• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 330
  • 77
  • 77
  • 34
  • 32
  • 9
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 718
  • 188
  • 146
  • 145
  • 139
  • 126
  • 122
  • 118
  • 98
  • 90
  • 89
  • 82
  • 78
  • 76
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Development of characterisation methods for the components of the polymer electrolyte fuel cell

Ihonen, Jari January 2003 (has links)
<p>In this work characterisation methods and fuel cell hardwarewere developed for studying the components of the polymerelectrolyte fuel cell (PEFC). Humidifiers and other componentswere tested in order to develop reproducible and reliableexperimental techniques. A set-up for testing larger cells andstacks was developed.</p><p>A new type of polymer electrolyte membrane fuel cell wasdeveloped for laboratory investigations. Current collectormaterial and gas flow channels can easily be modified in thisconstruction. The electrode potentials can be measured at thegas backing layers, thereby allowing measurement of contactresistances. The use of a reference electrode is alsopossible.</p><p>Contact resistances were studied in situ as a function oftime, clamping pressure, gas pressure and current density.Ex-situ measurements were used to validate the in-situ contactresistance measurements. The validity and error sources of theapplied in-situ measurement methods with reference electrodesand potential probes were studied using both computersimulations and experiments.</p><p>An in-house membrane electrode assembly (MEA) productionline was developed. In-house produced MEAs were utilised inboth membrane degradation and mass transport studies.</p><p>The durability testing of PVDF based membranes membranes wasstudied both by fuel cell experiments and ex-situ testing.Raman spectra were measured for used membranes.</p><p>A current distribution measurement method was developed. Theeffect of inlet humidification and gas composition at thecathode side was studied. In addition, two different flow fieldgeometries were studied. The results of current distributionmeasurements were used to validate a PEFC model.</p><p>Methods for characterising gas diffusion layer (GDL)performance by fuel cell testing and ex-situ measurements weredeveloped. The performance of GDL materials was tested withvarying cell compression and cathode humidity. Porosity, poresize distribution and contact angle were determined. Electricalcontact resistance, thermal impedance and gas permeabilitieswere measured at different compression levels.</p><p>Development work on a stack with stainless steel net wascarried out as well as characterisation studies of differentstack components. Thermal impedances and flow fieldpermeability were measured.</p><p>Mass transport limitations in the cathodes were studied byvarying the electrode thickness, partial pressure and humidityof oxygen.</p><p><b>Keywords:</b>polymer electrolyte membrane fuel cell (PEFC),contact resistance, clamping pressure, stainless steel,membrane degradation, current distribution, gas diffusionlayer, stack, thermal impedance, permeability.</p>
252

Mécanismes de dégradation des membranes polyaromatiques sulfonées en pile à combustible

Perrot, Carine 24 November 2006 (has links) (PDF)
Le développement de la pile à combustible repose sur une amélioration de la durabilité des assemblages membrane-électrodes (AMEs). La durée de vie des AMEs dépend, entre autres, de la nature des matériaux utilisés ainsi que des conditions de fonctionnement de la pile. La dégradation peut être d'origine électrochimique, chimique, et/ou mécanique. <br /> <br />Cette étude porte sur la compréhension des mécanismes mis en jeu lors du vieillissement de membranes alternatives, non fluorées, de type PEEKs et PIs, étape indispensable au développement de structures plus stables. Dans ce cas, le processus est avant tout chimique. Une démarche originale, qui consiste à étudier le mécanisme de dégradation sur des structures modèles, a été adoptée afin de contourner les difficultés analytiques propres aux polymères. Les vieillissements sont réalisés dans l'eau, éventuellement additionnée de H2O2 (identifié comme une des causes du vieillissement chimique des membranes en pile), à différentes températures. La démarche consiste à isoler par chromatographie les différents produits formés, à les identifier (RMN, IR, SM) et à les quantifier. Ceci nous a permis d'établir le mécanisme de vieillissement. Nous avons en particulier montré que le vieillissement d'une structure PEEKs résulte principalement d'une attaque par les bouts de chaîne qui se propage à l'ensemble. Ce mécanisme a été validé sur une membrane vieillie en ex-situ et testée en pile. Ces deux types de vieillissement conduisent à une diminution importante du degré de polymérisation (déterminé par CES) et à la formation des mêmes produits primaires de dégradation. En pile, une dégradation hétérogène est mise en évidence essentiellement côté cathode. <br /><br />Les PIs sont connus pour leur forte sensibilité à l'hydrolyse. Toutefois, nous avons pu montrer que la dégradation est relativement limitée à 80°C en raison d'une recombinaison des espèces hydrolysées.
253

