121 |
Contribution au Diagnotic des Défauts de la Machine Asynchrone Doublement Alimentée de l'Eolienne à Vitesse Variable. / Fault diagnosis of a Doubly Fed Induction Generator (DFIG) in a variable speed wind turbineIdrissi, Imane 21 September 2019 (has links)
Actuellement, les machines Asynchrones à Double Alimentation (MADA) sont omniprésentes dans le secteur éolien, grâce à leur simplicité de construction, leur faible coût d’achat et leur robustesse mécanique ainsi que le nombre faible d’interventions pour la maintenance. Cependant, comme toute autre machine électrique, ces génératrices sont sujettes aux défauts de différent ordre (électrique, mécanique, électromagnétique…) ou de différents types (capteur, actionneur ou composants du système). C’est pourquoi, il est primordial de concevoir une approche de diagnostic permettant de manière anticipée, de détecter, localiser et identifier tout défaut ou anomalie pouvant altérer le fonctionnement sain de ce type de machine. Motivés par les points forts des méthodes de diagnostic de défauts à base d’observateurs, nous proposons d’une part, dans cette thèse, une approche de détection, localisation et identification des défauts de la MADA d’une éolienne à vitesse variable, à base des observateurs de Kalman, performants et largement utilisés. Les erreurs d’estimation d’état du filtre de Kalman linéaire et de ses variantes non-linéaires, à noter : le Filtre de Kalman Etendu (EKF) et le Filtre de Kalman sans-Parfum (UKF), sont utilisés comme résidus sensibles aux défauts. En vue d’éviter les fausses alarmes et de découpler les défauts des perturbations et des bruits, l’analyse des résidus générés est réalisée par des tests statistiques tels que : Test de Page Hinkley (PH) et Test DCS (Dynamic Cumulative Sum). Pour la localisation des défauts multiples et simultanés, la Structure d’Observateurs Dédiés (DOS) et la Structure d’Observateurs Généralisés (GOS) sont appliquées. De plus, l’amplitude du défaut est déterminée dans l’étape d’identification de défaut. Les défauts capteurs, actionneurs et composants de la MADA, sont traités dans ce travail de recherche. D’autre part, une étude comparative entre les différents observateurs de Kalman, est élaborée. La comparaison porte sur les critères suivants : le temps de calcul, la précision et la vitesse de convergence des estimations. / Actually, the Doubly Fed Induction Generators (DFIG) are omnipresent in the wind power market, owing to their construction simplicity, their low purchase cost and their mechanical robustness. However, as any other electrical machine, these generators are subject to defects of different order (electrical, mechanical, electromagnetic ...) or of different type (sensor, actuator or system). That’s why, it is important to design an effective diagnostic approach, able to early detect, locate and identify any defect or abnormal behavior, which could undermine the healthy operation of this machine On the one hand, motivated by the observer-based fault diagnosis methods strengths, we proposed, in this thesis, a diagnostic approach for the faults detection, localization and identification of the DFIG used in variable speed wind turbine. This approach is based on the use of the efficient and widely used Kalman observers. The state estimation errors of the linear Kalman filter and the non-linear Kalman filters, named: The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are used as faults sensitive residuals. In order to avoid false alarms and to decouple faults from disturbances and noises, the faults detection is carried out by the analysis of the residuals generated, by the mean of statistical tests such as: Hinkley Page Test (PH) and DCS Test (Dynamic) Cumulative Sum). For the localization step in case of multiple and simultaneous faults, the Dedicated Observer scheme (DOS) and the Generalized Observer scheme (GOS) are applied. In addition, the fault level is determined in the fault identification step. Sensor faults, actuator and system faults of DFIG, are treated in this research work. On the other hand, a comparative study between the three Kalman observers proposed is performed. The comparison was done in terms of (1) the computation time, (2) the estimation accuracy, and (3) the convergence speed.
|
122 |
Vision-based navigation and mapping for flight in GPS-denied environmentsWu, Allen David 15 November 2010 (has links)
Traditionally, the task of determining aircraft position and attitude for automatic control has been handled by the combination of an inertial measurement unit (IMU) with a Global Positioning System (GPS) receiver. In this configuration, accelerations and angular rates from the IMU can be integrated forward in time, and position updates from the GPS can be used to bound the errors that result from this integration. However, reliance on the reception of GPS signals places artificial constraints on aircraft such as small unmanned aerial vehicles (UAVs) that are otherwise physically capable of operation in indoor, cluttered, or adversarial environments.
