• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 12
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 95
  • 41
  • 26
  • 21
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Impact of Prolonged Anandamide Availability by Anandamide Transport Inhibition on Nausea-Induced Behaviour in Rats and Vomiting in Shrews (Suncus murinus)

O'Brien, Lesley D 07 August 2013 (has links)
Considerable evidence supports anandamide (AEA) as an important mediator in the regulation of nausea and vomiting. The present study investigates the effect of inhibiting a protein reported to mediate AEA transport, FLAT (FAAH-1-like AEA transporter), on nausea and vomiting and the neural correlates of AEA regulated nausea in the visceral insular cortex (VIC). The systemic administration of the AEA transport inhibitor ARN272 was evaluated in LiCl-induced conditioned gaping in rats, and vomiting in shrews. The effect of intra-cranial administration of ARN272 into the VIC was also investigated using LiCl-induced conditioned gaping in rats. Systemic administration of ARN272 dose-dependently suppressed LiCl-induced conditioned gaping in rats, and was reversed by CB1 receptor antagonism with SR141716. Systemic administration of ARN272 also attenuated vomiting in shrews. Delivery of ARN272 into the VIC produced no effect on LiCl-induced conditioned gaping in rats. These results suggest that preventing the cellular reuptake of AEA through transport inhibition tonically activates CB1 receptors to regulate toxin-induced nausea, but that this is not AEA regulated within the VIC. / This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC-92057) to LAP.
62

Repercussões de variantes genéticas em componentes do sistema endocanabinoide e no receptor PPAR-α sobre o perfil de risco cardiometabólico, adipocitocinas e níveis plasmáticos de endocanabinoides em indivíduos com diferentes graus de adiposidade / Effects of genetic variants in components of the endocannabinoid system and the PPAR-α receptor on the cardiometabolic risk profile, adipocytokines and plasma endocannabinoid levels in subjects with varying degrees of adiposity

