• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 57
  • 50
  • 31
  • 26
  • 23
  • 16
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 437
  • 437
  • 106
  • 57
  • 49
  • 46
  • 44
  • 43
  • 42
  • 42
  • 41
  • 39
  • 38
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Template Directed Growth of Nb doped SrTiO₃ using Pulsed Laser Deposition

Waller, Gordon Henry 16 June 2011 (has links)
Oxide materials display a wide range of physical properties. Recently, doped complex oxides have drawn considerable attention for various applications including thermoelectrics. Doped complex oxide materials have high Seebeck coefficients (S) and electrical conductivities (o) comparable to other doped semiconductors but low thermoelectric figure of merit ZT values due to their poor thermal conductivities. For example, niobium doped strontium titanate (SrNbxTi<sub>1-x</sub>O₃ or simply Nb:STO) has a power factor comparable to that of bismuth telluride. Semiconductor nanostructures have demonstrated a decrease in thermal conductivity (κ) resulting in an increase in the thermoelectric figure of merit (ZT). Nanostructures of doped oxides like niobium doped strontium titanate, may also lead to decreased κ and a corresponding increase in ZT. The major impediment to nanostructured oxide thermoelectric materials is the lack of suitable fabrication techniques for testing and eventual use. Electron Beam Lithography (EBL) was used to pattern poly-methyl-methacrylate (PMMA) resists on undoped single crystalline SrTiO₃ (STO) substrates which were then filled with Nb:STO using Pulsed Laser Deposition (PLD) at room temperature. This technique produced nanowires and nanodots with critical dimensions below 100 nm, and a yield of approximately 95%. In addition to scanning electron microscopy and atomic force microscopy morphological studies of the patterned oxide, thin film analogues were used to study composition, crystallinity and electrical conductivity of the material in response to a post deposition heat treatment. Since the thin films were grown under similar experimental parameters as the oxide nanostructres, the patterned oxides are believed to be stoichiometric and highly crystalline. The study found that using a combination of EBL and PLD, it is possible to produce highly crystalline, doped complex oxide nanostructures with excellent control over morphology. Furthermore, the technique is applicable to nearly all materials and provides the capability of patterning doped oxide materials without the requirement of etching or multiple lithography steps makes this approach especially interesting for future fundamental materials research and novel device fabrication. / Master of Science
72

Synthesis and controlled growth of osmium nanoparticles by electron irradiation

Pitto-Barry, Anaïs, Perdigao, L.M.A., Walker, M., Lawrence, J., Constantini, G., Sadler, P.J., Barry, Nicolas P.E. 2015 September 1929 (has links)
Yes / We have synthesised osmium nanoparticles of defined size (1.5–50 nm) on a B- and S-doped turbostratic graphitic structure by electron-beam irradiation of an organometallic osmium complex encapsulated in self-spreading polymer micelles, and characterised them by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and atomic force microscopy (AFM) on the same grid. Oxidation of the osmium nanoparticles after exposure to air was detected by X-ray photoelectron spectroscopy (XPS). / We thank the Leverhulme Trust (Early Career Fellowship No. ECF-2013-414 to NPEB), the University of Warwick (Grant No. RD14102 to NPEB), the ERC (Grant No. 247450 to PJS), and the EPSRC (EP/F034210/1 to PJS). L.M.A.P., J.L., and G.C. acknowledge financial support from the EU through the ERC Consolidator Grant “VISUAL-MS”.
73

Nanofabrication in gold structures for X-ray imaging

Jänes, Linn January 2024 (has links)
This thesis covers nanofabrication of central stops for application in soft X-ray imaging using electron-beam lithography for pattern definition. Central stops are small scale optical components used in combination with an order sorting aperture to eliminate the higher order and zeroth order of light after diffraction from a Fresnel zone plate. The main objectives of this study were to produce central stops with the desired parameters and to obtain an understanding of the nanofabrication process. A challenge which was encountered during the fabrication of the central stops was uncertainties in electroplating time, resulting in multiple plating rounds and in turn impacting the quality of the nanostructures. Another challenge which presented itself was that the structures disappeared on the chip with an uneven resist layer, suggesting that the resist layer’s smoothness is important. A key consideration when fabricating structures on this small scale is therefore to ensure the smoothness of the resist layer. Despite these challenges, one chip was successfully fabricated and could likely be used in the optical system for the SoftiMAX beamline, a beamline used for X-ray imaging at MAX IV, a fourth generation synchrotron radiation facility in Lund. In summary, recommendations for future replications and research would be to use chips with evenly coated resist, to make sure to only electroplate once and, if working with similar structures and parameters, to electroplate for a longer time than calculations suggest.
74

