• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 12
  • 2
  • Tagged with
  • 39
  • 39
  • 27
  • 24
  • 21
  • 16
  • 14
  • 13
  • 12
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le modèle linéaire à effets mixtes pour analyser des données génétiques provenant de familles

Allard, Catherine January 2015 (has links)
Nous désirons savoir quelles sont les variations génétiques qui sont associées à une tension artérielle élevée. Pour ce faire, nous avons des données provenant de plusieurs familles, c’est-à-dire qu’il y a des personnes de la même famille qui se retrouvent dans cet échantillon. Dans cette base de données, il y a de l’information sur quelques caractéristiques démographique (âge, sexe, fumeur/non fumeur), il y a aussi la pression diastolique et systolique ainsi qu’un grand nombre de variations génétiques distribuées sur tout le génome. Pour pouvoir analyser des observations qui ne sont pas indépendantes, nous devons utiliser un modèle qui diffère un peu de la régression classique. En effet, nous ne pouvons pas utiliser la régression classique, car notre échantillon ne respecte pas toutes les hypothèses du modèle. Le modèle que nous allons utiliser prend en compte la covariance entre les individus de même famille. Nous allons donc présenter la théorie du modèle linéaire à effets mixtes simple ainsi que sa généralisation pour des données génétiques provenant de familles. Nous allons terminer par une application de ce modèle généralisé à notre base de données sur la tension artérielle pour déterminer quelles parties du génome (quelles variations génétiques) expliquent le mieux la tension artérielle de cet échantillon.
2

Inference dans les modeles dynamiques de population: applications au VIH et au VHC

Guedj, Jérémie 08 December 2006 (has links) (PDF)
Les modèles dynamiques de l'intéraction virus/système immunitaire basés sur des systèmes d'équations différentielles ordinaires sans solution ont considérablement amélioré la connaissance de certains virus comme le VIH et le VHC. <br />En raison des difficultés statistiques et numériques d'estimation des paramètres de ces modèles, les premiers résultats dans la littérature ont été obtenus en faisant des estimations patient par patient sur des modèles simplifiés et linéarisés. Toutefois, ceux-ci ne permettent pas de considérer la dynamique de l'infection dans son ensemble. C'est pourquoi certains auteurs ont proposé récemment des approches Bayésiennes d'estimation des paramètres sur des modèles non-simplifiés. En outre, celles-ci sont proposées dans un cadre de population, où l'information issue des variabilité inter-patients est prise en compte.<br />Dans cette thèse, nous proposons une voie alternative à ces travaux, en développant une approche fréquentiste pour l'estimation des paramètres. La complexité de ces modèles rendant les logiciels existants non-adéquats, nous développons une méthode originale d'estimation des paramètres, qui utilise la structure particulière de ces modèles. Nous montrons la robustesse de cette approche et l'appliquons aux données de l'essai ANRS ALBI 070, en intégrant le problème méthodologique des données virologiques censurées. Nous fournissons notamment une estimation $in~vivo$ de l'effet différentiel d'efficacité de deux stratégies de traitements et illustrons de ce fait l'intérêt de cette approche pour définir un critère alternatif d'analyse des essais cliniques. Enfin, nous proposons une méthode d'étude de l'identifiabilité des modèles dynamiques du VIH. Nous montrons ainsi l'impact qu'auraient de nouvelles quantifications pour améliorer l'identifiabilité de ces modèles et, corollairement, nous discutons les limites de l'utilisation de ces modèles au vu des données habituellement disponibles.
3

Apport de la pharmacocinétique de population dans l'étude des interactions pharmacocinétiques impliquant le pazopanib / Benefit of population pharmacokinetic in the study of pharmacokinetic interactions involving pazopanib