Cyro José de Moraes Martins 30 July 2013 (has links)
Analisar a associação recíproca entre fatores de risco cardiometabólico, níveis de adipocitocinas (leptina e adiponectina de alto peso molecular), endocanabinoides (anandamida [AEA] e 2-araquidonoilglicerol [2-AG]), compostos canabimiméticos (N-oleoiletanolamina [OEA] e N-palmitoiletanolamina [PEA]) e polimorfismos em genes codificadores de componentes do sistema endocanabinoide (enzima de degradação de endocanabinoides FAAH [gene FAAH] e receptor endocanabinoide CB1 [gene CNR1]) e do receptor PPAR-&#945; [gene PPARA], em indivíduos com diferentes graus de adiposidade. Duzentos indivíduos, entre 18 e 60 anos, com diferentes graus de índice de massa corporal (IMC) compuseram a amostra, dividida em dois grupos: cem eutróficos (IMC < 25 kg/m2) e 100 obesos (IMC &#8805; 30 kg/m2), com 50 homens e 50 mulheres em cada grupo. Os obesos ficaram assim distribuídos: grau 1, com IMC < 35 kg/m2 (n=54), 27 homens e 27 mulheres; grau 2, com IMC < 40 kg/m2 (n=32), 16 homens e 16 mulheres e grau 3, com IMC &#8805; 40 kg/m2 (n=14), 7 homens e 7 mulheres. Todos os indivíduos foram recrutados entre funcionários, estudantes e residentes do Hospital Universitário Pedro Ernesto, bem como voluntários do quadro da Polícia Militar do Estado do Rio de Janeiro e selecionados com base em amostra de conveniência. Todos foram avaliados por parâmetros antropométricos, determinação da pressão arterial, análises laboratoriais e genotipagem, para determinar seu perfil metabólico, níveis de endocanabinoides e adipocitocinas e rastreamento dos polimorfismos FAAH 385C>A, CNR1 3813A>G e PPARA 484C>G. Foram excluídos do estudo aqueles com história de comorbidades crônicas, doenças inflamatórias agudas, dependência de drogas de qualquer natureza e em uso de medicação nos dez dias anteriores à entrada no estudo. A atividade inflamatória, avaliada pela proteína C reativa ultrassensível (PCRUS), acompanhou o grau de resistência insulínica. Os níveis de PEA se associaram negativamente com a adiposidade visceral e resistência insulínica, sugerindo um melhor perfil metabólico, enquanto que os níveis de 2-AG se associaram positivamente com a PCRUS, apontando para piora nesse perfil. Os polimorfismos estudados não se associaram com o fenótipo obeso ou insulinorresistente. A presença do alelo 3813G no gene CNR1 mostrou associação independente com níveis reduzidos de adiponectina em obesos, sugerindo pior perfil metabólico nesse grupo. A presença do alelo 484G no gene PPARA, associando-se com níveis mais elevados de IMC e LDL-colesterol nos eutróficos pode indicar maior predisposição desses indivíduos para o desenvolvimento de obesidade e dislipidemia aterosclerótica. O genótipo homozigoto AA na posição 385 do gene FAAH e os níveis de PCRUS foram as principais associações, diretas e independentes, com os níveis de AEA, indicando claramente disfunção da enzima de degradação da AEA e, possivelmente, contribuindo para um perfil cardiometabólico mais vulnerável em portadores dessa variante genética. / To analyze the reciprocal association of cardiometabolic risk factors, levels of adipocytokines (leptin and high molecular weight adiponectin), endocannabinoids (anandamide [AEA] and 2-arachidonoylglycerol [2-AG]), cannabimimetic compounds (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]) and polymorphisms in genes encoding components of the endocannabinoid system (endocannabinoid degradation enzyme FAAH [FAAH gene] and endocannabinoid receptor CB1 [CNR1 gene]) and the PPAR-&#945; receptor (PPARA gene) in subjects with varying degrees of adiposity. Two hundred individuals between 18 and 60 years with varying degrees of body mass index (BMI) comprised the sample, divided in two groups: one hundred eutrophic (BMI < 25 kg/m2) and 100 obese (BMI &#8805; 30 kg/m2), 50 men and 50 women per group. The obese were distributed as follows: grade 1, with BMI < 35 kg/m2 (n = 54), 27 men and 27 women; grade 2, with BMI between &#8805; 35 and < 40 kg/m2 (n = 32), 16 men and 16 women and grade 3, with BMI &#8805; 40 kg/m2 (n = 14), 7 men and 7 women. All subjects were recruited from staff, students and residents of Pedro Ernesto University Hospital, as well as volunteers from Military Police of Rio de Janeiro State and selected based on a convenience sample. All were evaluated by anthropometric parameters, blood pressure determination, laboratory analysis and genotyping, to determine their metabolic profile, endocannabinoid and adipocytokine levels and investigate the polymorphisms FAAH 385C>A, CNR1 3813G>A and PPARA 484C>G. Those with a history of chronic comorbidities, acute inflammatory diseases, drug addiction of any kind and on medication in the ten days prior to study entry were withdrawn from the study. The inflammatory activity as assessed by high sensitive C reactive protein (hsCRP), accompanied the degree of insulin resistance. The levels of PEA negatively associated with visceral adiposity and insulin resistance, suggesting a better metabolic profile, whereas 2-AG levels were positively associated with hsCRP, pointing to a worse metabolic profile. The polymorphisms studied were not associated with the obese or insulin resistant phenotype. The presence of the allele 3813G in the CNR1 gene was independently associated with reduced levels of adiponectin in obese patients, suggesting a worse metabolic profile in this group. The presence of the allele 484G in the PPARA gene associating with higher levels of BMI and LDL-cholesterol in eutrophics may indicate a predisposition for the development of obesity and atherosclerotic dyslipidemia in these individuals. The homozygous genotype AA in position 385 of the FAAH gene, along with levels of hsCRP, were the main direct and independent associations with AEA levels, clearly indicating dysfunction of the degradation enzyme of AEA and possibly contributing to a more vulnerable cardiometabolic profile in individuals with this variant genotype.
63