Maîtrise de la qualité en fabrication additive / Additive Manufacturing Quality Management

Piaget, Alexandre 30 January 2019 (has links)
En utilisant des solutions de production issues des technologies de Fabrication Additive (FA), l’industrie s’ouvre de nouvelles possibilités pour la fabrication de pièces à haute valeur ajoutée. Dans le but d’être pleinement exploitables, ces procédés de fabrication doivent permettre la réalisation de pièces dont la qualité est adaptée aux besoins de l’industrie. Ces travaux se concentrent sur deux points ciblés de la maîtrise de la qualité en FA appliquée à la technologie Electron Beam Melting (EBM).Le premier point abordé s’intéresse à l’impact de la position d’une pièce dans l’espace de fabrication d’une machine sur la qualité géométrique de cette pièce. Pour caractériser l’espace de fabrication de la machine Arcam A1, plusieurs séries de pièces sont fabriquées à différentes localisation de l’espace, puis comparées à leur design initial. Les écarts mesurés entre les pièces et leur géométrie souhaitée montrent que la périphérie de l’espace de fabrication est une zone sujette à d’importants défauts géométriques. Ces défauts sont caractérisés et des solutions sont proposées pour en limiter l’impact sur la qualité géométrie des pièces.Le second point traite de la porosité des pièces fabriquées. Lorsque l’apport énergétique du faisceau d’électron n’est pas adéquat pour fondre correctement la poudre, des pores peuvent se former dans le matériau des pièces fabriquées. La géométrie et le matériau des pièces rendent difficiles la détection de ses pores. Une méthode de détection est proposée pour détecter la présence de pores dans une pièce via un contrôle standardisé sur un élément qui copie les conditions de fusion de la pièce. Cette méthode propose deux alternatives de contrôle : un contrôle optique (rapide, abordable mais peu précis) et un contrôle tomographique (plus précis que le précédent mais moins rapide et abordable). Un algorithme de traitement d’image innovant a été développé dans le cadre de cette étude afin de rendre les tomographies du témoin plus fiables. / By using production solutions from Additive Manufacturing (AM) technologies, the industry is opening up new possibilities for manufacturing high added value parts. In order to be fully exploitable, these manufacturing processes must allow the production of parts whose quality is adapted to the needs of the industry. This work focuses on two aiming points of quality control in AM applied to Electron Beam Melting (EBM) technology.The first point deals with the impact of a part position in the manufacturing space of a machine on the geometric quality of this part. To characterize the manufacturing space of the Arcam A1 machine, several series of parts are manufactured at different locations of the space, then compared to their initial design. The differences measured between the parts and their desired geometry show that the periphery of the manufacturing space is a zone subject to important geometrical defects. These defects are characterized and solutions are proposed to limit the impact on the geometrical quality of parts.The second point deals with the porosity of manufactured parts. When the energy supply of the electron beam is not adequate to melt the powder properly, pores can form in the material of the manufactured parts. The geometry and material of the parts make it difficult to detect its pores. A detection method is provided to detect the presence of pores in parts via a standardized control on an item that copies the parts merging conditions. This method offers two control alternatives: an optical control (fast, affordable but not very accurate) and a tomographic control (more accurate than the previous one but slower and costlier). An innovative image processing algorithm is developed as part of this study to make the item tomography scans more reliable.
75

Obtenção de biopolímeros de gelatina por radiação ionizante / Obtention of gelatin biopolymers by ionizing radiation