Role of water channels in kidney and lung

Li, Yanhong, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 4 uppsatser.
254

A Study on the Optimization of Dye-Sensitized Solar Cells

Khan, Md Imran 01 January 2013 (has links)
Considering biocompatibility, the Dye Sensitized Solar Cell (DSC) based on titanium dioxide should play a major role in the future of solar energy. In this ongoing study, different components and ambient process conditions for the fabrication of were investigated. Titanium dioxide substrate thickness and morphology was found to have a direct impact on the cell efficiency. Scanning Electron Microscopy (SEM) was used to investigate the TiO2 nanostructure. Different chemical treatments and electrolytes were also explored towards optimizing the cell performance. A group of porphyrin based organic dyes were synthesized and evaluated. Standard solar cell characterization techniques such as current-voltage and spectral response measurements were employed to evaluate the cell performance.
255

Synthesis and characterization of nanocomposite alloy anodes for lithium-ion batteries

Applestone, Danielle Salina 25 February 2013 (has links)
Lithium-ion batteries are most commonly employed as power sources for portable electronic devices. Limited capacity, high cost, and safety problems associated with the commercially used graphite anode materials are hampering the use of lithium-ion batteries in larger-scale applications such as the electric vehicle. Nanocomposite alloys have shown promise as new anode materials because of their better safety due to higher operating potential, increased energy density, low cost, and straightforward synthesis as compared to graphite. The purpose of this dissertation is to investigate and understand the electrochemical properties of several types of nanocomposite alloys and to assess their viability as replacement anode materials for lithium-ion batteries. Tin and antimony are two elements that are active toward lithium. Accordingly, this dissertation is focused on tin-based and antimony-based nanocomposite alloy materials. Tin and antimony each have larger theoretical capacities than commercially available anodes, but the capacity fades dramatically in the first few cycles when metallic tin or antimony is used as the anode in a lithium-ion battery. This capacity fade is largely due to the agglomeration of particles in the anode material and the formation of a barrier layer between the surface of the anode and the electrolyte. In order to suppress agglomeration, the active anode material can be constrained by an inactive matrix of material that makes up the nanocomposite. By controlling the surface of the particles in the nanocomposite via methods such as the addition of additives to the electrolyte, the detrimental effects of the solid-electrolyte interphase layer (SEI) can be minimized, and the capacity of the material can be maintained. Moreover, the nanocomposite alloys described in this dissertation can be used above the voltage where lithium plating occurs, thereby enhancing the safety of lithium-ion batteries. The alloy anodes in this study are synthesized by high-energy mechanical milling and furnace heating. The materials are characterized by X-ray diffraction, scanning and transmission electron microscopies, and X-ray photoelectron spectroscopy. Electrochemical performances are assessed at various temperatures, potential ranges, and charge rates. The lithiation/delithiation reaction mechanisms for these nanocomposite materials are explored with ex-situ X-ray diffraction. Specifically, three different nanocomposite alloy anode materials have been developed: Mo3Sb7-C, Cu2Sb-Al2O3-C, and Cu6Sn5-TiC-C. Mo3Sb7-C has high gravimetric capacity and involves a reaction mechanism whereby crystalline Mo3Sb7 disappears and is reformed during each cycle. Cu2Sb-Al2O3-C with small particles (2 - 10 nm) of Cu2Sb dispersed in the Al2O3-C matrix is made by a single-step ball milling process. It exhibits long cycle life (+ 500 cycles), and the reversibility of the reaction of Cu2Sb-Al2O3-C with lithium is improved when longer milling times are used for synthesis. The reaction mechanism for Cu2Sb-Al2O3-C appears to be dependent upon the size of the crystalline Cu2Sb particles. The coulombic efficiency of Cu2Sb-Al2O3-C is improved through the addition of 2 % vinylethylene carbonate to the electrolyte. With a high tap density of 2.2 g/cm3, Cu6Sn5-TiC-C exhibits high volumetric capacity. The reversibility of the reaction of Cu6Sn5-TiC-C with lithium is improved when the material is cycled above 0.2 V vs. Li/Li+. / text
256