Imbs, Diane-Charlotte 23 October 2015 (has links)
Le pazopanib est un inhibiteur de tyrosine kinase (ITK) multicible indiqué dans le traitement de cancers du rein métastatiques et de sarcomes des tissus mous métastatiques. Comme les autres ITK, il présente une forte variabilité pharmacocinétique (PK) interindividuelle et ses relations pharmacocinétiques-pharmacodynamiques (PK/PD) en font un candidat de choix pour un suivi thérapeutique pharmacologique, permettant de proposer une dose optimale adaptée à chaque patient. La pratique clinique s'oriente vers une utilisation des ITK en association avec d'autres médicaments anti-cancéreux afin de potentialiser l'activité anti-tumorale. Ainsi, les études de phase I en association prévoient des explorations PK permettant d'évaluer l'existence d'éventuelles interactions PK entre les médicament(s) associé(s). Les données PK issues de deux études de phase I impliquant le pazopanib en association soit avec le bevacizumab, soit avec le cisplatine, ont été analysées. L'analyse PK par méthodologie de PK de population a confirmé la forte variabilité PK interindividuelle du pazopanib et a permis d'identifier les différentes sources de variabilités : inter-, intraindividuelle et variabilité due à une interaction médicamenteuse. Le pazopanib est très fortement lié aux protéines plasmatiques (>99%). L'étude de ses concentrations libres permet d'avoir accès aux concentrations pharmacologiquement actives. Ainsi, une méthode de dialyse à l'équilibre couplée à un dosage par UPLC/MS-MS a été mise au point afin de déterminer la fraction libre plasmatique du pazopanib in vitro et ex vivo. Les relations PK/PD entre concentrations libres et survenue de toxicités par rapport aux concentrations totales ont été étudiées / Pazopanib is a multitarget tyrosine kinase inhibitor (TKI) approved for the treatment of advanced renal cell carcinoma and metastatic soft tissue sarcoma. Like most TKI, pazopanib exhibits a large inter-individual pharmacokinetic (PK) variability, with a 1:8 plasmatic exposure variation factor between individuals. Pharmacokinetic/Pharmacodynamic (PK/PD) relationships suggest that therapeutic drug monitoring would be useful for individualized dosing of this drug. In current clinical practice, TKI are often combined with other anticancer drugs in order to optimise anti-tumour activity. However, therapeutic combinations can potentially lead to drug interactions. Therefore, PK investigations are needed in order to evaluate any PK interaction between each compound. PK data from two different phase I studies evaluating pazopanib in combination either with a cytotoxic, cisplatin, or with another targeted therapy, bevacizumab, were analysed. PK analysis of both studies using a population PK approach, confirmed the high inter-individual PK variability of pazopanib and allowed us to quantify different sources of variability: inter-, intra- patient variability and variability due to drug-drug interactions. Pazopanib is very highly bound to plasma proteins (>99%). Unbound drug concentrations in plasma are thought to be a more reliable indicator of the therapeutic target. Therefore equilibrium dialysis method coupled with UPLC/MS-MS assay has been optimized for the determination of plasma unbound fraction of pazopanib in vitro and ex vivo. PK/PD relationships between unbound plasma concentrations and toxicity in comparison with total plasma concentrations were studied for pazopanib.
4

Identification de systèmes dynamiques linéaires à effets mixtes : applications aux dynamiques de populations cellulaires / Mixed effects dynamical linear system identification : applications to cell population dynamics

Batista, Levy 06 December 2017 (has links)
L’identification de systèmes dynamiques est une approche de modélisation fondée uniquement sur la connaissance des signaux d’entrée et de sortie de plus en plus utilisée en biologie. Dans ce même domaine d’application, des plans d’expériences sont souvent appliqués pour tester les effets de facteurs qualitatifs sur la réponse et chaque expérience est répétée plusieurs fois pour estimer la reproductibilité des résultats. Dans un objectif d’inférence, il est important de prendre en compte dans la procédure de modélisation les variabilités expliquées (effets fixes) et inexpliquées (effets aléatoires) entre les réponses individuelles. Une solution consiste à utiliser des modèles à effets mixtes mais jusqu’à présent il n’existe aucune approche similaire dans la communauté automaticienne de l’identification de systèmes. L’objectif de la thèse est de combler ce manque grâce à l’utilisation de structures de modèle hiérarchiques introduisant des effets mixtes au sein des représentations polynomiales boites noires de systèmes dynamiques linéaires. Une nouvelle méthode d’estimation des paramètres adaptée aussi bien à des structures simples comme ARX qu’à des structures plus complètes comme celle de Box-Jenkins est développée. Une solution au calcul de la matrice d’information de Fisher est également proposée. Finalement, une application à trois cas d’étude en biologie a permis de valider l’interêt pratique de l’approche d’identification de populations de systèmes dynamiques / System identification is a data-driven input-output modeling approach more and more used in biology and biomedicine. In this application context, methods of experimental design are often used to test effects of qualitative factors on the response and each assay is always replicated to estimate the reproducibility of outcomes. The inference of the modeling conclusions to the whole population requires to account within the modeling procedure for the explained variability (fixed effects) and the unexplained variabilities (random effects) between the individual responses. One solution consists in using mixed effects models but up to now no similar approach exists in the system identification literature. The objective of this thesis is to fill this gap by using hierarchical model structures introducing mixed effects within polynomial black-box representations of linear dynamical systems. A new method is developed to estimate parameters of model structures such as ARX or Box-Jenkins. A solution is also proposed to compute the Fisher’s matrix. Finally, three application studies are carried out and emphasize the practical relevance of the proposed approach to identify populations of dynamical systems
5

