• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 127
  • 55
  • 53
  • 45
  • 38
  • 37
  • 33
  • 26
  • 20
  • 20
  • 20
  • 19
  • 17
  • 17
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Sensordatenfusion zur robusten Bewegungsschätzung eines autonomen Flugroboters

Wunschel, Daniel 15 March 2012 (has links) (PDF)
Eine Voraussetzung um einen Flugregler für Flugroboter zu realisieren, ist die Wahrnehmung der Bewegungen dieses Roboters. Diese Arbeit beschreibt einen Ansatz zur Schätzung der Bewegung eines autonomen Flugroboters unter Verwendung relativ einfacher, leichter und kostengünstiger Sensoren. Mittels eines Erweiterten Kalman Filters werden Beschleunigungssensoren, Gyroskope, ein Ultraschallsensor, sowie ein Sensor zu Messung des optischen Flusses zu einer robusten Bewegungsschätzung kombiniert. Dabei wurden die einzelnen Sensoren hinsichtlich der Eigenschaften experimentell untersucht, welche für die anschließende Erstellung des Filters relevant sind. Am Ende werden die Resultate des Filters mit den Ergebnissen einer Simulation und eines externen Tracking-Systems verglichen.
112

Sensordatenfusion zur robusten Bewegungsschätzung eines autonomen Flugroboters

Wunschel, Daniel 24 October 2011 (has links)
Eine Voraussetzung um einen Flugregler für Flugroboter zu realisieren, ist die Wahrnehmung der Bewegungen dieses Roboters. Diese Arbeit beschreibt einen Ansatz zur Schätzung der Bewegung eines autonomen Flugroboters unter Verwendung relativ einfacher, leichter und kostengünstiger Sensoren. Mittels eines Erweiterten Kalman Filters werden Beschleunigungssensoren, Gyroskope, ein Ultraschallsensor, sowie ein Sensor zu Messung des optischen Flusses zu einer robusten Bewegungsschätzung kombiniert. Dabei wurden die einzelnen Sensoren hinsichtlich der Eigenschaften experimentell untersucht, welche für die anschließende Erstellung des Filters relevant sind. Am Ende werden die Resultate des Filters mit den Ergebnissen einer Simulation und eines externen Tracking-Systems verglichen.
113

Algoritmy odhadu stavových veličin elektrických pohonů / Algorithms of Electrical Drives State Estimation

Herman, Ivo January 2012 (has links)
This thesis deals with state estimation methods for AC drives sensorless control and with possibilities of the estimation. Conditions for observability for a synchronous drive were derived, as well as conditions for the moment of inertia and the load torque observability for both drive types - synchronous and asynchronous. The possibilities of the estimation were confirmed by experimental results. The covariance matrices for all filters were found using an EM algorithm. Both drives were also identified. The algoritms used for state estimation are Extended Kalman Filter, Unscented Kalman Filter, Particle Filters and Moving Horizon Estimator.
114

Orientace kamery v reálném čase / Camera Orientation in Real-Time

Župka, Jiří January 2010 (has links)
This work deals with the orientation of the camera in real-time with a single camera. Offline methods are described and used as a reference for comparison of a real-time metods. Metods work in real-time Monocular SLAM and PTAM methods are there described and compared. Further, paper shows hints of advanced methods whereas future work is possible.
115

Lidar-based SLAM : Investigation of environmental changes and use of road-edges for improved positioning