Patrícia Yoko Inamura Takinami 19 March 2014 (has links)
A gelatina (GEL) é um biopolímero biodegradável e biocompatível que forma naturalmente coloides semissólidos ou hidrogéis em soluções aquosas. Sendo um polímero hidrofílico, a GEL possui propriedades estruturais e físico-mecânicas que a distinguem de polímeros hidrofílicos sintéticos. São essas características que inspiraram o desenvolvimento do presente trabalho. Para analisa-las foram desenvolvidos filmes e hidrogéis de GEL utilizando radiação ionizante mediante diferentes técnicas: irradiação por 60Co, feixe de elétrons (EB) e/ou EB pulsado. Na elaboração de filmes a base de GEL foram incorporados diferentes aditivos, tais como glicerol (GLY), álcool polivinílico (PVA), hidroxitolueno butilado (BHT), acrilamida e/ou fibra vegetal. Esse produto filmes a base de GEL foi analisado quanto às suas propriedades mecânicas, cor, absorção de água, entre outros; e irradiado com doses de 10 a 60 kGy, dependendo do aditivo. Na síntese radioinduzida de nano-hidrogéis de GEL, polietileno glicol (PEG) e a mistura (MIX) de ambos os aditivos, GEL e PEG, foram analisados a dimensão, massa molar e morfologia das nanopartículas. Houve aumento significativo da fração gel com o aumento da dose de radiação nas amostras de GEL/fibra. Os filmes a base de GEL com 10% PVA irradiados a 20 kGy apresentaram a maior resistência à perfuração. A adição de antioxidante BHT influenciou em algumas das propriedades dos filmes a base de GEL nas condições aplicadas. Em relação aos nano-hidrogéis houve redução do raio hidrodinâmico da MIX irradiada com 60Co de 68 ± 25 nm (2 kGy) para 35 ± 4 nm (5 kGy). Tanto nos filmes quanto nos nano-hidrogéis de GEL, a radiação mostrou ser uma ferramenta conveniente na modificação de materiais poliméricos. / The gelatin (GEL) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the GEL has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, GEL-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with 60Co, electron beam (EB) and/or pulsed EB. The GEL based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with 60Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels.
76

Obtenção de biopolímeros de gelatina por radiação ionizante / Obtention of gelatin biopolymers by ionizing radiation

Takinami, Patrícia Yoko Inamura 19 March 2014 (has links)
A gelatina (GEL) é um biopolímero biodegradável e biocompatível que forma naturalmente coloides semissólidos ou hidrogéis em soluções aquosas. Sendo um polímero hidrofílico, a GEL possui propriedades estruturais e físico-mecânicas que a distinguem de polímeros hidrofílicos sintéticos. São essas características que inspiraram o desenvolvimento do presente trabalho. Para analisa-las foram desenvolvidos filmes e hidrogéis de GEL utilizando radiação ionizante mediante diferentes técnicas: irradiação por 60Co, feixe de elétrons (EB) e/ou EB pulsado. Na elaboração de filmes a base de GEL foram incorporados diferentes aditivos, tais como glicerol (GLY), álcool polivinílico (PVA), hidroxitolueno butilado (BHT), acrilamida e/ou fibra vegetal. Esse produto filmes a base de GEL foi analisado quanto às suas propriedades mecânicas, cor, absorção de água, entre outros; e irradiado com doses de 10 a 60 kGy, dependendo do aditivo. Na síntese radioinduzida de nano-hidrogéis de GEL, polietileno glicol (PEG) e a mistura (MIX) de ambos os aditivos, GEL e PEG, foram analisados a dimensão, massa molar e morfologia das nanopartículas. Houve aumento significativo da fração gel com o aumento da dose de radiação nas amostras de GEL/fibra. Os filmes a base de GEL com 10% PVA irradiados a 20 kGy apresentaram a maior resistência à perfuração. A adição de antioxidante BHT influenciou em algumas das propriedades dos filmes a base de GEL nas condições aplicadas. Em relação aos nano-hidrogéis houve redução do raio hidrodinâmico da MIX irradiada com 60Co de 68 ± 25 nm (2 kGy) para 35 ± 4 nm (5 kGy). Tanto nos filmes quanto nos nano-hidrogéis de GEL, a radiação mostrou ser uma ferramenta conveniente na modificação de materiais poliméricos. / The gelatin (GEL) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the GEL has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, GEL-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with 60Co, electron beam (EB) and/or pulsed EB. The GEL based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with 60Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels.
77

Comment intégrer et faire émerger des structures architecturées dans l'optimisation de pièces pour la fabrication additive par faisceaux d’électrons / How to intégrate lattice structure in topological optimisation for additive manufacturing with electron beam melting.