Pharmacogénétique en Pharmacocinétique de population : tests et sélection de modèles

Bertrand, Julie 01 December 2009 (has links) (PDF)
L'existence de polymorphismes génétiques codants pour des protéines de transport ou de métabolisme peut expliquer en partie la variabilité pharmacocinétique de certains médicaments. Les modèles non linéaires à effets mixtes (MNLEM) permettent de caractériser cette variabilité en analysant simultanément les données recueillies chez l'ensemble des patients et nécessitent moins de prélèvements que l'approche traditionnelle non-compartimentale. Du fait de la multiplicité des génotypes et de leur représentation déséquilibrée dans la population générale, nous nous sommes interrogés sur les propriétés des tests classiquement utilisés pour détecter un effet gène sur un paramètre pharmacocinétique dans le cadre des MNLEM. Dans ce contexte, nous avons évalué par simulation les propriétés de l'ANOVA, du test de Wald et du test du rapport de vraisemblance. L'impact de l'algorithme d'estimation a été pris en compte grâce à l'utilisation de plusieurs méthodes d'estimation. Nous avons ainsi mis en évidence une inflation de l'erreur de type I des tests asymptotiques, sur plusieurs protocoles expérimentaux. Nous avons alors proposé deux alternatives et montré que l'approche par permutation peut être utilisée dans ce contexte ainsi qu'une approche reposant sur la pondération de la variance d'estimation, moins coûteuse en temps de calcul. Ces résultats ont été appliqués à l'analyse de trois études pharmacogénétiques, explorant l'influence de polymorphismes génétiques sur la pharmacocinétique de l'indinavir dans l'essai COPHAR2-ANRS 111, sur la pharmacocinétique d'un antipsychotique en développement et sur la pharmacocinétique de la névirapine dans l'essai PECAN-ANRS 12154.
6

Modelling of metastatic growth and in vivo imaging / Modélisation du processus métastatique et imagerie in vivo

