• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 54
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 142
  • 83
  • 22
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Modulation of Cargo Transport and Sorting through Endosome Motility and Positioning

Höpfner, Sebastian 28 October 2005 (has links) (PDF)
Utilizing various systems such as cell-based assays but also multicellular organisms such as Drosophila melanogaster and C.elegans, for example, the endocytic system has been shown to consist of a network of biochemically and morphologically distinct organelles that carry out specialized tasks in the uptake, recycling and catabolism of growth factors and nutrients, serving a plethora of key biological functions (Mellman, 1996). Different classes of endosomes were found to exhibit a characteristic intracellular steady state distribution. This distribution pattern observed at steady state results from a dynamic interaction of endosomes with the actin and the microtubule cytoskeleton. It remains unclear, however, which microtubule-based motors besides Dynein control the intracellular distribution and motility of early endosomes and how their function is integrated with the sorting and transport of cargo. The first part of this thesis research outlines the search for such motor. I describe the identification of KIF16B which functions as a novel endocytic motor protein. This molecular motor, a kinesin-3, transports early endosomes to the plus end of microtubules, in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the peri-nuclear region, delayed receptor recycling to the plasma membrane and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. In displaying Rab5 and PI(3)P-containing cargo selectivity, a remarkable property of KIF16B is that it is subjected to the same regulatory principles governing the membrane tethering and fusion machinery (Zerial and McBride, 2001). Since KIF16B can modulate growth factor degradation, we propose that this motor could have also important implications for signaling. Importantly, KIF16B has provided novel insight into how intracellular localization of endosomes governs the transport activity of these organelles. The second part of this thesis describes the proof-of-principle of a genome-wide screening strategy aimed at gaining insights into the next level of understanding: How the spatial distribution of organelles is linked to their function in an experimental system which features cellular polarity, for example, a tissue or organ. The suitability of C. elegans as a model organism to identify genes functioning in endocytosis has been demonstrated by previous genetic screens (Grant and Hirsh 1999; Fares and Greenwald, 2001). Offering excellent morphological resolution and polarization, the nematode intestine represents a good system to study the apical sorting of a transmembrane marker. The steady state localization of such a marker is likely the result of a dynamic process that depends on biosynthetic trafficking to the apical surface, apical endocytosis and recycling occurring through apical recycling endosomes. Therefore, mis-sorting of this marker upon RNA-mediated interference will be indicative of a failure in one of the aforementioned processes. Furthermore, since it is still largely unclear why apical endosomes maintain their polarized localization, this screen will also monitor the morphology of this endocytic compartment using a second marker. Following image acquisition based on an automated confocal microscope, data can be analyzed using custom-built software allowing objective phenotypic analysis. The successful establishment of the proof-of-principle marks the current state-of-the-art of this large-scale screening project.
132

Exploration des mécanismes responsables de la dichotomie entre la chimiotaxie et la division cellulaire

Rhainds, David 10 1900 (has links)
No description available.
133

Caractérisation des interactions établies par la région riche en prolines de la ligase de l’ubiquitine Itch

Desrochers, Guillaume 12 1900 (has links)
No description available.
134

Rôle de l'intégrine α5β1 dans la biologie du glioblastome et dans la résistance aux thérapies anti-EGFR / Role of alpha5beta1 integrin in glioblastoma b1ology and resistance towards anti-EGFR therapies