The endocannabinoid system and autistic behavior in the Fmr1- KO mouse

Lenz, Frederike 22 January 2018 (has links) (PDF)
Background: Background of this work was the investigation of the endocannabinoid system (ECS) in the Fmr1 knock- out (KO) mouse. The Fmr1- KO mouse is a mouse model for fragile X syndrome (FXS). FXS is the leading monogenic cause for autism spectrum disorders (ASD) in humans. The Fmr1- KO mouse displays autistic behavior such as an impaired social interaction, repetitive behavior, cognitive deficits, increased anxiety and aggressiveness. Alterations of the ECS have been suggested to play a key role in the etiopathology of a variety of neuropsychiatric disorders. Until today, little has been described about the involvement of the ECS in ASD. Interrogation: 1. Evaluating the manifestation of typical cannabinoid- induced effects in the Fmr1- KO mouse 2. Investigating the influenceability of autistic symptoms with THC treatment in the Fmr1- KO mouse 3. Analyzing the signaling cascade of the stimulated and unstimulated ECS in different brain regions of the Fmr1- KO mouse Material and Methods: Experiments were carried out on adult (12±1 weeks old) male Fmr1- KO and Fmr1- wild- type (WT) mice from the C57BL/6J- (B6)- background. N= 15 mice received THC (10mg/kg bodyweight) and N= 16 received WIN55,212 (3mg/kg bodyweight). 30min after injection, the body temperature was measured and the distance animals moved in an open field during 15min was recorded (locomotion). Then, animals were placed with their forepaws onto a horizontally fixed bar and the time remaining in this position (catalepsy) was measured. Finally animals were placed on a preheated plate and the temperature at which a pain stimulus occurred was determined (testing analgesia). All 4 experiments are called tetrad experiment. Afterwards changes in body temperature, locomotion, catalepsy and analgesia of the animals was evaluated. To explore long-term effects of THC after the tetrad, N= 15 animals were tested in a social interaction test with a female contact mouse, 10 and 20 days after THC treatment. Therefore, the tested mouse and the contact mouse were placed together into a cage and the time mice spent in social interaction (nose, body and anogential sniffing, allogrooming and body contact) was manually quantified during 6min of recorded testing time. Another group of N= 19 received a premedication of rimonabant (Cannabinoid- receptor 1 (CB1) antagonist, 3mg/kg bodyweight) 30min prior to THC treatment. Rimonabant prevents THC from binding to CB1 and therefore allows the assessment of the involvement of CB1 in mediating social behavior. Furthermore the suggestibility of context-dependent fear conditioning with THC treatment has been tested on N= 13 mice. Animals were placed into a conditioning chamber that delivered 6 short electric shocks with a 30sec pause to their paws (conditioning phase). Immediately afterwards mice received THC or placebo. 24h later contextdependent fear was evaluated by quantification of the time mice spent freezing in the conditioning-chamber (fear) without receiving foot shocks. Intraneuronal signaling of the ECS was analyzed with N= 29 animals using western blots. Quantities of phosphorylated (“activated”) protein kinases (ERK, AKT and S6) from different brain homogenates (hippocampus, striatum, cortex and cerebellum) were therefore measured after THC or placebo injection (30 minutes prior to sacrificing). Results: Cannabinoids induced hypothermia, hypolocomotion, analgesia and catalepsy in WTmice. These effects were significantly less detectable in Fmr1- KO mice. Effects of both cannabinoids, THC and WIN55,212, were comparable with a slightly greater but not significant efficiency of THC. THC treated WT- mice exhibited further reduced social interaction 10 days after treatment, an effect that was partially prevented by premedication with rimonabant. THC increased social interaction in Fmr1- KO mice comparable to the level of untreated WT- mice. THC had no effect on behavior of WT- mice in context-dependent fear conditioning. Fmr1- KO mice showed significant less contextdependent fear conditioning compared to WT- mice. THC facilitated the recognition of an anxiety-correlated context in Fmr1- KO mice comparable to untreated WT- mice. In western blots significant changes in the THC- induced signaling cascade were detectable and depending on genotype, brain-region and analyzed protein-kinase. In the hippocampus there were no changes in untreated Fmr1- KO mice compared to WT- mice. THC had no effect on activation of protein-kinases in WT- and Fmr1- KO mice. In the striatum there were no changes in untreated Fmr1- KO mice compared to WTmice. THC significantly increased activity of ERK, AKT and S6 in WT-mice and not in Fmr1- KO mice. In the cortex of untreated Fmr1- KO mice AKT showed a significantly increased activity compared to WT- mice. THC significantly increased AKT activity in WT- mice without having an effect on KO- mice. In the cerebellum there were no changes in untreated Fmr1- KO mice compared to WT- mice. THC significantly increased ERK- activity in Fmr1- KO mice but had no effect on protein kinase activity in WT- mice. Conclusion: We observed physiological cannabinoid effects in WT- mice after treatment with THC and WIN55,212. These effects are significantly attenuated in Fmr1- KO mice. This may be interpreted as a desensitization of the ECS in the Fmr1- KO mouse. At the same time it was demonstrated that THC has the potential to improve context dependent memory consolidation and to increase social interaction in the Fmr1- KO mouse. In particular the influence of THC on impaired social interaction should be a target of further investigations to find possible therapeutic options for this typical symptom of Autism. Underlying molecular mechanisms remain unclear and the analysis of THC stimulated intraneuronal signaling gave no clear indication of possible molecular alterations in the Fmr1- KO mouse.
64