Karlsson, Oskar January 2020 (has links)
The ability to position yourself and map the surroundings is an important aspect for both civilian and military applications. Global navigation satellite systems are very popular and are widely used for positioning. This kind of system is however quite easy to disturb and therefore lacks robustness. The introduction of autonomous vehicles has accelerated the development of local positioning systems. This thesis work is done in collaboration with FOI in Linköping, using a positioning system with LIDAR and IMU sensors in a EKF-SLAM system using the GTSAM framework. The goal was to evaluate the system in different conditions and also investigate the possibility of using the road surface for positioning. Data available at FOI was used for evaluation. These data sets have a known sensor setup and matches the intended hardware. The data sets used have been gathered on three different occasions in a residential area, a country road and a forest road in sunny spring weather on two occasions and one occasion in winter conditions. To evaluate the performance several different measures were used, common ones such as looking at positioning error and RMSE, but also the number of found landmarks, the estimated distance between landmarks and the drift of the vehicle. All results pointed towards the forest road providing the best positioning, the country road the worst and the residential area in between. When comparing different weather conditions the data set from winter conditions performed the best. The difference between the two spring data sets was quite different which indicates that there may be other factors at play than just weather. A road edge detector was implemented to improve mapping and positioning. Vectors, denoted road vectors, with position and orientation were adapted to the edge points and the change between these road vectors were used in the system using GTSAM in areas with few landmarks. The clearest improvements to the drift in the vehicle direction was in the longer country area where the error was lowered with 6.4 % with increase in the error sideways and in orientation as side effects. The implemented method has a significant impact on the computational cost of the system as well as requiring precise adjustment of uncertainty to have a noticeable improvement and not worsen the overall results.
116

Kalman Filter Based Approach : Real-time Control-based Human Motion Prediction in Teleoperation / Kalman Filter baserad metod : Realtids uppskattningar av Kontrollbaserad Mänsklig Rörelse i Teleoperationen

Fan, Zheyu Jerry January 2016 (has links)
This work is to investigate the performance of two Kalman Filter Algorithms, namely Linear Kalman Filter and Extended Kalman Filter on control-based human motion prediction in a real-time teleoperation. The Kalman Filter Algorithm has been widely used in research areas of motion tracking and GPS-navigation. However, the potential of human motion prediction by utilizing this algorithm is rarely being mentioned. Combine with the known issue - the delay issue in today’s teleoperation services, the author decided to build a prototype of simple teleoperation model based on the Kalman Filter Algorithm with the aim of eliminated the unsynchronization between the user’s inputs and the visual frames, where all the data were transferred over the network. In the first part of the thesis, two types of Kalman Filter Algorithm are applied on the prototype to predict the movement of the robotic arm based on the user’s motion applied on a Haptic Device. The comparisons in performance among the Kalman Filters have also been focused. In the second part, the thesis focuses on optimizing the motion prediction which based on the results of Kalman filtering by using the smoothing algorithm. The last part of the thesis examines the limitation of the prototype, such as how much the delays are accepted and how fast the movement speed of the Phantom Haptic can be, to still be able to obtain reasonable predations with acceptable error rate.   The results show that the Extended Kalman Filter has achieved more advantages in motion prediction than the Linear Kalman Filter during the experiments. The unsynchronization issue has been effectively improved by applying the Kalman Filter Algorithm on both state and measurement models when the latency is set to below 200 milliseconds. The additional smoothing algorithm further increases the accuracy. More important, it also solves shaking issue on the visual frames on robotic arm which is caused by the wavy property of the Kalman Filter Algorithm. Furthermore, the optimization method effectively synchronizes the timing when robotic arm touches the interactable object in the prediction.   The method which is utilized in this research can be a good reference for the future researches in control-based human motion tracking and prediction. / Detta arbete fokuserar på att undersöka prestandan hos två Kalman Filter Algoritmer, nämligen Linear Kalman Filter och Extended Kalman Filter som används i realtids uppskattningar av kontrollbaserad mänsklig rörelse i teleoperationen. Dessa Kalman Filter Algoritmer har används i stor utsträckning forskningsområden i rörelsespårning och GPS-navigering. Emellertid är potentialen i uppskattning av mänsklig rörelse genom att utnyttja denna algoritm sällan nämnas. Genom att kombinera med det kända problemet – fördröjningsproblem i dagens teleoperation tjänster beslutar författaren att bygga en prototyp av en enkel teleoperation modell vilket är baserad på Kalman Filter algoritmen i syftet att eliminera icke-synkronisering mellan användarens inmatningssignaler och visuella information, där alla data överfördes via nätverket. I den första delen av avhandlingen appliceras både Kalman Filter Algoritmer på prototypen för att uppskatta rörelsen av robotarmen baserat på användarens rörelse som anbringas på en haptik enhet. Jämförelserna i prestandan bland de Kalman Filter Algoritmerna har också fokuserats. I den andra delen fokuserar avhandlingen på att optimera uppskattningar av rörelsen som baserat på resultaten av Kalman-filtrering med hjälp av en utjämningsalgoritm. Den sista delen av avhandlingen undersökes begräsning av prototypen, som till exempel hur mycket fördröjningar accepteras och hur snabbt den haptik enheten kan vara, för att kunna erhålla skäliga uppskattningar med acceptabel felfrekvens.   Resultaten visar att den Extended Kalman Filter har bättre prestandan i rörelse uppskattningarna än den Linear Kalman Filter under experimenten. Det icke-synkroniseringsproblemet har förbättrats genom att tillämpa de Kalman Filter Algoritmerna på både statliga och värderingsmodeller när latensen är inställd på under 200 millisekunder. Den extra utjämningsalgoritmen ökar ytterligare noggrannheten. Denna algoritm löser också det skakande problem hos de visuella bilder på robotarmen som orsakas av den vågiga egenskapen hos Kalman Filter Algoritmen. Dessutom effektivt synkroniserar den optimeringsmetoden tidpunkten när robotarmen berör objekten i uppskattningarna.   Den metod som används i denna forskning kan vara en god referens för framtida undersökningar i kontrollbaserad rörelse- spåning och uppskattning.
117