Blandin, Anne-Florence 06 November 2015 (has links)
Le glioblastome multiforme (GBM) est la tumeur cérébrale primaire la plus fréquente. Une dérégulation des voies de signalisation de l’EGFR et un fort potentiel invasif sont les caractéristiques principales du GBM. Malheureusement, les essais cliniques impliquant des thérapies anti-EGFR dans le traitement des GBM demeurent inefficaces. Nous avons précédemment montré que le récepteur de la fibronectine, l’intégrine α5β1, est associé avec un mauvais pronostic et une résistance des patients au temodal. Les intégrines peuvent coopérer avec les récepteurs aux facteurs de croissance et ainsi amplifier leur potentiel oncogénique. Ici, nous avons cherché à déterminer le rôle de l’intégrine α5 dans la résistance aux thérapies anti-EGFR. Utilisant la lignée U87 de GBM, on a dans un premier temps confirmé que l’activation de l’intégrine sous l’influence de la fibronectine, potentialisait la signalisation de l’EGFR. La perte d’expression d’α5 sensibilise les cellules U87 aux anti-EGFR (cetuximab, gefitinib) dans des essais de clonogénicité en soft agar. L’expression d’ α5 favorise la résistance aux 2 drogues lors de la migration cellulaire. Pour aller plus loin, nous avons développé un nouveau test basé sur la quantification de l’évasion cellulaire à partir d’une sphère tumorale. La perte d’ α5 augmente la sensibilité des cellules U87 à 2 TKI réversibles spécifiques de l’EGFR, gefitinib et erlotinib, mais n’a pas d’effet sur l’efficacité du lapatinib, un TKI irréversible ciblant EGFR, ErbB2, ErbB3 et ErbB4. Grâce à la microscopie confocale, nous avons montré l’effet important du gefitinib sur l’endocytose de l’intégrine et de l’EGFR. Ces résultats suggèrent que l’expression d’ α5 favorise la résistance aux TKI par l’activation des voies de signalisation des récepteurs ErbB ou en contrôlant le trafic membranaire de l’EGFR. On a aussi montré que pour favoriser l’adhésion cellulaire, l’intégrine α5 stimulait la fibrillogénèse. Dans les cellules migrant à distance de la sphère, l’intégrine α5 est strictement engagée dans des adhésions cellule-substrat contenant la protéine FAK activée. Nos résultats soulignent le rôle central du couple fibronectine/ intégrine α5 dans l’invasivité du GBM et la résistance aux thérapies anti-EGFR. / Glioblastoma multiforme (GBM) is the most common primary brain tumor. Alteration of the EGFR pathway and high invasive potential are hallmarks of GBM. Unfortunately, trials using anti-EGFR therapies for the treatment of GBM reveal limited efficacy. We previously showed that overexpression of the fibronectin receptor, α5β1 integrin, is associated with a poor prognosis for patients and is responsible for chemoresistance to temodal. Integrins can cross-talk with growth factor receptors and amplified their oncogenic activity. Here, we sought to determine the potential role of α5 integrin in resistance to anti-EGFR therapy. Using U87 GBM cell line, we first confirmed that fibronectin-mediated integrin activation potentiated EGFR signaling. Loss of α5 integrin expression sensitized U87 cells to anti-EGFR drugs (cetuximab, gefitinib) in soft agar clonogenic assay. α5 expression can trigger resistance to both drugs on cell migration. To go further, we developed a new assay based on the quantification of cell evasion from tumor spheroids. α5 depletion increased U87 cell sensitivity to gefitinib and erlotinib, 2 EGFR-selective reversible TKI, but had not effect on lapatinib efficacy, an irreversible TKI that target EGFR, ErbB2, ErbB3 and ErbB4. Confocal microscopy revealed a strong impact of gefitinib on EGFR and integrin endocytosis. These results suggested that α5 expression may trigger resistance to TKI either by activating ErbB pathways or by controlling EGFR membrane trafficking. We also showed that to promote cell adhesion, α5 integrin stimulated fibronectin fibrillogenesis. As cells moved away from the spheroids, α5 became strictly engaged in cell-substratum adhesion sites where it recruited activated FAK. Our work highlights the pivotal role of fibronectin/α5β1 integrin in invasivity of GBM and resistance to anti-EGFR drugs.
135

The regulation and induction of clathrin-mediated endocytosis through a protein aqueous-aqueous phase separation mechanism