Doutre, Pierre-Thomas 23 March 2018 (has links)
Grâce à la fabrication additive, il est aujourd'hui possible de fabriquer de nouvelles géométries. Les perspectives offertes par les moyens de fabrications conventionnelles et additives sont très différentes. Des propositions de design très contraintes peuvent devenir beaucoup plus libres avec la fabrication additive. Cette liberté qu'elle offre fait émerger une multitude de possibilités. Dans ce manuscrit, nous nous sommes focalisés sur un type particulier de structures (les octetruss) ainsi que sur les moyens de fabrication EBM (Electron Beam Melting) de la société ARCAM. Les travaux présentés dans cette thèse ont été réalisés au sein des laboratoires G-SCOP et SIMAP ainsi qu'en partenariat avec l'entreprise POLY-SHAPE. Ce manuscrit est articulé autour de trois principaux points.Il s'agit tout d'abord de faire émerger des structures treillis lors du processus de conception. Pour cela, deux approches existantes sont détaillées. La première met en œuvre l'optimisation topologique et la seconde s'appuie sur le concept de matériau équivalent. Ensuite deux méthodologies permettent de faire émerger des zones dans lesquelles l'intégration de structures treillis est adaptée. La première consiste à réaliser les différentes zones en s'appuyant sur un champ de contraintes issu d'un calcul Eléments Finis, la seconde se base sur un résultat d'optimisation topologique pour établir les différentes zones. Cette seconde méthodologie est appliquée à un cas d'étude industriel.Ensuite nous étudions comment remplir les différentes zones avec des structures treillis adaptées en nous focalisant tout d'abord sur leur génération. Un accent particulier est porté sur l'intersection des différents barreaux par la mise en place de sphères. Une méthodologie permettant de générer des arrondis est également proposée. Une étude est menée sur l'ensemble des paramètres et informations à considérer pour intégrer une structure treillis à une zone donnée. Cette étude conduit à une proposition de méthodologie qui est appliquée à un cas d'étude industriel.Enfin, les aspects liés à la fabrication sont pris en compte. Pour cela, nous considérons différentes limites du moyen de fabrication EBM pour des structures treillis comme les dimensions maximales réalisables ou les problématiques thermiques. Une étude consistant à prédire la dépoudrabilité des pièces est réalisée. Enfin, des essais mécaniques sont effectués. Nos résultats sont comparés à ceux obtenus dans d'autres travaux. L'impact des arrondis sur le comportement mécanique d'une pièce est discuté. / Thanks to additive manufacturing, it is now possible to manufacture new geometric shapes. The prospects offered by the methods of conventional and additive manufacturing are very different. Highly constrained design proposals can become much freer with additive manufacturing. The freedom it offers brings forward a multitude of possibilities. In this manuscript, we focused on a particular type of structures (the octetruss) as well as the use of EBM (Electron Beam Melting) of ARCAM as a means of manufacturing. The work presented in this thesis was carried out in the laboratories G-SCOP and SIMAP as well as in partnership with the company POLY-SHAPE. This manuscript focuses on three main points.The first of which is the action of emergence of lattice structures during the design process. For this, two existing approaches are detailed. The first uses topological optimization and the second is based on the concept of equivalent material. Following these, there are two methodologies used to identify areas in which the integration of lattice structures is possible and appropriate. The first consists of creating the different zones by relying on a stress field resulting from a finite element calculation, the second establishes the different zones using a topological optimization result. This second methodology is applied to an industrial case study.Secondly, we study how to fill the different areas with appropriate lattice structures by focusing first on their generation. Particular emphasis is placed on the intersection of the various bars by the establishment of spheres. A methodology for generating rounded-shape is also proposed. A study is carried out on all the parameters and information in order to integrate a lattice structure to a given area. This study leads to a proposed methodology that is applied to an industrial case study.Finally, aspects related to manufacturing are taken into account. For this, we consider different limits of the EBM manufacturing and what they mean for lattice structures; such as maximum achievable dimensions or thermal problems. A study to predict powder removal in order to extract the fabricated structure is performed. Mechanical tests are carried out. Our results are compared to those obtained in other works. The impact of curve on the mechanical behavior of a product is discussed.
78