Therefore, this work investigates methods for incorporating a monocular vision sensor into a standard avionics suite. Vision sensors possess the potential to extract information about the surrounding environment and determine the locations of features or points of interest. Having mapped out landmarks in an unknown environment, subsequent observations by the vision sensor can in turn be used to resolve aircraft position and orientation while continuing to map out new features.
An extended Kalman filter framework for performing the tasks of vision-based mapping and navigation is presented. Feature points are detected in each image using a Harris corner detector, and these feature measurements are corresponded from frame to frame using a statistical Z-test. When GPS is available, sequential observations of a single landmark point allow the point's location in inertial space to be estimated. When GPS is not available, landmarks that have been sufficiently triangulated can be used for estimating vehicle position and attitude.
Simulation and real-time flight test results for vision-based mapping and navigation are presented to demonstrate feasibility in real-time applications. These methods are then integrated into a practical framework for flight in GPS-denied environments and verified through the autonomous flight of a UAV during a loss-of-GPS scenario. The methodology is also extended to the application of vehicles equipped with stereo vision systems. This framework enables aircraft capable of hovering in place to maintain a bounded pose estimate indefinitely without drift during a GPS outage.
|
123 |
Methods For Forward And Inverse Problems In Nonlinear And Stochastic Structural DynamicsSaha, Nilanjan 11 1900 (has links)
A main thrust of this thesis is to develop and explore linearization-based numeric-analytic integration techniques in the context of stochastically driven nonlinear oscillators of relevance in structural dynamics. Unfortunately, unlike the case of deterministic oscillators, available numerical or numeric-analytic integration schemes for stochastically driven oscillators, often modelled through stochastic differential equations (SDE-s), have significantly poorer numerical accuracy. These schemes are generally derived through stochastic Taylor expansions and the limited accuracy results from difficulties in evaluating the multiple stochastic integrals. We propose a few higher-order methods based on the stochastic version of transversal linearization and another method of linearizing the nonlinear drift field based on a Girsanov change of measures. When these schemes are implemented within a Monte Carlo framework for computing the response statistics, one typically needs repeated simulations over a large ensemble. The statistical error due to the finiteness of the ensemble (of size N, say)is of order 1/√N, which implies a rather slow convergence as N→∞. Given the prohibitively large computational cost as N increases, a variance reduction strategy that enables computing accurate response statistics for small N is considered useful. This leads us to propose a weak variance reduction strategy. Finally, we use the explicit derivative-free linearization techniques for state and parameter estimations for structural systems using the extended Kalman filter (EKF). A two-stage version of the EKF (2-EKF) is also proposed so as to account for errors due to linearization and unmodelled dynamics.
In Chapter 2, we develop higher order locally transversal linearization (LTL) techniques for strong and weak solutions of stochastically driven nonlinear oscillators. For developing the higher-order methods, we expand the non-linear drift and multiplicative diffusion fields based on backward Euler and Newmark expansions while simultaneously satisfying the original vector field at the forward time instant where we intend to find the discretized solution. Since the non-linear vector fields are conditioned on the solution we wish to determine, the methods are implicit. We also report explicit versions of such linearization schemes via simple modifications. Local error estimates are provided for weak solutions.
Weak linearized solutions enable faster computation vis-à-vis their strong counterparts. In Chapter 3, we propose another weak linearization method for non-linear oscillators under stochastic excitations based on Girsanov transformation of measures. Here, the non-linear drift vector is appropriately linearized such that the resulting SDE is analytically solvable. In order to account for the error in replacing of non-linear drift terms, the linearized solutions are multiplied by scalar weighting function. The weighting function is the solution of a scalar SDE(i.e.,Radon-Nikodym derivative). Apart from numerically illustrating the method through applications to non-linear oscillators, we also use the Girsanov transformation of measures to correct the truncation errors in lower order discretizations.
In order to achieve efficiency in the computation of response statistics via Monte Carlo simulation, we propose in Chapter 4 a weak variance reduction strategy such that the ensemble size is significantly reduced without seriously affecting the accuracy of the predicted expectations of any smooth function of the response vector. The basis of the variance reduction strategy is to appropriately augment the governing system equations and then weakly replace the associated stochastic forcing functions through variance-reduced functions. In the process, the additional computational cost due to system augmentation is generally far less besides the accrued advantages due to a drastically reduced ensemble size. The variance reduction scheme is illustrated through applications to several non-linear oscillators, including a 3-DOF system.