Bergeron-Sandoval, Louis-Philippe 12 1900 (has links)
La morphologie des cellules et leurs interactions avec l’environnement découlent de divers procédés mécaniques qui contribuent à la richesse et à la diversité de la vie qui nous entoure. À titre d’exemple, les cellules mammifères se conforment à différentes géométries en fonction de l’architecture de leur cytosquelette tandis que les bactéries et les levures adoptent une forme circulaire par turgescence. Je présente, dans cette thèse, la découverte d’un mécanisme de morphogénèse supplémentaire, soit la déformation de surface cellulaire via l’assemblage de protéines par démixtion de phases aqueuses non miscibles et l’adhésion entre les matériaux biologiques. J’expose de façon spécifique comment ce mécanisme régule le recrutement et le mouvement dynamique des protéines qui induisent l’invagination de la membrane plasmique lors de l’endocytose clathrine-dépendante (CME). Le phénomène de démixtion des protéines dans le cytoplasme est analogue à la séparation de phase de l’huile en solution aqueuse. Il constitue un mécanisme cellulaire important et conservé, où les protéines s’agglomèrent grâce aux interactions intermoléculaires qui supplantent la tendance du système à former un mélange homogène. Plusieurs exemples de compartiments cellulaires dépourvus de membrane se forment par démixtion de phase, tels que le nucléole et les granules de traitement de l’ARN [1-6]. Ces organes ou compartiments dénommés NMO, du terme anglais « non-membranous organelles », occupent des fonctions de stockage, de traitement et de modification chimique des molécules dans la cellule. J’explore ici les questions suivantes : est-ce que les NMO occupent d’autres fonctions à caractère morphologique ? Quels signaux cellulaires régulent la démixtion de phase des protéines dans la formation des NMO ? Fondée sur la physique mécanique du contact entre les matériaux, j’émets l’hypothèse que des compartiments cellulaires nanoscopiques, formés par démixtion de phase, génèrent des forces mécaniques par adhésion interfaciale. Le travail mécanique ainsi obtenu déforme le milieu cellulaire et les surfaces membranaires adjacents au NMO nouvellement créé. Le but de mon doctorat est de comprendre comment les cellules orchestrent, dans le temps et l’espace, la formation des NMO associés au CME et comment ceux-ci génèrent des forces mécaniques. Mes travaux se concentrent sur les mécanismes de démixtion de phase et d’adhésion de contact dans le processus d’endocytose chez la levure Saccharomyces cerevisiae. Pour enquêter sur le rôle des modifications post-traductionnelles dans ces mécanismes, nous avons premièrement analysé la cinétique de phosphorylation des protéines en conditions de stress. Mes résultats démontrent que le recrutement et la fonction de certaines protéines impliquées dans le CME se régulent via des mécanismes de phosphorylation. Outre les processus de contrôle post-traductionnel, nous avons élucidé le rôle des domaines de faible complexité dans l’assemblage de plusieurs protéines associées avec le CME. De concert avec les modifications de phosphorylation, des domaines d’interaction protéine-protéine de type PrD (du terme « prion-like domains ») modulent directement le recrutement des protéines au sein des NMO associés au CME. La nature intrinsèquement désordonnée de ces PrD favorise un mécanisme d’assemblage des protéines par démixtion de phase tel que postulé. Finalement, mes travaux confirment que la formation de ces NMO spécifiques génère des forces mécaniques qui déforment la membrane plasmique et assurent le processus de CME. D’un point de vue fondamental, mes recherches permettent de mieux comprendre l’évolution d’une stratégie cellulaire pour assembler des compartiments cellulaires sans membrane et pour fixer les dimensions biologiques associées au CME. De manière plus appliquée, cette étude a le potentiel de générer des retombées importantes dans la compréhension et le traitement de maladies neurodégénératives souvent associées à une séparation de phase aberrante et à la formation d’agrégats protéiques liés à la pathologie. / Evolution has resulted in distinct mechanical processes that determine the shapes of living