Untersuchungen zur Elektronenstrahlstrukturierung von dünnen Schichten in Systemen der organischen Elektronik

Bodenstein, Elisabeth 13 November 2019 (has links)
In dieser Arbeit werden die verschiedenen Möglichkeiten der Elektronenstrahlstrukturierung von organischen Schichten untersucht und charakterisiert. Je nach ihrer Energie und Leistung bewirkt die Interaktion der beschleunigten Strahlelektronen mit dem Material, auf das sie treffen, unterschiedliche Wechselwirkungen. Im Rahmen der durchgeführten Versuche wird demonstriert, dass diese Wirkung von lokalen, strahlchemischen Strukturveränderungen bis hin zu einem örtlich begrenzten Materialabtrag reicht. Neben den Untersuchungen einzelner organischer Schichten, werden ebenso organische Leuchtdioden (OLEDs) und deren Veränderungen unter Elektroneneinwirkung charakterisiert. Bei der Elektronenstrahlstrukturierung einer OLED mit sehr kleinen Leistungen wird sowohl die elektrische Leitfähigkeit als auch die Leuchtdichte der OLED reduziert. Dabei sind die Veränderungen in den organischen Materialien lokal stark auf den Ort der Elektroneneinwirkung begrenzt. Dies konnte genutzt werden, um eine hochauflösende Graustufenstrukturierung zu demonstrieren und ein Bild mit Strukturbreiten von 2 µm mit einem Elektronenstrahlprozess in eine weiße OLED zu schreiben. Elektronenstrahlprozesse mit höheren Leistungen bedingen eine thermische Wirkung und können so dünne organische Schichten lokal verdampfen. Mit solch einem Prozess konnte ein linien- und flächenhafter Abtrag realisiert werden, ohne die darunterliegende Elektrode zu schädigen. OLEDs haben den Vorteil, dass sie in Dünnschichttechnik hergestellt werden können und sehr kontrastreiche und farbechte Flächenlichtquellen sind. Daher bilden sie auch die Grundlage moderner Displays, an die jedoch stets wachsende Anforderungen gestellt werden. Klassischerweise werden OLED-Farbdisplays mithilfe einer strukturierten Abscheidung durch feine Metallmasken oder durch die Nutzung weißer OLEDs zusammen mit Farbfiltern hergestellt. Im Rahmen dieser Arbeit wurde ein alternatives Strukturierungskonzept entwickelt, dass die Möglichkeit bietet, ein OLED-Farbdisplay mithilfe eines Elektronenstrahlprozesses herzustellen. Das Schichtsystem der OLED bildet einen optischen Resonator, bei dem die Elektroden die Mikrokavität darstellen und die Dicke der organischen Schichten die Resonatorlänge definiert. Mittels kavitätsselektiver Modenauswahl ist es möglich, aus dem Spektrum einer weißen OLED verschiedene Farben auszukoppeln, wenn man die Resonatorlänge ändert. In der vorliegenden Arbeit wurde diese Anpassung der Resonatorlänge durch die Elektronenstrahlstrukturierung der ersten organischen Schicht vorgenommen und so rote, grüne und blaue OLEDs erzeugt und charakterisiert. Neben den grundlegenden Untersuchungen zu diesem Ansatz werden abschließend Grenzen und Möglichkeiten des Verfahrens aufgezeigt.:1 Einleitung 2 Grundlagen 2.1 Organische Leuchtdioden (OLEDs) 2.1.1 Organische Halbleiter 2.1.2 Aufbau und Funktionsweise von OLEDs 2.1.3 Elektro-optische Charakteristik 2.2 OLED-Vollfarbdisplays 2.2.1 Funktionsweise und Konzepte 2.2.2 Strukturierungsmethoden – Stand der Technik 2.3 Elektronenstrahlstrukturierung 2.3.1 Wechselwirkungen von Elektronen mit Festkörpern 2.3.2 Thermische Mikrobearbeitung 2.3.3 Nichtthermische Mikrobearbeitung 3 Zielsetzung und Lösungsansatz 3.1 Ziele dieser Arbeit 3.2 Prinzip Mikrokavität-OLED 4 Methodische Untersuchungen und Charakterisierung 4.1 OLED-Testsubstrate 4.1.1 Aufbau und Layout 4.1.2 Schichtabscheidung 4.2 Elektronenstrahlbehandlung 4.3 Analysemethoden 4.3.1 Schichtcharakterisierung 4.3.2 Elektro-optische Charakterisierung 4.3.3 FTIR-Spektroskopie 4.3.4 Photolumineszenz-Spektroskopie 5 Experimentelle Ergebnisse und Diskussion 5.1 Nichtthermische Elektronenstrahlbearbeitung von organischen Einzelschichten 5.1.1 Spektroskopische Untersuchungen 5.1.2 Elektrische Untersuchungen von Hole-Only-Devices 5.2 Nichtthermische Elektronenstrahlbearbeitung von OLEDs 5.2.1 Elektro-optische Untersuchungen 5.2.2 Hochauflösende Graustufenstrukturierung 5.2.3 Einfluss eines anschließenden Temperns 5.3 Thermische Elektronenstrahlbearbeitung 5.3.1 Thermische Elektronenstrahlstrukturierung organischer Schichten 5.3.2 Elektronenstrahlstrukturierung für Mikrokavität-OLEDs 