years, can result in extensional fault failure above a megathrust earthquake on timescales of seconds to months. In the fourth chapter, I demonstrate how the buildup of interseismic elastic stresses brings sections of the forearc into compressional failure, which yields irreversible uplift of the coastal domain per evidence from Chile. Finally, I argue that combining short- and long-term processes into subduction zone models can better mitigate tsunami and earthquake hazards. I show how long-term reduction of slab dip angle could culminate in devastating tsunamis. I argue that the collection of long-term uplift records of upper plates or volcanic arc migration can constrain slab dip changes and so may identify areas with increased tsunami potential. In addition, upper plate irreversible deformation should be introduced to earthquake rupture models as these may hold significant implications for understanding and mitigating earthquake hazards.
814

Shaking Table Testing of Cyclic Behaviour of Fine-Grained Soils Undergoing Cementation: Cemented Paste Backfill

Alainachi, Imad Hazim 01 December 2020 (has links)
Cemented paste backfill (CPB) is a novel technology developed in the past few decades to better manage mining wastes (such as tailings) in environmentally friendly way. It has received prominent interest in the mining industry around the world. In this technology, up to 60% of the total amount of tailings is reused and converted into cemented construction material that can be used for secondary support in underground mine openings (stopes) and to maximize the recovery of ore from pillars. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement), that is mixed in the paste plant and delivered into the mine stopes either by gravity or pumping. During and after placing it into the mine stopes, the performance of CPB mainly depends on the role of the hydraulic binder, which increases the mechanical strength of the mixture through the process of cement hydration. Similar to other fine-grained soils undergoing cementations, CPB’s behavior is affected by several conditions or factors, such as cement hydration progress (curing time), chemistry of pore water, mixing and curing temperature, and filling strategy. Also, it has been found that fresh CPB placed in the mine stopes can be susceptible to many geotechnical issues, such as liquefaction under ground shaking conditions. Liquefaction-induced failure of CPB structure may cause injuries and fatalities, as well as significant environmental and economic damages. Many researches studied the effect of the aforementioned conditions on the static mechanical behavior of CPB. Other researches have evaluated the liquefaction behavior of natural soils and tailings (without cement) during cyclic loadings using shaking table test technique. Only few studies investigated the CPB liquefaction during dynamic loading events using the triaxial tests. Yet, there are currently no studies that addressed the liquefaction behavior of CPB under the previous conditions by using the shaking table technique. In this Ph.D. study, a series of shaking table tests were conducted on fresh CPB samples (75 cm × 75 cm ×70 cm), which were mixed and poured into a flexible laminar shear box (that was designed and build for the purpose of this research). Some of these shaking table tests were performed at different maturity ages of 2.5 hrs, 4.0 hrs, and 10.0 hrs, to investigate the effect of cement hydration progress on the liquefaction potential of CPB. Another set of tests were conducted to assess the effect of the chemistry (sulphate content) of the pore-water on the cyclic response of fresh CPB by exposing cyclic loads on couple of CPB models that contain different concertation of sulphate ions of 0.0 ppm and 5000 ppm. Moreover, as part of this study, series of shaking table test was conducted on CPB samples that were prepared and cured at different temperatures of 20oC and 35oC, to evaluate the effect of temperature of the cyclic behavior of CPB. Furthermore, the effect of filling strategy on the cyclic behavior of fresh CPB was assessed by conducting set of shaking tables tests on CPB models that were prepared at different filling strategies of continuous filling, and sequential or discontinuous (layered) filling. The results obtained show that CPB has different cyclic behavior and performance under these different conditions. It is observed that the progress of cement hydration (longer curing time) enhances the liquefaction resistance of CPB, while the presence of sulphate ions diminishes it. It is also found that CPB mixed and cured in low temperature is more prone to liquefaction than those prepared at higher temperatures. Moreover, the obtained results show that adopting the discontinuous (layered) filling strategy will improve the liquefaction resistance of CPB. The finding presented in this thesis will contribute to efficient, cost effective and safer design of CPB structures in the mine areas, and will help in minimizing the risks of liquefaction-induced failure of CPB structures.
815

