• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Influence of Scattering From a Power-pole on an Airport Radar

Hu, Ao January 2019 (has links)
Power-poles are one of the common massive conducting structures in cities and countryside. To fulfill the remarkable increased electric power demand nowadays, the number and the size of power-poles are also growing over the past few decades.  The influence of power-pole on electromagnetic  wave  propagation  is  a  potential  noise  source  for  nearby  radio  devices  like radars.   This master thesis project is aiming to analysis the interference of a case where an Amplitude Modulated (AM) signal emitted. We consider here the Stockholm Arlanda Airport’s Very High Frequency (VHF) Omnidirectional Range (VOR) radar scattering by a power-pole 2.6km away.A Method of Moment technique is used to solve the scattering problem.  We modeled the power-pole on a blueprint from Svenska Kraftnät. It is meshed in small triangles by AutoCAD and  GMSH  software,  and  on  that  mesh  the  Rao-Wilton-Glisson  (RWG)  basis  function  are formed.  A MoM code developed by Makarov determines the bi-static scattering pattern of the power-pole.  Four main models have been considered, a one-side power-pole model and the same model with the ground plane, as well as two sides power-pole model and the model with the ground plane.  We have assumed that the incident field on the power-pole is a plane wave and that the ground is an infinite PEC surface.  The result is presented by the Interference to Signal ratio (ISR) of an airplane receiver when it is flying toward the airport for landing.By the end of the project, we have shown for the considered model that a    50    15dB level of interference is estimated for the interference to signal ratio.  This result then suggests that a power-pole may have a little signal interference towards the VOR system radar wave emit awayfrom 2.6km. / Kraftstolpar är vanligt förekommande stora ledande strukturerna i stadsnära regioner.  Städer och regioner uppvisar idag en kraftigt ökad efterfrågan på elektricitet, vilket ställer krav på ett kraftnät som klarar av större effekt. Ett sätt att öka effekten är att introducera fler kraftledningar, och där med också öka antalet kraftledningsstolpar.  Kraftledningsstolparna kan påverka den elektromagnetiska vågutbredning och är en potentiell bruskälla för närliggande radioenheter som t.ex.  radar/signal-anläggningar.  Detta examensarbete syftar till att analysera eventuella störningar vid användandet av en amplitudmodulerad (AM) signal. Vi betraktar här Stockholm Arlanda Airport’s Very High Frequency (VHF) Omnidirectional Range (VOR) radarspridning med en kraftstolpe 2,6 km bort.I detta fall används Method of Moment (MoM)-tekniken för att lösa spridningsproblemet. Vi modellerade kraftstolpen baserad på data från Svenska Kraftnät.  Stolpen modelleras med små  sammankopplade  trianglar  med  hjälp  av  programvaran  AutoCAD  och  GMSH,  och  på det nätverket bildas Rao-Wilton-Glisson (RWG) -basisfunktionen.  En MoM-kod utvecklad av Makarov bestämmer det bi-statiska spridningsmönstret för kraftstolpen.  Fyra huvudmodeller har beaktats, en en-sidig modell av en kraftstolpe med och utan jordplan, liksom en två-sidig modell med och utan jordplan. Vi har antagit att det mot kraftstoplen infallande fältet är en plan våg och att marken är en oändlig prefekt ledande-yta. Resultatet presenteras som en kvot mellan störning i förhållande till signalen (ISR) hos en flygmottagare när den flyger mot flygplatsen för landning.Beräkningarna i projektet visar att för de betraktade modellerna har vi en ISR på -50±15dB. Detta resultat antyder att en kraftstolpe på ett avstånd 2,6 km från VOR-systemet har en lågstörning på VOR-systemets amplitudmodulerade signal.
2

Décomposition en courants caractéristiques. Application à l'analyse de SER.