Hartung, Niklas 15 December 2014 (has links)
Un problème majeur du cancer est l'apparition de métastases, difficiles à détecter par l'imagerie médicale et qui peuvent progresser rapidement. Par le biais de la modélisation mathématique, nous espérons développer de nouveaux outils capables d'anticiper l'état métastatique d'un patient.Les deux premières parties de cette thèse sont dédiées au développement d'un tel outil, l'objectif étant sonutilisation chez l'animal voire en clinique. Dû aux variabilités intra- et inter-individuelles, nous sommes amenés à utiliser des modèles statistiques coûteux en temps de calcul.Dans la partie 1, nous étendons une approche introduite par Iwata et al. et développée dans l'équipe. Nousproposons une résolution numérique plus efficace basée sur la reformulation du modèle sous formed'équation intégrale de Volterra de type convolution, qui s'avère également utile pour montrer despropriétés théoriques du modèle. En outre, nous étudions une extension stochastique de ce modèle déterministe.Dans la partie 2, nous montrons que notre approche est adaptée à la description de données souris. Utilisant le cadre statistique des modèles nonlinéaires à effets mixtes, nous construisons un modèle métastatique identifiable à partir des données et nous interprétons les résultats biologiquement.La partie 3 regroupe des résultats issus de collaborations avec des biologistes. Nous avons commencé àmodéliser la croissance tumorale à partir d'observations par imagerie SPECT en utilisant un modèle deGyllenberg et Webb. D'autre part, afin d'améliorer la précision des observations SPECT, nous testons des techniques dedétection de contours via des méthodes volumes finis basées sur des schémas DDFV. / Metastasis is one of the major problems of cancer because metastases areoften difficult to detect by clinical imaging and may develop rapidly. With the help of mathematical modelling, we hope to developnew tools capable of anticipating the metastatic state of a patient.The first two parts of this thesis are dedicated to developing such a tool, destined for a preclinical oreven clinical use. As tumour growth dynamics vary strongly between individuals and since observations are often sparse andnoisy, we need to consider computationally expensive statistical tools.In the first part, we extend an approach introduced by Iwata et al. and developed by Barbolosi et al. In particular, wepropose a more efficient numerical resolution based on a model reformulation into a Volterra integral equation of convolutiontype. This reformulation also permits to prove theoretical model properties (regularity and identifiability). Moreover, we study a stochastic generalisation of this deterministic model.In the second part, we will show that our approach is suitable for the description of experimental data on tumour-bearing mice.Using the statistical framework of nonlinear mixed-effects modelling, we build a metastatic model that is identifiable fromour data. We then interpret the results biologically.The last part of this thesis contains several results obtained in collaboration with biologists. We have started to model tumourgrowth with data obtained from SPECT imaging, using a model by Gyllenberg and Webb. Also, in order to improve the precision ofSPECT data, we have tested contour detection methods via finite volume methods based on DDFV schemes.
7

Modélisation de l’effet du favipiravir sur la dynamique viro-immunologique de la maladie à virus Ebola et implications pour son évaluation clinique / Modeling the effect of favipiravir on the viro-immunological dynamics of Ebola virus disease and implications in clinical evaluation

Madelain, Vincent 19 November 2018 (has links)
En dépit d’épidémies répétées, il n’existe pas à ce jour de thérapeutique ayant démontré son efficacité dans la maladie à virus Ebola. Sur la base d’expérimentations réalisées chez la souris et le macaque dans le cadre du consortium Reaction!, l’objectif de cette thèse visait à caractériser l’effet d’une molécule antivirale, le favipiravir, via l’implémentation de modèles mathématiques mécanistiques de l’infection et de la réponse immunitaire associée. L’approche utilisée pour construire ces modèles et en estimer les paramètres reposait sur les modèles non linéaires à effets mixtes. Un premier travail a permis d’explorer la relation concentration-effet sur la charge virale plasmatique chez la souris. Le second projet a conduit à caractériser la pharmacocinétique non linéaire dose et temps dépendante du favipiravir chez le macaque, en vue d’identifier les schémas posologiques pertinents pour la réalisation des études d’efficacité chez l’animal infecté. Au décours de leur réalisation, l’intégration des données virologiques et immunitaires générées au sein d’un modèle conjoint a permis de caractériser un effet modéré du favipiravir sur la réplication virale, mais suffisant pour limiter le développement d’une réaction inflammatoire délétère, et ainsi améliorer le taux de survie des animaux traités. Les simulations réalisées avec ce modèle ont pu souligner l’impact déterminant du délai d’initiation du traitement sur la survie. Ces résultats incitent à la poursuite de l’évaluation clinique du favipiravir, en favorisant des essais de prophylaxie ou post exposition. Enfin, un dernier travail a démontré l’absence de potentialisation du favipiravir par la ribavirine dans Ebola. / In spite of recurrent outbreaks, no therapeutics with demonstrated clinical efficacy are available in Ebola virus disease. Based on experimentations performed by Reaction! Consortium in mice and macaques, this thesis aimed to characterize the effect of an antiviral drug, favipiravir, using mechanistic mathematical models of the infection and associated immune response. The approach to build models and estimate parameters relied on nonlinear mixed effect models. The first project of this thesis explored the concentration-effect relationship on the viremia in mice. Then, a second project allowed to characterize the pharmacokinetics of favipiravir in macaques, underlying dose and time non linearity, and to identify relevant dosing regimen for efficacy experiments in infected animals. Once these experiments completed, the integration of the virological and immunological data into a mechanistic joint model shed light on the effect of favipiravir. The moderate inhibition of the viral replication resulting from the favipiravir plasma concentrations was enough to limit the development of a deleterious inflammatory response, and thus improve the survival rate of treated macaques. Simulations performed with this model underlined the crucial impact of the treatment initiation delay on survival. These results encourage the pursuit of the clinical evaluation of favipiravir in prophylaxis or post exposure trials. Finally, a last project demonstrated the lack of benefit of ribavirin addition to favipiravir in Ebola virus disease.
8