Mechanismus ovlivnění signalizace kanabinoidního receptoru 1 interagujícími proteiny / Role of proteins associated with the Cannabinoid receptor 1 in endocannabinoid signaling

Vozárová, Denisa January 2017 (has links)
To preserve homeostasis and proper function in every living organism, it is important for cells to communicate with each other and their environment. Cells are constantly processing a huge amount of extracellular stimuli through proteins called receptors. Receptors can transduce the signal from extracellular to intracellular compartments. G- protein coupled receptors are the biggest group, in which also belongs Cannabinoid receptor type 1 (CB1R). Endocannabinoid system regulates many biological processes such as learning, food intake, and movement. Obesity is a serious issue nowadays and in cases of claryfing its molecular-genetic basis, there was found Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 has a role in the regulation of energetic balance and its overexpression is leading to a development of obesity. SGIP1 was detected as an interaction partner of CB1R and it had been found that it is involved in internalization via clathrin-mediated endocytosis (CME). Key proteins for initiation and early phase of CME are FCHO1/2, with which SGIP1 shares high sequential homology. However, effect of SGIP1 on internalization of activated CB1R is inhibitory unlike FCHO1/2,wheras detailed mechanism of its function remains unclear. The aim of this...
65

Mechanismus ovlivnění signalizace kanabinoidního receptoru 1 interagujícími proteiny / Role of proteins associated with the cannabinoid receptor 1 in endocannabinoid signaling

Vozárová, Denisa January 2017 (has links)
To preserve homeostasis and proper function in every living organism, it is important for cells to communicate with each other and their environment. Cells are constantly processing a huge amount of extracellular stimuli through proteins called receptors. Receptors can transduce the signal from extracellular to intracellular compartments. G-protein coupled receptors are the biggest group, in which also belongs Cannabinoid receptor type 1 (CB1R). Endocannabinoid system regulates many biological processes such as learning, food intake, and movement. Obesity is a serious issue nowadays and in cases of searching for candidate molecules, there was found Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 has a role in the regulation of energetic balance and its overexpression is leading to a development of obesity. SGIP1 was detected as an interaction partner of CB1R and it had been found that it is involved in internalization via clathrin-mediated endocytosis. SGIP1 is very homological with FCHO1/2 - important proteins which participate on early stages of endocytosis. Mechanism of inhibitory effect of SGIP1 on internalization remains unclear. The aim of this study is to clarify the role of distinct domains of SGIP1 in context of endocytosis. Key...
66

N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth

Wiant, William C. 08 1900 (has links)
An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
67

Synthesis of 11-[2-arylmethylene)hydrazono]-PBD Derivatives and Evaluation of Their Effects on CB2-Mediated Smooth Muscle Cell Trans-Differentiation to an Osteogenic Phenotype