6 Zusammenfassung und Ausblick A Technische Ergänzunge B Literaturverzeichnis C Abbildungsverzeichnis D Tabellenverzeichnis E Abkürzungsverzeichnis F Lebenslauf der Autorin G Wissenschaftliche Publikationen H Danksagung / In this work different possibilities of electron beam patterning for organic layers are investigated and characterized. Depending on the energy and power of the accelerated beam electrons, different interaction processes with the material can be initiated. Within the performed experiments it could be demonstrated that these effects range from structural chemical changes up to a localized evaporation of material. In addition to investigations of individual organic layers, organic light-emitting diodes (OLEDs) and their changes under the influence of electrons are also characterized. When OLEDs are patterned with an electron beam process with low power, both the electrical conductivity and the luminance of the OLED are reduced. The changes in the organic materials are locally strongly limited to the location of the electron penetration. This could be used to demonstrate a high-resolution grayscale patterning and to write an image with critical dimensions of 2 µm into a white OLED using an electron beam process. Electron beam processes with higher power cause a thermal effect and are able to evaporate thin organic layers locally. With such a process, a linear and areal shaped removal could be realized without damaging the underlying electrode. OLEDs have the advantage that they can be produced in thin-film technology. Furthermore they are an area light source, that has a high contrast and very good color properties. Therefore, most of the modern displays consist of OLEDs. Traditionally, OLED color displays are made by structured deposition through fine metal masks or by the use of white OLEDs together with color filters. As part of this work, an alternative structuring concept has been developed that offers the possibility of producing an OLED color display using an electron beam process. The layer system of the OLED forms an optical resonator in which the electrodes represent the microcavity and the thickness of the organic layers defines the resonator length. By means of cavity-selective mode selection, it is possible to extract different colors from the spectrum of a white OLED by changing the resonator length. In the present work, this adjustion of the resonator length was carried out by electron beam patterning of the first organic layer, thus generating and characterizing red, green and blue OLEDs. In addition to the fundamental investigations on this approach, limits and future perspectives of the method were finally pointed out.:1 Einleitung 2 Grundlagen 2.1 Organische Leuchtdioden (OLEDs) 2.1.1 Organische Halbleiter 2.1.2 Aufbau und Funktionsweise von OLEDs 2.1.3 Elektro-optische Charakteristik 2.2 OLED-Vollfarbdisplays 2.2.1 Funktionsweise und Konzepte 2.2.2 Strukturierungsmethoden – Stand der Technik 2.3 Elektronenstrahlstrukturierung 2.3.1 Wechselwirkungen von Elektronen mit Festkörpern 2.3.2 Thermische Mikrobearbeitung 2.3.3 Nichtthermische Mikrobearbeitung 3 Zielsetzung und Lösungsansatz 3.1 Ziele dieser Arbeit 3.2 Prinzip Mikrokavität-OLED 4 Methodische Untersuchungen und Charakterisierung 4.1 OLED-Testsubstrate 4.1.1 Aufbau und Layout 4.1.2 Schichtabscheidung 4.2 Elektronenstrahlbehandlung 4.3 Analysemethoden 4.3.1 Schichtcharakterisierung 4.3.2 Elektro-optische Charakterisierung 4.3.3 FTIR-Spektroskopie 4.3.4 Photolumineszenz-Spektroskopie 5 Experimentelle Ergebnisse und Diskussion 5.1 Nichtthermische Elektronenstrahlbearbeitung von organischen Einzelschichten 5.1.1 Spektroskopische Untersuchungen 5.1.2 Elektrische Untersuchungen von Hole-Only-Devices 5.2 Nichtthermische Elektronenstrahlbearbeitung von OLEDs 5.2.1 Elektro-optische Untersuchungen 5.2.2 Hochauflösende Graustufenstrukturierung 5.2.3 Einfluss eines anschließenden Temperns 5.3 Thermische Elektronenstrahlbearbeitung 5.3.1 Thermische Elektronenstrahlstrukturierung organischer Schichten 5.3.2 Elektronenstrahlstrukturierung für Mikrokavität-OLEDs 6 Zusammenfassung und Ausblick A Technische Ergänzunge B Literaturverzeichnis C Abbildungsverzeichnis D Tabellenverzeichnis E Abkürzungsverzeichnis F Lebenslauf der Autorin G Wissenschaftliche Publikationen H Danksagung
79