Morel, Yoann 10 November 2005 (has links) (PDF)
Cette thèse s'intéresse au problème de la diffraction d'ondes par un obstacle borné, <br />et plus particulièrement à l'étude de sa Surface Equivalente Radar (SER). <br /><br />Etant donné une onde incidente sur l'objet, la détermination des courants induits sur la <br />surface de celui-ci, des champs diffractés puis, par la suite, de leur comportement à <br />l'infini, est un problème couramment abordé dans la littérature. <br />De plus, pour des longueurs d'onde comparables à la taille de l'objet, ces grandeurs <br />peuvent maintenant être approximées numériquement par des méthodes à la fois rapides <br />et précises. <br /><br />Néanmoins, au contraire des nombreuses théories développées dans les domaines hautes <br />fréquences (tracés de rayon, points brillants, TGD, ...), les phénomènes produits sur la <br />surface de l'objet, et en particulier leur effet sur le champ diffracté et la SER, <br />demeurent mal compris et maîtrisés. <br /><br />La notion de courants caractéristiques, initialement introduite par J.R. Harrington et <br />R.F. Mautz dans les années 70 dans pour des objets parfaitement conducteurs, permet la <br />décomposition d'un courant induit quelconque en courants ``élémentaires''. <br />Cette décomposition semble alors particulièrement adaptée à l'étude de la SER de l'objet, <br />grâce notamment à des propriétés d'orthogonalités des champs lointains rayonnés <br />permettant d'identifier directement entres elles les composantes d'un courant (les zones <br />sollicités sur l'objet) et celles de son champ rayonné. <br /><br />Nous revenons dans un premier temps dans cette thèse sur cette décomposition modale, <br />en fournissant un cadre et les résultats mathématiques nécessaires à la bonne <br />compréhension et utilisation de cette décomposition. <br /><br />L'introduction de ce cadre permet alors de donner une première généralisation de ce type <br />de décomposition à des objets modélisés par une condition d'impédance. <br /><br />Ces courants et champs caractéristiques peuvent de plus se révéler intéressant d'un point <br />de vue théorique, de par les bases adaptés qu'ils fournissent. <br />L'application au problème inverse, à savoir celui de la reconstruction de la surface de <br />l'objet à partir de la connaissance des champs lointains diffractés, donne un exemple <br />d'utilisation théorique de ces modes caractéristiques.
3

SPARSE DIRECT SOLUTION METHODS FOR CAPACITIVE EXTRACTION PROBLEMS ON CLOSELY-SPACED GEOMETRIES WITH HIGH ASPECT RATIOS

Chang, Chee Kean 01 January 2017 (has links)
The method of moment (MoM) [1] is a widely used method in electromagnetics to solve static and dynamic electromagnetic problems on varying geometries. However, in closely spaced geometries coupled with large aspect ratios, e.g. a large parallel plate capacitor with very small separation gap, the problem exhibits several challenges. Firstly, the close proximity of the field and source elements presents problems with convergence in numerical evaluations of the interactions between them. Secondly, the aspect ratio of the geometry gives an approximation whereby to far field points, the source contributions from locations that are far apart appear to cancel each other. This leads to high condition numbers in the system matrix. This thesis explores the potential solution to these problems as well as the application of modular fast and direct (MFD) [2] solver to expedite the solution of such problems.
4

Computational strategies for impedance boundary condition integral equations in frequency and time domains / Stratégies computationelles pour des équations intégrales avec conditions d'impédance aux frontières en domaines fréquentiel et temporel