Hagar, Marilyn, Thewke, Douglas, Shilabin, Abbas 06 April 2022 (has links)
Atherosclerotic disease is characterized by the formation of lipid-ladden plaques in artery walls. During later stages of disease, these plaques become calcified by mechanisms involving the trans-differentiation of vascular smooth muscle cells (VSMC) to osteoblast-like cells. Although vascular calcification was thought to be a passive mechanism, evidence shows that this process is heavily modulated by various cell signaling mechanisms, including CB2 endocannabinoid receptors. Previous studies have shown that known CB2 antagonists accelerate VSMCs trans-differentiation to an osteoblast-like phenotype, indicating that this receptor serves an anti-calcification signal. The goal of this investigation is to determine if a series of 11-[2-arylmethylene)hydrazono]-PBD derivatives with established CB2 binding affinity function as CB2 antagonists or agonists in a cell culture model of VSMC osteoblastic trans-differentiation. MOVAS cells were grown in standard media or osteogenic media (to induce trans-differentiation) supplemented with and without the various PBD derivatives. Following the treatment period, the extent of osteoblast-like activity was evaluated by alizarin red staining for calcium deposition. To quantify the staining present, the dye was extracted using cetylpyridinium chloride hydrate solution and then analyzed via UV-Vis spectroscopy at 570 nm. The ability of the derivatives to modulation of osteoblastic transdifferentiation of MOVAS cells was further evaluated by performing Western blot analysis for expression of Runx2, an essential transactivator of osteoblast differentiation. Results of this work determined that some of the PBD derivatives increased the calcification compared to the control, indicating that they likely act as CB2 receptor antagonists, while others decreased calcification compared to the control, indicating that they likely act as CB2 receptor agonists. Not only do these results characterize the interactions of these compounds with CB2 receptors, they demonstrate that these PBD derivatives have biological activity. These results also further implicate CB2 receptors as a regulator of VSMC cell calcification, which could lead to novel drug therapies for the treatment of atherosclerotic plaques.
68

Evaluation of a Serine Hydrolase Inhibitor JZL184 as an Immunomodulator against Avian Pathogenic Escherichia Coli O78 in Chickens

Ho, Cherry Pei-Yee 04 May 2018 (has links)
Chickens in the poultry industry are reared under intensive conditions where they are often exposed to opportunistic pathogens. Escherichia coli strain O78 is responsible for about half of the cases of avian colisepticemia. Potential therapeutic treatments have been proposed to inhibit the hydrolases that controls the endogenous levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG). 2-AG is the full agonist at the CB2 receptors of the endocannabinoid system expressed among leukocytes and it plays a role in mediating the activation of phagocytic macrophages. It is speculated that elevating 2- AG levels could increase macrophage cytokines and promote the recruitment of immune cells at the infected tissues. The purpose of this study was to investigate the immunomodulating effect of the 2-AG hydrolase inhibitor, JZL184 in chickens. The treatments could potentially up-regulate the innate immune responses in chickens during an E. coli infection by conveying a message from the endocannabinoid system to the immune system.
69

Le cannabis, le tabac et le changement d’adiposité chez les jeunes hommes et femmes : une étude longitudinale 2005-2012