Strategier för att minimera porositet vid tillverkning med Electron Beam Melting : Hur smältstrategier och geometrisk utformning påverkar porositet och porfördelning i komponenter tillverkade med EBM.

Blomström, Tommy, Lindberg, Victor January 2020 (has links)
Additiv tillverkning (AM) är en tillverkningsmetod som skapar komponenter genom att addera material där det tidigare inte fanns, detta möjliggör tillverkning av geometrier som annars hade varit omöjliga eller mycket tidskrävande. Electron Beam Melting är en pulverbaserad AM metod där ett metallpulver smälts samman av en elektronstråle. De två största nackdelarna med pulverbaserad AM är en ojämn yta och inre porositet i tillverkade komponenter. Den grova ytan avhjälps i de fall det behövs genom att efterbehandla komponenter genom skärande bearbetning och porositeten åtgärdas idag med HIP, Hot Isostatic Pressing. Arbetet i denna rapport har som syfte att minimera porositeten in situ för att öka tillförlitligheten och repeterbarhet hos materialegenskaperna i EBM-tillverkade komponenter genom optimerandet av smältstrategin. Detta har skett genom ett experiment där fem smältstrategier har använts vid tillverkning av fyra olika utformade provstavar varvid porositeten har granskats i avseendena porandel av ytarea och porfördelning. De fem strategierna var S0, Standard; S1, Enkelriktad ifyllnad före kontur; S2.0, Endast kontur utifrån och in; S2.1, Endast kontur inifrån och ut; S2.2, Som S2.1 utan MultiBeam, och de fyra provstavsutformningarna var ett rätblock, en cylinder, ett rör med 3 mm tjocka väggar och ett timglas. Lägst porositet gavs av S2.1 med en genomsnittlig densitet på 99,993 % och högst gavs av S2.0 med en denistet på 98,63 % där S0 resulterade i en genomsnittlig densitet på 99,94%. / Additive manufacturing (AM) is a manufacturing method that creates components by adding material where there previously was none, this enables fabrication of geometries which otherwise had been impossible or very time consuming. Electron Beam Melting is a powder based AM-method where a metallic powder is melted by an electron beam. The two largest issues with powder based AM is its high surface roughness and internal porosity of manufactured components. The uneven surface is remedied where necessary by making the part larger than its final dimensions and machining it to size while the porosity today is rectified with HIP, Hot Isostatic Pressing. This works aims to minimize the porosity in situ in order to improve the reliability and repeatability of the material properties of EBM-manufactured parts through the optimization of the melting strategy. This has been done through an experiment in which five melting strategies have been applied to four different test rods after which the porosity was examined in terms of porosity and pore distribution. The five strategies were S0, Standard; S1, One-way hatch before contour; S2.0, Only contour outside and in; S2.1, Only contour inside and out; S2.2, Like S2.1 without MultiBeam, and the four test bar designs were a cuboid, a cylinder, a tube with 3 mm thick walls and an hourglass. The lowest porosity was given by S2.1 with a mean average density of 99 993% and highest was S2.0 with 98.63% density whereas S0 resulted in a mean average density of 99.94%. / <p>Betyg 2020-08-02</p>
80