Finally, in Chapter 5, we exploit the explicit forms of the LTL techniques for state and parameters estimations of non-linear oscillators of engineering interest using a novel derivative-free EKF and a 2-EKF. In the derivative-free EKF, we use one-term, Euler and Newmark replacements for linearizations of the non-linear drift terms. In the 2-EKF, we use bias terms to account for errors due to lower order linearization and unmodelled dynamics in the mathematical model. Numerical studies establish the relative advantages of EKF-DLL as well as 2-EKF over the conventional forms of EKF.
The thesis is concluded in Chapter 6 with an overall summary of the contributions made and suggestions for future research.
|
124 |
Novel Sub-Optimal And Particle Filtering Strategies For Identification Of Nonlinear Structural Dynamical SystemsGhosh, Shuvajyoti 01 1900 (has links)
Development of dynamic state estimation techniques and their applications in problems of identification in structural engineering have been taken up. The thrust of the study has been the identification of structural systems that exhibit nonlinear behavior, mainly in the form of constitutive and geometric nonlinearities. Methods encompassing both linearization based strategies and those involving nonlinear filtering have been explored.
The applications of derivative-free locally transversal linearization (LTL) and multi-step transversal linearization (MTrL) schemes for developing newer forms of the extended Kalman filter (EKF) algorithm have been explored. Apart from the inherent advantages of these methods in avoiding gradient calculations, the study also demonstrates their superior numerical accuracy and considerably less sensitivity to the choice of step sizes. The range of numerical illustrations covers SDOF as well as MDOF oscillators with time-invariant parameters and those with discontinuous temporal variations.
A new form of the sequential importance sampling (SIS) filter is developed which explores the scope of the existing SIS filters to cover nonlinear measurement equations and more general forms of noise involving multiplicative and (or) Gaussian/ non-Gaussian noises. The formulation of this method involves Ito-Taylor’s expansions of the nonlinear functions in the measurement equation and the development of the ideal ispdf while accounting for the non-Gaussian terms appearing in the governing equation. Numerical illustrations on parameter identification of a few nonlinear oscillators and a geometrically nonlinear Euler–Bernoulli beam reveal a remarkably improved performance of the proposed methods over one of the best known algorithms, i.e. the unscented particle filter.
The study demonstrates the applicability of diverse range of mathematical tools including Magnus’ functional expansions, theory of SDE-s, Ito-Taylor’s expansions and simulation and characterization of the non-Gaussian random variables to the problem of nonlinear structural system identification.
|
125 |
Localisation d'une flotte de véhicules communicants par approche de type SLAM visuel décentraliséBresson, Guillaume 21 February 2014 (has links) (PDF)
La localisation d'un véhicule via les techniques de SLAM (Simultaneous Localization And Mapping pour cartographie et localisation simultanées) a connu un essor important durant les 20 dernières années. Pourtant, peu d'approches ont tenté d'étendre ces algorithmes à une flotte de véhicules malgré les nombreuses applications potentielles. C'est ici l'objectif de cette thèse. Pour ce faire, une approche de SLAM monoculaire pour un seul véhicule a d'abord été développée. Celle-ci propose de coupler un filtre de Kalman étendu avec une représentation cartésienne des amers afin de produire des cartes de faible densité mais de qualité. En effet, l'extension à plusieurs véhicules nécessite des échanges permanents par l'intermédiaire de communications sans fil. Avec peu d'amers dans les cartes, notre approche s'accommode bien du nombre de véhicules de la flotte. Des capteurs peu onéreux ont aussi été privilégiés (une unique caméra et un odomètre) afin de réduire le coût d'une extension multivéhicule. Des correctifs ont été proposés afin d'éviter les problèmes de divergence induits par les choix précédents. Des expérimentations ont montré que la solution de SLAM produite était légère et rapide tout en fournissant une localisation de qualité. La dérive, inhérente à tout algorithme de SLAM, a également fait l'objet d'une analyse. Celle-ci a été intégrée au SLAM par l'intermédiaire d'une architecture dédiée et d'un modèle dynamique. Le but est de pouvoir rendre consistante la localisation fournie par le SLAM, même en l'absence d'estimation de la dérive. Cela permet d'effectuer des fermetures de boucle ou encore d'intégrer des informations géo-référencées de manière naturelle tout en conservant l'intégrité de la solution. En multivéhicule, cet aspect est un point clef puisque chaque véhicule dérive différemment des autres. Il est donc important de le prendre en compte. Enfin, le SLAM a été étendu à plusieurs véhicules. Une structure générique a été prévue afin que notre approche monoculaire puisse être remplacée par n'importe quel algorithme de SLAM. Notre architecture décentralisée évite la consanguinité des données (le fait de compter deux fois une même information) et gère les défaillances réseau, que cela soit des ruptures de communication ou encore des latences dans la réception des données. La partie statique du modèle de dérive permet également de prendre en compte le fait que les positions initiales des véhicules d'une flotte puissent être inconnues. L'intégrité est ainsi maintenue en permanence. Enfin, notre approche étant entièrement décentralisée, elle a pu être testée et validée en simulation et avec des expérimentations réelles dans diverses configurations (convoi en colonne ou en ligne, avec 2 ou 3 véhicules).