Localizing interseismic deformation around locked strike-slip faults

Zhu, Yijie 28 August 2020 (has links)
Localized geodetic deformation of an approximately arctangent shape around locked strike-slip faults is widely reported, but there are also important exceptions showing distributed interseismic deformation. Understanding the controlling mechanism is important to the interpretation of geodetic observations for hazard assessment and geodynamic analysis. In this thesis, I use simple finite element models to separately study the two major contributors to the deformation: far-field loading and previous earthquakes. The models feature a vertical strike-slip fault in an elastic layer overlying a viscoelastic substrate of Maxwell or Burgers rheology, with or without weaknesses representing extensions of the fault either along strike or to greater depth. If the locked fault is loaded only from the far field without the effects of previous earthquakes, localized deformation occurs only if local mechanical weaknesses below the fault and/or somewhere along strike are introduced. I first show that the effects of far-field loading are rather limited even in the presence of extreme weaknesses. Then I use idealized earthquake cycle models to investigate the effects of past seismic events in a viscoelastic Earth. I demonstrate that, after a phase of fast postseismic deformation just after the earthquake, the localization of interseismic deformation is controlled mainly by the recurrence interval of past earthquakes. Given viscosity, shorter recurrence leads to greater interseismic localization, regardless of the rheological model used. The presence of a low-viscosity deep fault zone does not change this conclusion, although it tends to lessen localization by promoting faster postseismic stress relaxation. Distributed interseismic deformation, although less reported in the literature, is a natural consequence of very long recurrence and in theory should be as common as localized deformation. The apparent propensity of the latter is likely associated with the much greater quantity and better quality of geodetic observations from higher-rate and shorter-recurrence faults. Using viscoelastic earthquake-cycle models, I also explore the role of nearby earthquakes and creeping segments along the same fault. For faults of relatively short recurrence, frequent ruptures of nearby segments, modelled using a migrating rupture sequence with or without temporal clustering, further enhance localization. For faults of very long recurrence, faster near-fault deformation induced by a recent earthquake may give a false impression of localized interseismic deformation. / Graduate
816

Relative Performance Comparison and Loss Estimation of Seismically Isolated and Fixed-based Buildings Using PBEE Approach

Sayani, Prayag J 01 December 2009 (has links)
Current design codes generally use an equivalent linear approach for preliminary design of a seismic isolation system. The equivalent linear approach is based on effective parameters, rather than physical parameters of the system, and may not accurately account for the nonlinearity of the isolation system. The second chapter evaluates an alternative normalized strength characterization against the equivalent linear characterization. Following considerations for evaluation are included: (1) ability to effectively account for variations in ground motion intensity, (2) ability to effectively describe the energy dissipation capacity of the isolation system, and (3) conducive to developing design equations that can be implemented within a code framework. Although current code guidelines specify different seismic performance objectives for fixed-base and isolated buildings, the future of performance-based design will allow user-selected performance objectives, motivating the need for a consistent performance comparison of the two systems. Based on response history analysis to a suite of motions, constant ductility spectra are generated for fixed-base and isolated buildings in chapter three. Both superstructure force (base shear) and deformation demands in base-isolated buildings are lower than in fixed-base buildings responding with identical deformation ductility. To compare the relative performance of many systems or to predict the best system to achieve a given performance objective, a response index is developed and used for rapid prototyping of response as a function of system characteristics. When evaluated for a life safety performance objective, the superstructure design base shear of an isolated building is competitive with that of a fixed-base building with identical ductility, and the isolated building generally has improved response. Isolated buildings can meet a moderate ductility immediate-occupancy objective at low design strengths whereas comparable ductility fixed-base buildings fail to meet the objective. In chapter four and five, the life cycle performance of code-designed conventional and base-isolated steel frame buildings is evaluated using loss estimation methodologies. The results of hazard and structural response analysis for three-story moment resisting frame buildings are presented in this paper. Three-dimensional models for both buildings are created and seismic response is assessed for three scenario earthquakes. The response history analysis results indicate that the performance of the isolated building is superior to the conventional building in the design event. However, for the Maximum Considered Earthquake, the presence of outliers in the response data reduces confidence that the isolated building provides superior performance to its conventional counterpart. The outliers observed in the response of the isolated building are disconcerting and need careful evaluation in future studies.
817

Examination of Exhumed Faults in the Western San Bernardino Mountains, California: Implications for Fault Growth and Earthquake Rupture

Jacobs, Joseph R. 01 May 2005 (has links)
The late Miocene Cedar Springs fault system is a high-angle transpressional system in the Silverwood Lake area, western San Bernardino Mountains, southern California. This thesis presents the study of oblique-slip faults with modest amounts of slip, which represent the early stages of fault development by using slip as a proxy for maturity. A structural and geochemical characterization is provided for six fault zones ranging from 39 m of slip to 3.5 km of offset in order to develop a model of fault zone geometry and composition. Basic geometric and kinematic results are provided for an additional 29 small-displacement (cm- to m-scale) faults. The main faults of this study can be divided into the fault core composed of sheared clay gouge and micro breccia, the primary damage zone made up of chemically altered rock with microstructural damage and grain-size reduction, and the secondary damage zone, which is characterized by an increased fracture density relative to the host rock. Although there appears to be a general increase in fault core thickness with increasing slip, the correlation is insignificant when analyzing all faults. Both the primary and secondary damage zones appear to thicken with increased slip on the main fault. Overall, the structure and composition of the faults studied here are similar to those of larger strike-slip and reverse faults. This indicates that the fault core develops early in a fault's history. Subsequent slip appears to be focused along these narrow zones, with some deformation accumulating in the damage zone. Whole-rock geochemical analyses typically show a reduction in the abundance of Na, Al, K, and Ca in the fault core and primary damage zone relative to the host rock. This indicates enhanced fluid-rock interactions in these zones. Calculations of the energy consumed to produce the chemical alteration in the fault core indicate that a considerable amount of the total earthquake energy may be lost to alteration. This thesis concludes that fault processes are similar throughout the different stages of development, and the study of relatively small-displacement faults can therefore be used to understand fault evolution through time and the processes of larger faults in the brittle crust.
818