Trajectory and Pulse Optimization for Active Towed Array Sonar using MPC and Information Measures

Ekdahl Filipsson, Fabian January 2020 (has links)
In underwater tracking and surveillance, the active towed array sonar presents a way of discovering and tracking adversarial submerged targets that try to stay hidden. The configuration consist of listening and emitting hydrophones towed behind a ship. Moreover, it has inherent limitations, and the characteristics of sound in the ocean are complex. By varying the pulse form emitted and the trajectory of the ship the measurement accuracy may be improved. This type of optimization constitutes a sensor management problem. In this thesis, a model of the tracking scenario has been constructed derived from Cramér-Rao bound analyses. A model predictive control approach together with information measures have been used to optimize a filter's estimated state of the target. For the simulations, the MATLAB environment has been used. Different combinations of decision horizons, information measures and variations of the Kalman filter have been studied. It has been found that the accuracy of the Extended Kalman filter is too low to give consistent results given the studied information measures. However, the Unscented Kalman filter is sufficient for this purpose.
118

Formation Control of UAVs for Positioning and Tracking of a Moving Target

Carsk, Robert, Jeremic, Alexander January 2023 (has links)
The potential of Unmanned Aerial Vehicles (UAVs) for surveillance and military applications is significant — with continued technical advances in the field. The number of incidents where UAVs have intruded into unauthorized areas has increased in recent years and armed drones are commonly used in modern warfare. It is therefore of great interest to investigate methods for UAVs to locate and track intruder drones to prevent and counter surveillance of unauthorized areas and attacks from intruder UAVs. This master’s thesis studied how two autonomous seeker UAVs can be used cooperatively to track and pursue a target UAV. To locate the target UAV, simulated measurements from received Radio Frequency (RF) signals were used by extracting bearing and Received Signal Strength (RSS) data. To track the target and predict its future position, the study employed an Extended Kalman Filter (EKF) on each seeker UAV, which acted together as a Mobile Wireless Sensor Network (MWSN). The thesis explored two formation control methods to keep the seeker UAVs in formation while pursuing the target drone. The formation methods used the predicted position of the target to produce reference positions and/or reference distances for a controller to follow. A Distributed Model Predictive Controller (DMPC) was implemented on the seeker UAVs to pursue the target while maintaining formation and avoiding collisions. The EKF, MPC, and formation methods were first evaluated individually in simulation to assess their performance and for parameter tuning. The respective modules were then combined into the complete system and tuned to achieve improved pursuit and formation in simulation. The results showed that, with the chosen parameters and with a high level of measurement noise, the seeker UAVs were able to pursue the target with a combined average distance error of less than 2 m when the target drone flew in a square pattern with a velocity of 2 m/s. The quality of the pursuit was highly affected by the increase in velocity of the target and the initial positions of the seekers, where a high velocity and a large initial deviation from the reference positions/distances resulted in poorer quality.
119