Low voltage electrochemical hydrogen production

Weaver, Eric P 01 June 2006 (has links)
Hydrogen production is dependent on natural gas, 90% in the U.S. and 48% of the world's production. Natural gas supply is dwindling and it's price is increasing. Greenhouse gases and air pollutants are emitted when natural gas is used. In a single product production facility, coal is not competitive with natural gas for hydrogen production at current prices. Hydrogen production by direct electrochemical dissociation of water requires a relatively high voltage.Techniques have been developed for manufacturing hydrogen as a lucrative byproduct of IGCC electric power generation, refinery sulfur production and sulfuric acid production for fertilizer production. Laboratory experiments have been conducted on small systems to advance the technology and full size commercial plants have been conceptualized and analyzed to establish economic viability.In this thesis, a low voltage electrochemical hydrogen production technique has been developed that entails scavenging of the anode with sulfur dioxide. In an electrochemical cell hydrogen is produced at the negative electrode while the positive electrode is bathed in sulfur dioxide which is oxidized with water to sulfuric acid. The presence of SO2 substantially reduces the equilibrium voltage relative to that required for the direct dissociation of water into hydrogen and oxygen. Also sulfuric acid is a more valuable byproduct than oxygen. More sulfuric acid is produced than any other chemical commodity in the U.S. and is a major economic indicator. Hydrogen produced by the electrochemical route being discussed in this thesis illustrates industrial possibilities for large scale-up, economical hydrogen production.In an electrochemical cell, an equilibrium voltage of 1.23 volts is required to decompose water into hydrogen and oxygen. The presence of sulfur dioxide to scavenge the anode can reduce the equilibrium voltage from 1.23 volts to 0.17 volts. The equations shown below are reactions showing the energy requirements.2H2Oâ?? 2H2 + O2 - 4 Faradays @ 1.2Vâ?? 2SO2 + 4H2O 2H2SO4 + 2H2 - 4 Faradays @ 0.17V The thermochemical free energy is reduced from 113kcal/mole to 15kcal/mole if sulfur dioxide is used as a scavenger.In this work, extensive studies to determine the most effective electrodes and catalysts have been carried out. The possibilities for photo electrochemical implementation have been investigated and cell design optimization has been performed Experimental methods and results will be presented and discussed.
257

Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity

Andersson, Jonas January 2015 (has links)
Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the material. Additives of nanosized TiO2 and powders of superionically conducting Li1.3Al0.3Ti1.7(PO4)3 were investigated as enhancers of ionic conductivity, but no positive effect could be shown. The most conductive composition was found at a [Li+]:[carbonate] ratio of 1, corresponding to a salt concentration of 74 percent by weight, which showed an ionic conductivity of 2.0 × 10–6 S cm–1 at 25 °C and 2.2 × 10–5 S cm–1 at 60 °C, whereas for even larger salt concentrations, the mechanical durability of the polymeric material was dramatically reduced, preventing use as a solid electrolyte material. Macroscopic salt crystallization was also observed for these concentrations. Ion coordination to carbonyls on the polymer chain was examined for high salt content compositions with FTIR spectroscopy, where it was found to be relatively similar between the samples, possibly indicating saturation. Moveover, with FTIR, the ion-pairing was found to increase with salt concentration. The ionic conductivity was found to be markedly lower after 7 weeks of aging of the materials with highest salt concentrations.
258

Synthesis of cross-linked sulfonated polysulfone and mechanical properties of SPEEK-based membranes for direct methanol fuel cells