Dély, Alexandre 15 March 2019 (has links)
L'équation intégrale du champ électrique (EFIE) est très utilisée pour résoudre des problèmes de diffusion d'ondes électromagnétiques grâce à la méthode aux éléments de frontière (BEM). En domaine fréquentiel, les systèmes matriciels émergeant de la BEM souffrent, entre autres, de deux problèmes de mauvais conditionnement : l'augmentation du nombre d'inconnues et la diminution de la fréquence entrainent l'accroissement du nombre de conditionnement. En conséquence, les solveurs itératifs requièrent plus d'itérations pour converger vers la solution, voire ne convergent pas du tout. En domaine temporel, ces problèmes sont également présents, en plus de l'instabilité DC qui entraine une solution erronée en fin de simulation. La discrétisation en temps est obtenue grâce à une quadrature de convolution basée sur les méthodes de Runge-Kutta implicites.Dans cette thèse, diverses formulations d'équations intégrales utilisant notamment des conditions d'impédance aux frontières (IBC) sont étudiées et préconditionnées. Dans une première partie en domaine fréquentiel, l'IBC-EFIE est stabilisée pour les basses fréquences et les maillages denses grâce aux projecteurs quasi-Helmholtz et à un préconditionnement de type Calderón. Puis une nouvelle forme d'IBC est introduite, ce qui permet la construction d'un préconditionneur multiplicatif. Dans la seconde partie en domaine temporel, l'EFIE est d'abord régularisée pour le cas d'un conducteur électrique parfait (PEC), la rendant stable pour les pas de temps larges et immunisée à l'instabilité DC. Enfin, unerésolution efficace de l'IBC-EFIE est recherchée, avant de stabiliser l'équation pour les pas de temps larges et les maillages denses. / The Electric Field Integral Equation (EFIE) is widely used to solve wave scattering problems in electromagnetics using the Boundary Element Method (BEM). In frequency domain, the linear systems stemming from the BEM suffer, amongst others, from two ill-conditioning problems: the low frequency breakdown and the dense mesh breakdown. Consequently, the iterative solvers require more iterations to converge to the solution, or they do not converge at all in the worst cases. These breakdowns are also present in time domain, in addition to the DC instability which causes the solution to be completely wrong in the late time steps of the simulations. The time discretization is achieved using a convolution quadrature based on Implicit Runge-Kutta (IRK) methods, which yields a system that is solved by Marching-On-in-Time (MOT). In this thesis, several integral equations formulations, involving Impedance Boundary Conditions (IBC) for most of them, are derived and subsequently preconditioned. In a first part dedicated to the frequency domain, the IBC-EFIE is stabilized for the low frequency and dense meshes by leveraging the quasi-Helmholtz projectors and a Calderón-like preconditioning. Then, a new IBC is introduced to enable the development of a multiplicative preconditioner for the new IBC-EFIE. In the second part on time domain,the EFIE is regularized for the Perfect Electric Conductor (PEC) case, to make it stable in the large time step regime and immune to the DC instability. Finally, the solution of the time domain IBC-EFIE is investigated by developing an efficient solution scheme and by stabilizing the equation for large time steps and dense meshes.
5

Electromagnetic modeling of interconnections in three-dimensional integration

Han, Ki Jin 14 May 2009 (has links)
As the convergence of multiple functions in a single electronic device drives current electronic trends, the need for increasing integration density is becoming more emphasized than in the past. To keep up with the industrial need and realize the new system integration law, three-dimensional (3-D) integration called System-on-Package (SoP) is becoming necessary. However, the commercialization of 3-D integration should overcome several technical barriers, one of which is the difficulty for the electrical design of interconnections. The 3-D interconnection design is difficult because of the modeling challenge of electrical coupling from the complicated structures of a large number of interconnections. In addition, mixed-signal design requires broadband modeling, which covers a large frequency spectrum for integrated microsystems. By using currently available methods, the electrical modeling of 3-D interconnections can be a very challenging task. This dissertation proposes a new method for constructing a broadband model of a large number of 3-D interconnections. The basic idea to address the many interconnections is using modal basis functions that capture electrical effects in interconnections. Since the use of global modal basis functions alleviates the need for discretization process of the interconnection structure, the computational cost is reduced considerably. The resultant interconnection model is a RLGC model that describes the broadband electrical behavior including losses and couplings. The smaller number of basis functions makes the interconnection model simpler, and therefore allows the generation of network parameters at reduced computational cost. Focusing on the modeling of bonding wires in stacked ICs and through-silicon via (TSV) interconnections, this research validates the interconnection modeling approach using several examples from 3-D full-wave EM simulation results.
6

Study of RCS from Aerodynamic Flow using Parallel Volume-Surface Integral Equation