cells and their interactions with each other and with the environment. These molecular mechanisms have contributed to the wide variety of life we observe today. For example, mammalian cells rely on a complex cytoskeleton to adapt specific shapes whereas bacteria, yeast and plants use a combination of turgor pressure and cell walls to have their characteristic bloated form. In this dissertation, I describe my discovery of an unforeseen additional mechanism of morphogenesis: protein aqueous-aqueous phase separation and adhesive contact between biomaterials as a simple and efficient ways for cells to organize internal matter and accomplish work to shape internal structures and surfaces. I specifically describe how a fundamental process of phospholipid membrane and membrane-embedded protein recycling, clathrin-mediated endocytosis (CME), is driven by this mechanism. Analogous to water and oil emulsions, proteins, and biopolymers in general, can phase separate from single to a binary aqueous phase. For proteins that de-mix from the bulk environment, the intermolecular interactions (or cohesive energy) that favors protein condensation only needs to overcome the low mixing entropy of the system and represents a conserved and energy efficient cellular strategy [2, 3, 7, 8]. So far, various examples of phase separated cellular compartments, termed non-membranous organelles (NMOs), have been discovered. These include the nucleoli, germ line P granules and P bodies, to name a few [1-6]. NMOs are involved in many conserved biological processes and can function as storage, bioreactor or signaling bodies. Cells use phase separation as a scheme to organize internal matter, but do NMOs occupy other complex functions, such as morphogenesis? What specific signals trigger protein phase separation? Based on mechanical contact theory, I proposed that hundreds of nanometer- to micron-scale phase separated bodies can deform the cellular environment, both cytoplasm and membranes, through interfacial adhesion. I studied how mechanical contact between a phase-separated protein fluid droplet and CME nucleation sites on membranes drive endocytosis in the model organism budding yeast, Saccharomyces cerevisiae. Specifically, this dissertation describes first, my investigations of post-translational modifications (phosphorylation) of several CME-mediating proteins and the implications of these modifications in regulating CME. I then describe how my efforts to understand what was distinct about the proteins that are phosphorylated led me to propose their phase separation into droplets capable of driving invagination and vesicle formation from plasma membrane. I used fluorescence microscopy, mass spectrometry and micro rheology techniques to respectively determine the spatiotemporal dynamics, phosphorylation modifications and material properties of coalesced CME-mediating proteins. I further investigated how phase separation of these proteins might generate mechanical force. I demonstrate that changes in the phosphorylation of some endocytic proteins regulates their recruitment to CME nucleation sites. We achieved reliable predictions of functional phosphosites by combining information on the conservation of the post-translational modifications with analysis of the proportion of a protein that is dynamically phosphorylated with time. The same dynamically phosphorylated proteins were enriched for low amino acid compositional complexity “prion-like domains”, which we demonstrated were essential to these proteins undergoing aqueous-aqueous phase separation on CME nucleation sites. I then demonstrate how phase separated droplet can produce mechanical work to invaginate membranes and drive CME to completion. In summary, I have discovered a fundamental molecular mechanism by which phase separated biopolymers and membranes could apply work to shape each other. This mechanism determines the natural selection of spatial scale and material properties of CME. Finally, I discuss broader implications of this dissertation to mechanistic understandings of the origins of neurodegenerative diseases, which likely involve pathological forms of protein phase separation and/or aggregation.
136