|
126 |
Optimal Guidance Of Aerospace Vehicles Using Generalized MPSP With Advanced Control Of Supersonic Air-Breathing EnginesMaity, Arnab 12 1900 (has links) (PDF)
A new suboptimal guidance law design approach for aerospace vehicles is proposed in this thesis, followed by an advanced control design for supersonic air-breathing engines. The guidance law is designed using the newly developed Generalized Model Predictive Static Programming (G-MPSP), which is based on the continuous time nonlinear optimal control framework. The key feature of this technique is one-time backward propagation of a small-dimensional weighting matrix dynamics, which is used to update the entire control history. This key feature, as well as the fact that it leads to a static optimization problem, lead to its computational efficiency. It has also been shown that the existing model predictive static programming (MPSP), which is based on the discrete time framework, is a special case of G-MPSP. The G-MPSP technique is further extended to incorporate ‘input inequality constraints’ in a limited sense using the penalty function philosophy. Next, this technique has been developed also further in a ‘flexible final time’ framework to converge rapidly to meet very stringent final conditions with limited number of iterations.
Using the G-MPSP technique in a flexible final time and input inequality constrained formulation, a suboptimal guidance law for a solid motor propelled carrier launch vehicle is successfully designed for a hypersonic mission. This guidance law assures very stringent final conditions at the injection point at the end of the guidance phase for successful beginning of the hypersonic vehicle operation. It also ensures that the angle of attack and structural load bounds are not violated throughout the trajectory. A second-order autopilot has been incorporated in the simulation studies to mimic the effect of the inner-loops on the guidance performance. Simulation studies with perturbations in the thrust-time behaviour, drag coefficient and mass demonstrate that the proposed guidance can meet the stringent requirements of the hypersonic mission.
The G-MPSP technique in a fixed final time and input inequality constrained formulation has also been used for optimal guidance of an aerospace vehicle propelled by supersonic air-breathing engine, where the resulting thrust can be manipulated by managing the fuel flow and nozzle area (which is not possible in solid motors). However, operation of supersonic air-breathing engines is quite complex as the thrust produced by the engine is a result of very complex nonlinear combustion dynamics inside the engine. Hence, to generate the desired thrust, accounting for a fairly detailed engine model, a dynamic inversion based nonlinear state feedback control design has been carried out. The objective of this controller is to ensure that the engine dynamically produces the thrust that tracks the commanded value of thrust generated from the guidance loop as closely as possible by regulating the fuel flow rate. Simultaneously, by manipulating throat area of the nozzle, it also manages the shock wave location in the intake for maximum pressure recovery with sufficient margin for robustness. To filter out the sensor and process noises and to estimate the states for making the control design operate based on output feedback, an extended Kalman filter (EKF) based state estimation design has also been carried out and the controller has been made to operate based on estimated states. Moreover, independent control designs have also been carried out for the actuators so that their response can be faster. In addition, this control design becomes more challenging to satisfy the imposed practical constraints like fuel-air ratio and peak combustion temperature limits. Simulation results clearly indicate that the proposed design is quite successful in assuring the desired performance of the air-breathing engine throughout the flight trajectory, i.e., both during the climb and cruise phases, while assuring adequate pressure margin for shock wave management.
|
127 |
Evaluation of Target Tracking Using Multiple Sensors and Non-Causal AlgorithmsVestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.
|
Page generated in 0.0257 seconds