Padhy, Venkat Prasad January 2016 (has links) (PDF)
Estimation of the Radar Cross Section of large inhomogeneous scattering objects such as composite aircrafts, ships and biological bodies at high frequencies has posed large computational challenge. The detection of scattering from wake vortex leading to detection and possible identification of low observable aircrafts also demand the development of computationally efficient and rigorous numerical techniques. Amongst the various methods deployed in Computational Electromagnetics, the Method of Moments predicts the electromagnetic characteristics accurately. Method of Moments is a rigorous method, combined with an array of modeling techniques such as triangular patch, cubical cell and tetrahedral modeling. Method of Moments has become an accurate technique for solving electromagnetic problems from complex shaped homogeneous and inhomogeneous objects. One of the drawbacks of Method of Moments is the fact that it results into a dense matrix, the inversion of which is a computationally complex both in terms of physical memory and compute power. This has been the prime reason for the Method of Moments hitherto remaining as a low frequency method. With recent advances in supercomputing, it is possible to extend the range of Method of Moments for Radar Cross Section computation of aircraft like structures and radiation characteristic of antennas mounted on complex shaped bodies at realistic frequencies of practical interest. This thesis is a contribution in this direction. The main focus of this thesis is development of parallel Method of Moments solvers, applied to solve real world electromagnetic wave scattering and radiation problems from inhomogeneous objects. While the methods developed in this thesis are applicable to a variety of problems in Computational Electromagnetics as shown by illustrative examples, in specific, it has been applied to compute the Radar Cross Section enhancement due to acoustic disturbances and flow inhomogeneities from the wake vortex of an aircraft, thus exploring the possibility of detecting stealth aircraft. Illustrative examples also include the analysis of antenna mounted on an aircraft. In this thesis, first the RWG basis functions have been used in Method of Moments procedure, for solving scattering problems from complex conducting structures such as aircraft and antenna(s) mounted on airborne vehicles, of electrically large size of about 45 and 0.76 million unknowns. Next, the solver using SWG basis functions with tetrahedral and pulse basis functions with cubical modeling have been developed to solve scattering from 3D inhomogeneous bodies. The developed codes are validated by computing the Radar Cross Section of spherical homogeneous and inhomogeneous layered scatterers, lossy dielectric cylinder with region wise inhomogeneity and high contrast dielectric objects. Aerodynamic flow solver ANSYS FLUENT, based on Finite Volume Method is used to solve inviscid compressible flow problem around the aircraft. The gradients of pressure/density are converted to dielectric constant variation in the wake region by using empirical relation and interpolation techniques. Then the Radar Cross Section is computed from the flow inhomogeneities in the vicinity of a model aircraft and beyond (wake zone) using the developed parallel Volume Surface Integral Equation using Method of Moments and investigated more rigorously. Radar Cross Section enhancement is demonstrated in the presence of the flow inhomogeneities and detectability is discussed. The Bragg scattering that occurs when electromagnetic and acoustic waves interact is also discussed and the results are interpreted in this light. The possibility of using the scattering from wake vortex to detect low visible aircraft is discussed. This thesis also explores the possibility of observing the Bragg scattering phenomenon from the acoustic disturbances, caused by the wake vortex. The latter sets the direction for use of radars for target identification and beyond target detection. The codes are parallelized using the ScaLAPACK and BiCG iterative method on shared and distributed memory machines, and tested on variety of High Performance Computing platforms such as Blue Gene/L (22.4TF), Tyrone cluster, CSIR-4PI HP Proliant 3000 BL460c (360TF) and CRAY XC40 machines. The parallelization speedup and efficiency of all the codes has also been shown.
7

Contribution to the physical interpretation of characteristic mode resonances. Application to dielectric resonator antennas