On improving the accuracy and reliability of GPS/INS-based direct sensor georeferencing

Yi, Yudan 24 August 2007 (has links)
No description available.
120

Contributions to the study of control for small-scale wind turbine connected to electrical microgrid with and without sensor / Contribution à l'étude des commandes avec et sans capteur d'une éolienne de faible puissance insérée dans un micro réseau électrique

Al Ghossini, Hossam 23 November 2016 (has links)
L'objectif de cette thèse est de proposer l'approche la plus appropriée afin de minimiser le coût d'intégration de petite éolienne dans un micro-réseau DC urbain. Une petit éolienne basé sur un machine synchrone à aimant permanent (MSAP) est considéré à étudier. Un état de l'art concernant les énergies renouvelables, micro-réseau DC, et la production d'énergie éolienne, est fait. Comme le capteur mécanique de cette structure est relativement d'un coût élevé, les différents types de contrôle pour un système de conversion éolienne sont présentés afin de choisir une structure active de conversion d'énergie et un MSAP sans capteur. Par conséquent, un estimateur de vitesse/position est nécessaire pour contrôler le système. Ainsi, les méthodes différentes proposées dans la littérature sont considérées et classifiées à étudier dans les détails, puis les plus efficaces et largement utilisés sont à vérifier dans la simulation et expérimentalement pour le système étudié. Les méthodes choisies sont: estimation de la flux de rotor avec boucle à verrouillage de phase (PLL), observateur à mode glissement (SMO), observateur de Luenberger d'ordre réduit, et filtre de Kalman étendu (EKF). Face à d'autres méthodes, l'estimateur basé sur un modèle EKF permet une commande sans capteur dans une large plage de vitesse et estime la vitesse de rotation avec une réponse rapide. Le réglage des paramètres EKF est le problème principal à sa mise en œuvre. Par conséquent, pour résoudre ce problème, la thèse présente une méthode adaptative, à savoir réglage-adaptatif d’EKF. En conséquence, et grâce à cette approche, le coût total du système de conversion est réduite et la performance est garantie et optimisée. / The aim of this thesis is to propose the most appropriate approach in order to minimize the cost of integration of a wind generator into a DC urban microgrid. A small-scale wind generator based on a permanent magnet synchronous machine (PMSM) is considered to be studied. A state of the art concerning the renewable energies, DC microgrid, and wind power generation is done. As the mechanical sensor for this structure is relatively of high cost, various types of wind conversion system control are presented in order to choose an energy conversion active structure and a sensorless PMSM. Therefore, a speed/position estimator is required to control the system. Thus, different methods proposed in literatures are considered and classified to be studied in details, and then the most effective and widely used ones are to be verified in simulation and experimentally for the studied system. The methods which are chosen are: rotor flux estimation with phase locked loop (PLL), sliding mode observer (SMO), Luenberger observer of reduced order, and extended Kalman filter (EKF). Facing to other methods, the EKF model-based estimator allows sensorless drive control in a wide speed range and estimates the rotation speed with a rapid response. The EKF parameters tuning is the main problem to its implementation. Hence, to solve this problem, the thesis introduces an adaptive method, i.e. adaptive-tuning EKF. As a result and grace to this approach, the total cost of conversion system is reduced and the performance is guaranteed and optimized.

Page generated in 0.0241 seconds