Dubé, Emily 04 1900 (has links)
Exposé de la situation : Des études menées sur les animaux démontrent que le système endocannabinoide est important dans le maintien de l’homéostasie de l’énergie et que les effets de sa modulation sont différents selon le sexe et l’exposition à la nicotine. Deux études longitudinales ont étudié l’association entre l’usage du cannabis (UC) et le changement de poids et ont obtenus des résultats contradictoires. L’objectif de ce mémoire est de décrire la modification de l’association entre l’UC et le changement de poids par la cigarette chez les jeunes hommes et femmes. Méthodes : Des donnés de 271 hommes et 319 femmes ont été obtenues dans le cadre de l’étude NICO, une cohorte prospective (1999-2013). L’indice de masse corporelle (IMC) et la circonférence de taille (CT) ont été mesurés à l’âge de 17 et 25 ans. L’UC dans la dernière année et de cigarette dans les derniers trois mois ont été auto-rapportées à 21 ans. Les associations entre l’UC et le changement d’IMC et de CT ont été modélisées dans une régression polynomiale stratifiée par sexe avec ajustement pour l’activité physique, la sédentarité et la consommation d’alcool. Résultats : Uniquement, chez les hommes, l’interaction de l’UC et cigarettes était statistiquement significative dans le model de changement IMC (p=0.004) et celui de changement de CT (p=0.043). L’UC était associé au changement d’adiposité dans une association en forme de U chez les homes non-fumeurs et chez les femmes, et dans une association en forme de U-inversé chez les hommes fumeurs. Conclusion : La cigarette semble modifier l’effet du cannabis sur le changement d’IMC et CT chez les hommes, mais pas chez les femmes. / Background: Animal studies suggest that the endocannabinoid system is a regulator of energy homeostasis, whose effects are modified by sex and nicotine. Two studies in humans have examined the association between cannabis use and change in adiposity, and obtained conflicting results. This thesis aimed to determine if the association between cannabis use and change in adiposity is modified by cigarette smoking in young adults. Methods: Data were available for 271 males and 319 females participating in the Nicotine Dependence In Teens study, a prospective cohort investigation (1999-2013). Body mass index (BMI) and waist circumference (WC) were measured at ages 17 and 25 years. Self-report data on past-year cannabis use and past three-month cigarette smoking were collected at age 21 years. Modification of the association between cannabis use and change in adiposity by cigarette smoking was tested separately in each sex, in polynomial linear regression models controlling for physical activity and sedentary behavior in both sexes, and alcohol use in males only. Results: In males only, the interaction between cannabis use and cigarette smoking was statistically significant in both the model for change in BMI (p=0.004) and the model for change in WC (p=0.043). Cannabis use was associated with change in adiposity in a U-shaped form in females and in non smoking males, and in an inverted U-shaped association in males who smoked more than 10 cigarettes per day. Conclusion: Smoking cigarettes appears to attenuate the association between cannabis use and change in adiposity in young men, but not in young women.
70

Plasticité synaptique dans l’aire tegmentaire ventrale : implication des endocannabinoïdes