Bernabeu Jiménez, Tomás 01 September 2017 (has links)
The Theory of Characteristic Modes is being adopted by many research groups around the world in the last decade. This topic and their use in different metallic antenna design is growing very fast. However, most of the applications has been only concentrated on conducting surfaces without any physical knowledge about its limitations and its physical interpretation. As far as dielectric bodies are concerned, there have not been so many published articles. The reason is that there are different integro-differential formulations and the interpretation of their solutions is not as obvious as in conducting bodies. Here, a theoretical interpretation considering loss-less conducting and dielectric bodies is presented. The conclusions drawn in this thesis will allow us to better understand the solutions of the Theory of Characteristic Modes and their limitations. This is important for antenna engineering. In addition, this analysis will allow to develop a novel method for the design of antennas based on dielectric resonators, DRA. This method is called Substructure based-PMCHWT method, and is based on the implementation of the Schur complements of the method of moments matrix operator. This study permits to optimize the radiation bandwidth in the same analysis process for both, the dielectric and the feed, e.g. slot. Moreover, it allows to understand how the slot behaves in the presence of the dielectric resonator and vice versa. This method can also be used to design DRA using low permittivities. This is important in the design of DRA because the feed perturbs the system and produces a shift in the resonances of the characteristic modes. So, therefore, by considering the feed system in the characteristic modes analysis a more realistic results than a conventional analysis is obtained. On the other hand, the resonances of the characteristic modes at low permittivities are displaced from what are the natural resonances of the dielectric resonator and also the corresponding S11 resonance. Thus, designing with this new method it can draw new conclusions about the design of DRA using the Theory of Characteristic Modes. / En la última década, la teoría de los modos característicos está siendo utilizada por muchos grupos de investigación en todo el mundo. Este tema y su uso en diferentes diseños de antenas metálicas está creciendo muy rápido. Sin embargo, la mayoría de las aplicaciones se han concentrado únicamente en antenas metálicas sin ningún conocimiento físico acerca de sus limitaciones y su interpretación física. En lo que se refiere a cuerpos dieléctricos, no han habido tantos artículos publicados como en metales. La razón es que existen diferentes formulaciones integro-diferenciales y la interpretación de sus soluciones no es tan obvia como en cuerpos metálicos. En esta tesis se presenta una interpretación física de las soluciones de la Teoría de Modos Característicos al considerar cuerpos metálicos y dieléctricos sin pérdidas. Las conclusiones de esta tesis nos permitirán comprender mejor las soluciones de la Teoría de Modos Característicos y sus limitaciones. Esto es importante en ingeniería de antenas. Además, este análisis permitirá desarrollar un nuevo método para el diseño de antenas basadas en resonadores dieléctricos, DRA. Este método está basado en la formulación PMCHWT y la función de Green multicapa utilizada en el método de los momentos (MoM). A este nuevo método se le ha denominado "Substructure Characteristic Mode method", y está basado en la implementación de los complementos Schur sobre las submatrices del operador del MoM. Este estudio permite optimizar el ancho de banda de radiación de un DRA en el mismo proceso de análisis tanto para el dieléctrico como para la alimentación, como por ejemplo una ranura. Además, este método permite comprender como se comporta la ranura en presencia del resonador dieléctrico y viceversa. Este método también puede usarse para diseñar DRA usando permitividades bajas. Esto es importante en el diseño de DRA porque la alimentación perturba el sistema y produce un cambio en las resonancias de los modos característicos. Por lo tanto, al considerar la alimentación en el análisis de modos característicos se obtienen resultados más realistas comparándolos con los obtenidos mediante un análisis convencional. Así, diseñando con el "Substructure Characteristic Mode method" se pueden extraer nuevas conclusiones sobre el diseño de DRA mediante la Teoría de Modos Característicos. / En l'última dècada, la teoria dels modes característics està sent utilitzada per molts grups d'investigació en tot el món. Este tema i el seu ús en diferents dissenys d'antenes metàl·liques està creixent molt ràpid. No obstant això, la majoria de les aplicacions s'han concentrat únicament en superfícies conductores sense cap coneixement físic sobre les seues limitacions i la seua interpretació física. Pel que fa a cossos dielèctrics, no hi ha hagut tants articles publicats com en metalls. La raó és que hi ha diferents formulacions integro- diferencials i la interpretació de les seues solucions no és tan òbvia com en cossos conductors. En esta tesi es presenta una interpretació teòrica considerant cossos conductors i dielèctrics sense pèrdues. Les conclusions d'esta tesi ens permetran comprendre millor les solucions de la Teoria de Modes Característics i les seues limitacions. Açò és important en enginyeria d'antenes. Açò és important en enginyeria d'antenes. A més, esta anàlisi permetrà desenrotllar un nou mètode per al disseny d'antenes basades en ressonadors dielèctrics, DRA. Este mètode està basat en la formulació PMCHWT i la funció de Green multicapa utilitzada en el mètode dels moments (MoM) . A este nou mètode se li ha denominat "Substructure Characteristic Mode method", i està basat en la implementació dels complements Schur sobre les submatrius de l'operador del MoM. Este estudi permet optimitzar l'amplada de banda de radiació d'un DRA en el mateix procés d'anàlisi tant per al dielèctric com per a l'alimentació, com per exemple una ranura. A més, este mètode permet comprendre com es comporta la ranura en presència del ressonador dielèctric i viceversa. Este mètode també pot usar-se per a dissenyar DRA usant baixes permitivitats. Açò és important en el disseny de DRA perquè l'alimentació pertorba el sistema i produïx un canvi en les ressonàncies dels modes característics. Per tant, al considerar l'alimentació en l'anàlisi de modes característics s'obtenen resultats més realistes comparant-los amb els obtinguts per mitjà d'una anàlisi convencional. Així, dissenyant amb el "Substructure Characteristic Mode method" es poden extraure noves conclusions sobre el disseny de DRA per mitjà de la Teoria de Modes Característics. / Bernabeu Jiménez, T. (2017). Contribution to the physical interpretation of characteristic mode resonances. Application to dielectric resonator antennas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86177
8