Development of an Ultra-Lightweight Buckling-Restrained Brace Using Analytical and Numerical Methods

Tinker, John Andrew 01 January 2011 (has links)
An ultra-lightweight buckling-restrained brace (ULWBRB) is developed using a highly ductile aluminum core and FRP restrainer. Utilization of lightweight materials results in a BRB that is 25% the weight of traditional mortar-filled tube varieties allowing easy installation in small to medium sized buildings requiring seismic retrofit without the need for heavy equipment. Construction utilizes commonly stocked materials able to be customized for required strength, drift, and geometry limitations. Analytical single degree of freedom (SDOF) and Euler buckling models are compared with published equations to determine the required restrainer stiffness (RRS). SDOF models yield RRS values 200% higher than the Euler model. Applied end moments due to frame deformation are incorporated into a modified design method that gives RRS values 50% higher than Euler model without eccentricity. RRS is provided using a bundled and wrapped FRP tube configuration using a developed shear flow method considering composite action. Uniaxial low-cycle fatigue (LCF) testing of a 6061-T6 candidate alloy provides data for a constitutive model using combined kinematic-isotropic hardening. LCF testing of round short gage coupons indicates the candidate alloy is capable of stable cycling to 2%, 3%, and 4% total strain with excellent ductility. Early fracture of specimens at 24, 18, and 11 cycles, respectively, also indicates that other candidate alloys should be examined for improved fatigue life. However, inconsistency is noted between similar tests of 6061-T6 that were able to achieve up to 76 cycles at 2.5% total strain. ULWBRB FEA models loaded monotonically consistently give higher RRS values as compared to the analytical methods. This is due to assignment of initial imperfections, longer more realistic unbraced length, higher axial loads achieved through the post-yield region, and plastic hinging potential. Cyclic simulations of braces with the same RRS values are also able to achieve reliable and stable hysteretic behavior through 21 cycles. If a less stiff restrainer is used, cumulative energy dissipation potential is reduced considerably due to pinched hysteresis loops and strain ratcheting. Applied end moments are found to have a linear effect on the RRS that can be modeled by superposition of the buckling effect plus end moment.
819

Q Models for Lg Wave Attenuation in the Central United States

Conn, Ariel 22 March 2013 (has links)
A series of small- to moderate-sized earthquakes occurred in Arkansas, Oklahoma and Texas from 2010 to 2012, coinciding with the arrival of the EarthScope Transportable Array (TA). The data the TA recorded from those earthquakes provide a unique opportunity to study attenuation of the Lg phase in the mid-continent and Gulf Coastal region. The TA data reveal previously unrecognized regional variability of ground motion propagation in the central United States. A study of the Fourier amplitude spectra shows the Lg phase exhibiting strong attenuation for ray paths from Arkansas, southwest through the Ouachita Orogenic Belt and into central Texas, and south into the Gulf Coastal region. Less attenuation is seen in central Texas for ray paths extending directly south from Oklahoma, though attenuation remains strong along the Gulf Coast. In contrast, ray paths to the north, regardless of source location, exhibit very little attenuation, especially in northern Missouri and southern Iowa. Regression models that incorporate near-receiver (distance-independent) attenuation due to thick sediments in the Gulf Coastal Plain successfully reduce path-related bias in the regression residuals for stations near the Gulf Coast. Dividing the central United States into three regions (the Gulf Coastal Plain, the Great Plains and the Midwest) further reduced bias, and allowed for the development of Q models in the Gulf Coastal Plain and the Great Plains. In the Gulf Coastal Plain, the Q model for that part of the ray path through the basement, from the earthquake to the base of the sediment deposits below the receiver, was found to be Q=(295±11)*f^(0.645±0.029). The model for attenuation in the sediment section near the receiver in the Gulf Coastal Plain is Q=(72±6.7)*f^(0.32±0.06) (velocity through the sediments is unconfirmed but thought to be approximately 1 km/s). The Q model for the Great Plains is  Q=(692±61.3)*f^(0.43±0.07). The Midwest region exhibited extremely complicated behavior: the data indicate little or no attenuation of amplitudes in the frequency band from approximately 0.7 to 2.0 Hz. As a consequence, Q in the Midwest region in that frequency range could not be realistically determined. / Master of Science
820

Aseismic design of adobe housing

Montauban, Pierre Hernando January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / by Pierre Hernando Montauban. / M.S.

Page generated in 0.0932 seconds