Electron capture by highly charged ions from surfaces and gases

Allen, Frances Isabel 18 January 2008 (has links)
In dieser Arbeit werden hochgeladene, mit einer Electron Beam Ion Trap produzierte Ionen für die Erforschung des Elektroneneinfangs von Oberflächen und Gasen eingesetzt. Die Untersuchungen mit Gastargets konzentrieren sich auf die Energieabhängigkeit der Verteilung der K-Schalen-Röntgenstrahlen, die nach Elektroneneinfang in Rydberg-Zustände von Ar-17+ und Ar-18+ Ionen am Ende einer Kaskade von Elektronenübergängen entstehen. Die Ionen werden von der Ionenquelle mit einer Energie von 2 keV/u extrahiert, ladungsselektiert und anschließend bis auf 5 eV/u abgebremst, um dann mit einem Argon Gastarget zu interagieren. Für abnehmende Stoßenergien wird eine Verschiebung des Elektroneneinfangs in Zustände mit niedrigen Drehumpulsquantenzahlen beobachtet. Zum Vergleich wird auch die K-Schalen-Röntgenstrahlung auf Grund des Elektroneneinfangs bei Ar-17+ und Ar-18+ von dem Restgas in der Falle gemessen. Dabei wird eine Diskrepanz zu den Resultaten der Extraktionsversuche festgestellt. Mögliche Erklärungen werden diskutiert. In den Untersuchungen zum Elektroneneinfang von Oberflächen werden hochgeladene Ionen von der Ionenquelle mit Energien von 2 bis 3 keV/u extrahiert, ladungsselektiert und auf Targets gelenkt. Diese bestehen aus Siliziumnitridmembranen mit einer Vielzahl nanometergroßer Löcher, welche mittels eines fokussierten Ionenstrahls in Kombination mit ionenstrahlinduzierter Abscheidung dünner Filme erstellt werden. Es werden hierbei Lochdurchmesser von 50 bis 300 nm mit Formfaktoren von 1:5 bis 3:2 erreicht. Bei den hochgeladenen Ionen handelt es sich um Ar-16+ und Xe-44+. Nach dem Transport durch die Kapillare passieren die Ionen einen elektrostatischen Ladungstrenner und werden detektiert. Der Anteil des Elektroneneinfangs von den Wänden der Löcher ist weitaus geringer als Modellberechnungen vorhersagen. Die Resultate werden an Hand eines Kapillareffekts zur Ionenleitung diskutiert. / In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar-17+ and Ar-18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keV/u, charge-selected and then decelerated down to 5 eV/u for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar-17+ and Ar-18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keV/u, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar-16+ and Xe-44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism.

Page generated in 0.0488 seconds