Etude de techniques de calculs multi-domaines appliqués à la compatibilité électromagnétique / Study of multi-domain computation techniques applied to electromagnetic compatibility

Patier, Laurent 17 November 2010 (has links)
Le contexte d’étude est celui de la Compatibilité ÉlectroMagnétique (CEM). L’objectif de la CEM est, comme son nom l’indique, d’assurer la compatibilité entre une source de perturbation électromagnétique et un système électronique victime. Or, la prédiction de ces niveaux de perturbation ne peut pas s’effectuer à l’aide d’un simple calcul analytique, en raison de la géométrie qui est généralement complexe pour le système que l’on étudie, tel que le champ à l’intérieur d’un cockpit d’avion par exemple. En conséquence, nous sommes contraints d’employer des méthodes numériques, dans le but de prédire ce niveau de couplage entre les sources et les victimes. Parmi les nombreuses méthodes numériques existantes à ce jour, les méthodes Multi-Domaines (MD) sont très prisées. En effet, elles offrent la liberté aux utilisateurs de choisir la méthode numérique la plus adaptée, en fonction de la zone géométrique à calculer. Au sein de ces méthodes MD, la « Domain Decomposition Method » (DDM) présente l’avantage supplémentaire de découpler chacun de ces domaines. En conséquence, la DDM est particulièrement intéressante, vis-à-vis des méthodes concurrentes, en particulier sur l’aspect du coût numérique. Pour preuve, l’ONERA continue de développer cette méthode qui ne cesse de montrer son efficacité depuis plusieurs années, notamment pour le domaine des Surfaces Équivalentes Radar (SER) et des antennes. L’objectif de l’étude est de tirer profit des avantages de cette méthode pour des problématiques de CEM. Jusqu’à maintenant, de nombreuses applications de CEM, traitées par le code DDM, fournissaient des résultats fortement bruités. Même pour des problématiques électromagnétiques très simples, des problèmes subsistaient, sans explication convaincante. Ceci justifie cette étude. Le but de cette thèse est de pouvoir appliquer ce formalisme DDM à des problématiques de CEM. Dans cette optique, nous avons été amenés à redéfinir un certain nombre de conventions, qui interviennent au sein de la DDM. Par ailleurs, nous avons développé un modèle spécifique pour les ouvertures, qui sont des voies de couplage privilégiées par les ondes, à l’intérieur des cavités que représentent les blindages. Comme les ouvertures sont, en pratique, de petites dimensions devant la longueur d’onde, on s’est intéressé à un modèle quasi-statique. Nous proposons alors un modèle, qui a été implémenté, puis validé. Suite à ce modèle, nous avons développé une méthode originale, basée sur un calcul en deux étapes, permettant de ne plus discrétiser le support des ouvertures dans les calculs 3D. / The context of the study is the ElectroMagnetic Compatibility (EMC). Principal aim of the EMC is to ensure the compatibility between an electromagnetic perturbance source and an electronic device victim. Unfortunately, the perturbation levels prediction can not be made using an analytic formula, because the geometry which is generally complex for the interesting system, for example the field inside an aircraft’s cockpit. Therefore, we are contrained to use numerical methods, to be able to evaluate this coupling level between sources and victims. Among several existing numerical methods, Multi-Domains (MD) methods are very interesting. They offer to users the freedom to choose the most powerfull numerical method, in terms of the geometrical zone evaluated. With the MD methods, « Domain Decomposition Method » (DDM) has the avantage of decouplingeach of theses areas. Therefore, DDM is very interesting, compared to other methods, in particular on the numerical cost. ONERA keeps on developing this method, which has not stop showing his efficiency since several years, in particular in Radar Cross Section (RCS) and antennas. The objective of this study is to take the benefits of this method for EMC problems. Up to now, several EMC applications treated by the DDM code provided results strongly noisy. Even for with very simple electromagnetic cases, some problems remained without convincing explanations. This justifies this study. The aim of this thesis is to can be able to apply DDM formalism to EMC problems. Then, we have been induced to redefine a number of conventions which are involved in the DDM. Otherwise, we have developed a specific model for the apertures which are privilegied tracts of the coupling by the penetration of waves inside cavities (shieldings). As the apertures have in practice smaller dimensions compared to the wavelength, we have been interested to a quasistatic model which was developped, implemented and validated. Following this model, we have developed an original method, based on a two step calculation, able to do not discretize the apertures support in 3D computations.

Page generated in 0.0311 seconds