Kortleven, Christian 12 1900 (has links)
Le système dopaminergique (DA) méso-corticolimbique du cerveau, qui prend son origine dans l'aire tegmentaire ventrale (ATV), est fortement impliqué dans les comportements motivés et la toxicomanie. Les drogues d'abus activent ce système et y induisent une plasticité synaptique de longue durée. Les neurones DA de l'ATV reçoivent sur leur arborisation dendritique une grande densité de terminaisons glutamatergiques. Les drogues d'abus induisent une potentialisation à long terme (PLT) de ces contacts glutamatergiques. La PLT est une augmentation prolongée de la transmission synaptique, qui semble sous-tendre la mémoire et l'apprentissage. Les endocannabinoïdes (ECs) sont des neurotransmetteurs qui agissent de façon rétrograde sur des récepteurs présynaptiques (CB1) pour diminuer la libération des neurotransmetteurs comme le glutamate. Les neurones libèrent les ECs à partir de leur compartiment somatodendritique suite à une stimulation des afférences et la dépolarisation membranaire qui s’ensuit. La neurotensine (NT) est un neuropeptide retrouvé de façon abondante dans le système DA du cerveau. Il a été découvert que la NT peut induire la libération des ECs dans le striatum. En faisant appel à une combinaison d’approches immunohistochimique, électrophysiologique et pharmacologique chez la souris, nous avons confirmé dans la première étude de cette thèse la présence des récepteurs CB1 sur les terminaisons glutamatergiques des neurones DA de l'ATV, et avons montré que leur activation induit une diminution de la libération de glutamate. Par ailleurs, nous avons montré que des trains de stimulation peuvent induire la libération des ECs. Nous avons découvert qu'en présence d'un antagoniste des récepteurs CB1, il y a facilitation de l’induction de la PLT. Cette observation suggère que les ECs ont un effet inhibiteur sur l’induction de la PLT, plutôt que sur son expression. Nous avons déterminé que le 2-arachidonoylglycerol (2-AG) est l’EC qui est principalement responsable de cette action inhibitrice. Finalement, la PLT induite en présence d’un antagoniste CB1 est aussi dépendante d'une activation des récepteurs NMDA du glutamate. Les travaux réalisés dans la deuxième étude de cette thèse ont montré que la NT est présente dans une sous-population de terminaisons axonales glutamatergiques dans l’ATV. Une application exogène de NT induit une diminution prolongée de l'amplitude des courants postsynaptiques excitateurs (CPSEs). Cette diminution est bloquée en présence d'un antagoniste non-sélectif des récepteurs à la NT, ainsi qu'en présence d'un antagoniste sélectif pour le récepteur de NT de type 1 (NTS1). Confirmant l’implication d’une production d’ECs, la baisse des CPSEs par la NT a été bloquée en présence d’un antagoniste des récepteurs CB1 ou d’un bloqueur de la synthèse de 2-AG. La chélation du calcium intracellulaire n'empêchait pas l’effet inhibiteur de la NT sur les CPSEs, cependant, l'inhibition des protéines G ou de la phospholipase C a complètement bloqué la dépression synaptique induite par la NT. Par ailleurs, nos travaux ont montré que la nature prolongée de la dépression synaptique induite par la NT exogène s’explique par une libération soutenue des ECs, et non pas à une activation prolongée des NTR. Finalement, notre observation qu’un antagoniste des récepteurs de la NT ne facilite pas l’induction de la PLT, comme le fait un antagoniste du récepteur CB1, suggère que la stimulation répétitive des afférences glutamatergiques nécessaire à l’induction de la PLT n’induit pas de libération des ECs via la libération de NT, nous permettant ainsi de conclure que la sécrétion de NT n'agit pas dans ces conditions comme un facteur de régulation négative de la PLT. / The meso-corticolimbic dopamine (DA) system of the brain, originating in the ventral tegmental area (VTA), is strongly implicated in reward, motivation and drug addiction. Drugs of abuse activate this system and cause significant long term plasticity. DA neurons in the VTA receive are densely innervated by glutamatergic inputs. All major classes of drugs of abuse have been found to cause a long term potentiation (LTP) of glutamate transmission onto DA neurons of the VTA. LTP is an enduring increase of synaptic transmission, hypothesized to underlie memory and learning. Endocannabinoids (ECs) are transmitters that act in a retrograde fashion on pre-synaptic receptors leading to a decrease in neurotransmitter release. DA neurons can release ECs from their somatodendritic compartment in response to afferent stimulation or depolarization. Neurotensin (NT) is a neuropeptide that presents an extensive interaction with the DA system. It was discovered that NT can induce production of ECs in the striatum. In the first study of this thesis, we used a combination of immunohistochemical, pharmacological and electrophysiological techniques in mouse brain slices to demonstrate that CB1 EC receptors are present on glutamatergic afferents to DA neurons. Their activation induces a depression of glutamate release. We further showed that trains of afferent stimulation induce EC release from DA neurons and that in the presence of the CB1 antagonist AM251, there is a marked facilitation of the induction of LTP, suggesting that ECs produced in response to activation of glutamate synapses normally negatively regulate the induction, but not the expression of LTP. Finally, we found that 2-arachidonoylglycerol (2-AG) is the main EC implicated in this negative regulation of LTP and that LTP induced in the presence of a CB1 receptor antagonist is otherwise also dependent on NMDA glutamate receptors. In the second study, we report that NT is present in a subset of glutamatergic axon terminals in the VTA and that activation of NT receptors by exogenous NT induces a long-lasting decrease of the amplitude of excitatory postsynaptic currents (EPSCs) in VTA DA neurons. This decrease was blocked by a broad-spectrum NTR antagonist, as well as by a specific antagonist of the type 1 NT receptor NTS1. The decrease was also blocked when CB1 receptors or 2-AG synthesis were blocked. Chelating intracellular calcium had no effect, but inhibiting G-proteins or phospholipase C blocked NT-mediated synaptic depression. The long-lasting nature of the synaptic depression induced by NT was due to protracted EC release and not to prolonged NT receptor activation. Finally, our observation that a NT receptor antagonist did not facilitate LTP induction, as did a CB1 receptor antagonist, suggests that repetitive stimulation of glutamatergic afferents required to induce LTP does not cause EC production through the release of NT, thus allowing us to conclude that secretion of NT does not act under such conditions as a negative regulator of LTP.

Page generated in 0.0266 seconds