Population pharmacokinetic analysis of cyclosporine A using standard two-stage (STS) and nonlinear mixed-effects modeling (NONMEM) methods

Tahami Monfared, Amir Abbas January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
9

Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes

Nembot Simo, Annick Joëlle 01 1900 (has links)
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés. / We propose a method for analysing count or Poisson data based on the procedure called Poisson Regression Interactive Multilevel Modeling (PRIMM) introduced by Christiansen and Morris (1997). The Poisson regression in the PRIMM method has fixed effects only, whereas our model incorporates random effects. As well as Christiansen and Morris (1997), the model studied aims at doing inference based on adequate analytical approximations of posterior distributions of the parameters. This avoids the use of computationally expensive methods such as Markov chain Monte Carlo (MCMC) methods. The approximations are based on the Laplace's method and asymptotic theory. Estimates of Poisson mixed effects regression parameters are obtained through the maximization of their joint posterior density via the Newton-Raphson algorithm. This study also provides the first two posterior moments of the Poisson parameters involved. The posterior distributon of these parameters is approximated by a gamma distribution. Applications to two datasets show that our model can be somehow considered as a generalization of the PRIMM method since it also allows clustered count data. Finally, the model is applied to data involving many types of adverse events recorded by the participants of a drug clinical trial which involved a quadrivalent vaccine containing measles, mumps, rubella and varicella. The Poisson regression incorporates the fixed effect corresponding to the covariate treatment/control as well as a random effect associated with the biological system of the body affected by the adverse events.
10

Diagnostique d'homogénéité et inférence non-paramétrique pour l'analyse de groupe en imagerie par résonance magnétique fonctionnelle

Mériaux, Sébastien 06 December 2007 (has links) (PDF)
L'un des objectifs principaux de l'imagerie par résonance magnétique fonctionnelle (IRMf) est la localisation in vivo et de manière non invasive des zones cérébrales associées à certaines fonctions cognitives. Le cerveau présentant une très grande variabilité anatomo-fonctionnelle inter-individuelle, les études d'IRMf incluent généralement plusieurs sujets et une analyse de groupe permet de résumer les résultats intra-sujets en une carte d'activation du groupe représentative de la population d'intérêt. L'analyse de groupe « standard » repose sur une hypothèse forte d'homogénéité des effets estimés à travers les sujets. Dans un premier temps, nous étudions la validité de cette hypothèse par une méthode multivariée diagnostique et un test de normalité univarié (le test de Grubbs). L'application de ces méthodes sur une vingtaine de jeux de données révèle la présence fréquente de données atypiques qui peuvent invalider l'hypothèse d'homogénéité. Nous proposons alors d'utiliser des statistiques de décision robustes calibrées par permutations afin d'améliorer la spécificité et la sensibilité des tests statistiques pour l'analyse de groupe. Puis nous introduisons de nouvelles statistiques de décision à effets mixtes fondées sur le rapport de vraisemblances maximales, permettant de pondérer les sujets en fonction de l'incertitude sur l'estimation de leurs effets. Nous confirmons sur des jeux de données que ces nouvelles méthodes d'inférence permettent un gain en sensibilité significatif, et nous fournissons l'ensemble des outils développés lors de cette thèse à la communauté de neuro-imagerie dans le logiciel DISTANCE.

Page generated in 0.0391 seconds