Zieren, Shelley Marie 08 July 2011 (has links)
Direct methanol fuel cells (DMFC) are being investigated for use as low-power electrochemical energy conversion devices. These types of fuel cells can be useful for portable electronics. The polymer electrolyte membrane plays a critical role in the overall performance of DMFC. The commercially available membrane, Nafion, suffers from high methanol permeability and a resulting methanol crossover from the anode to the cathode; it is also expensive. Accordingly, alternative membrane materials, such as sulfonated hydrocarbons, are intensively pursued for DMFC. For example, sulfonated poly (ether ether ketone) (SPEEK) and sulfonated polysulfone (SPsf) are two such candidates. This thesis focuses first on a simple synthesis method for a cross-linked sulfonated polysulfone membrane. Sulfonated polysulfone (Psf) membranes, with high IEC (1.4 - 2.2 meq/g), were characterized by nuclear magnetic resonance spectroscopy (NMR), proton conductivity, and water uptake. The degree of sulfonation was calculated by NMR and verified by acid-base titration analysis. Although the membranes showed good proton conductivity, they suffered from excessive swelling at high temperatures. Furthermore, the post-sulfonation of a carboxyl-substituted polysulfone (Psf-COOH) was carried out with trimethylsilyl chlorosulfonate, and solubility issues of the Psf-COOH in chlorinated solvents led to difficulty in controlling the degree of sulfonation (DS) and in purification. Accordingly, this approach to cross-linking sulfonated polysulfone was rejected as a viable method. This thesis then focused on the investigation of the mechanical properties of acid-base blend membranes based on SPEEK and heterocycle-tethered Psf and cross-linked membranes based on SPEEK that were previously reported by our group; these membranes were known to exhibit good performance in DMFC. However, the assessment of the mechanical stability of any new membranes developed is critical for their practical viability in DMFC. Accordingly, the mechanical strength and ductility of these membranes were investigated and compared for various membrane compositions. The acid-base blend membranes investigated consisted of SPEEK (acidic polymer) and a heterocycle-tethered Psf (basic polymer); for example, blends consisting of SPEEK and amino-benzimidazole-tethered Psf (SPEEK/Psf-ABIm) and SPEEK and benzotriazole tethered Psf (SPEEK/Psf-Btraz) were investigated. The cross-linked SPEEK was made by Friedel-Craft acylation with Psf-COOH (DS = 1 or 2). The two blend membranes showed superior mechanical properties compared to Nafion 115 and comparable to plain SPEEK. The crosslinked membranes showed good mechanical properties and better strength than Nafion 115, but they were more brittle than both Nafion 115 and plain SPEEK. Further optimization of cross-linking conditions is necessary to produce the best performing membrane. / text
259

Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell

Yeetsorn, Rungsima 28 September 2010 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have the potential to play a major role as energy generators for transportation and portable applications. One of the current barriers to their commercialization is the cost of the components and manufacturing, specifically the bipolar plates. One approach to preparing PEMFCs for commercialization is to develop new bipolar plate materials, related to mass production of fuel cells. Thermoplastic/carbon filler composites with low filler loading have a major advantage in that they can be produced by a conventional low-cost injection molding technique. In addition, the materials used are inexpensive, easy to shape, and lightweight. An optimal bipolar plate must possess high surface and bulk electronic conductivity, sufficient mechanical integrity, low permeability, and corrosion resistance. However, it is difficult to achieve high electrical conductivity from a low-cost thermoplastic composite with low conductive filler loading. Concerns over electrical conductivity improvement and the injection processability of composites have brought forth the idea of producing a polypropylene/three-carbon-filler composite for bipolar plate application. The thesis addresses the development of synergistic effects of filler combinations, investigating composite conductive materials and using composite bipolar plate testing in PEMFCs. One significant effect of conductive network formation is the synergetic effects of different carbon filler sizes, shapes, and multiple filler ratios on the electrical conductivity of bipolar plate materials. A polypropylene resin combined with low-cost conductive fillers (graphite, conductive carbon black, and carbon fibers with 55 wt% of filler loading) compose the main composite for all investigations in this research. Numerous composite formulations, based on single-, two-, and three-filler systems, have been created to investigate the characteristics and synergistic effects of multiple fillers on composite conductivity. Electrical conductivity measurements corresponding to PEMFC performance and processing characteristics were investigated. Experimental work also involved other ex-situ testing for the physical requirements of commercial bipolar plates. All combinations of fillers were found to have a significant synergistic effect that increased the composite electrical conductivity. Carbon black was found to have the highest influence on the increase of electrical conductivity compared to the other fillers. The use of conjugated conducting polymers such as polypyrrole (PPy) to help the composite blends gain desirable conductivities was also studied. Electrical conductivity was significantly improved conductivity by enriching the conducting paths on the interfaces between fillers and the PP matrix with PPy. The conductive network was found to have a linkage of carbon fibers following the respective size distributions of fibers. The combination of Fortafil and Asbury carbon fiber mixture ameliorated the structure of conductive paths, especially in the through-plane direction. However, using small fibers such as carbon nanofibers did not significantly improve in electrical conductivity. The useful characteristics of an individual filler and filler supportive functions were combined to create a novel formula that significantly improved electrical conductivity. Other properties, such as mechanical and rheological ones, demonstrate the potential to use the composites in bipolar plate applications. This research contributes a direction for further improvement of marketable thermoplastic bipolar plate composite materials.
260

Preparation and Characterization of Electrolyte Materials for Proton Conducting Fuel Cells

Gibson, Stephen B Unknown Date
No description available.

Page generated in 0.0214 seconds