Propriétés de surface des nanoparticules et interactions avec les cellules endothéliales vasculaires

Fakhari Tehrani, Soudeh 06 1900 (has links)
Les traitements et l’imagerie des tumeurs cérébrales malignes se sont avérés jusqu’à présent très peu efficaces, en raison de la présence de la barrière hémato-encéphalique (BHE) qui freine le passage des molécules thérapeutiques mais aussi diagnostiques vers les tissus du système nerveux central (SNC). Le développement de vecteurs nanométriques chargés en agents thérapeutiques et capables de traverser la BHE pourrait être une alternative pour améliorer la bio-distribution de principes actifs et d’agent d’imagerie au cerveau. Parmi les différents types de vecteurs proposés, les nanoparticules polymériques (NP) constituées de polymères dibloc comportant un bloc de poly (éthylène glycol) (PEG) pourrait présenter une solution prometteuse pour transporter des actifs à travers la BHE. La PEGylation de la surface des NPs améliore la stabilité colloïdale des NPs. De plus, elle diminue l'adsorption non spécifique des protéines à la surface de NPs (appelée aussi opsonisation). La vitesse de clairance des NPs est ainsi ralentie et les NPs circulent plus longtemps dans le sang. Malgré l’effet bénéfique de la couche de PEG à la surface des NPs, le rôle exact des propriétés de surface liées à la longueur de la chaîne PEG sur l'interaction des NPs avec les cellules endothéliales vasculaires est mal compris. Dans une première partie de ce travail, le rôle de la longueur de PEG sur l'endocytose et la transcytose des NPs a été étudié sur des monocouches de cellules bEnd.3, un modèle in vitro de BHE. Les mécanismes de transport des NPs ont été évalués en utilisant différents inhibiteurs de l'endocytose. La quantification du taux d'endocytose et de transcytose a révélé que l'endocytose et la transcytose des NPs augmentaient avec la longueur de la chaîne de PEG. Les taux d'endocytose et de transcytose les plus élevés ont été observés pour les NPs de PLA-PEG5000 et de PLA-PEG10000. Les résultats de l’étude mécanistique démontrent que la longueur de la chaîne de PEG influence la voie d'endocytose empruntée par les NPs PEGylées à travers un modèle in vitro de BHE. Dans une seconde partie de ce travail, l'effet de la longueur du PEG sur la toxicité des NPs et les processus inflammatoires a été étudié sur deux modèles de monocouche de cellules endothéliales vasculaires, soit les cellules bEnd.3 et HUVEC. L'effet de la longueur des chaînes de PEG sur l'expression des gènes impliqués dans la réponse inflammatoire aux NPs PEGylées a été évalué par qPCR. De plus, le potentiel de génération de dérivés réactifs de l'oxygène (DRO ou ROS) par les NPs a été évalué en utilisant le test cellulaire basé sur l'oxydation de la DCFH-DA. Les résultats démontrent que les NPs PEGylées induisent une augmentation légère et transitoire de l’expression des gènes des cytokines et des chimiokines inflammatoires. Cependant, la longueur des chaînes de PEG ne présente pas un effet significatif sur l'expression des gènes des cytokines et des chimiokines. De plus, nos résultats ne montrent pas l’induction de la génération de ROS par les NPs PEGylées. En résumé, la longueur de chaine de PEG influence le taux d’endocytose et de transcytose. La voie d’endocytose impliquée dans l’internalisation et la transcytose est influencée par la longueur des chaines de PEG. En revanche, les différences de longueur des chaines de PEG ne modulent pas significativement l’expression des cytokines et de chimiokines inflammatoires. Ces résultats devraient contribuer à développer des nanoformulations qui traversent plus efficacement la BHE, tout en minimisant les effets toxiques, notamment inflammatoires sur les cellules endothéliales vasculaires de la BHE. Ces perspectives devront toutefois être confirmées sur des modèles in vivo. / To date, imaging and treatment of brain tumors are proved to be very inefficient due to the presence of the blood-brain barrier (BBB). The (BBB) is a semipermeable barrier which prevents or restrains most therapeutic and diagnostic molecules reach the central nervous system (CNS). Polymeric nanoparticles (NPs) loaded by therapeutics molecules and diagnostic agents could represent a promising solution to help active ingredients to cross the BBB and as a consequence, their biodistribution to the brain could be improved. Polymeric NPs composed of di-block copolymers, such as poly (ethylene glycol) blocks (PEG) that bind to polyester hydrophobic chains, are considered one of the most versatile nanocarriers for transporting therapeutic molecules across the BBB. PEG on the surface of NPs improves the NPs colloidal stability. Furthermore, PEG surface coating decreases the non-specific adsorption of proteins on the surface of NPs (also called opsonization); therefore, the clearance rate of the NPs is slowed down and NPs circulation times in blood is extended. Despite the beneficial effect of the PEG coating on the surface of NPs, the exact role of the surface properties related to the PEG chain length on NPs interactions with the vascular endothelial cells is poorly understood. In first article, the role of PEG chain length on brain vascular endothelial cells endocytosis and transcytosis is investigated on monolayers of bend.3 cells as an in vitro BBB model. The NPs transport mechanisms were then investigated by using different endocytosis inhibitory processes. Our results revealed that NPs endocytosis and transcytosis rates increased with PEG chain length. Higher endocytosis and transcytosis rates were observed for PLA-PEG5000 and PLA-PEG10000 NPs. Moreover, the mechanistic studies demonstrated that the PEG chain length influenced the endocytosis pathway taken by PEGylated NPs through an in vitro model of BBB. In second article, the effect of PEG length on NPs cytotoxicity and inflammatory processes has been investigated in two vascular endothelial cell lines (bEnd.3 and HUVEC). The effect of PEG chain length coating on gene expression that are involved in the inflammation response was investigated by qPCR. Moreover, the potential Reactive Oxygen Species (ROS) generation was evaluated with DCFH-DA probe. The results showed that PEGylated NPs induce a mild and transient activation of inflammatory cytokine and chemokine genes. However, the length of the PEG chains did not modulate significantly gene expression of inflammatory cytokines and chemokines. Furthermore, our results showed that PEGylated NPs did not induce ROS generation. In summary, the chain length of PEG influences the endocytosis and transcytosis rate. The pathway of endocytosis involved in internalization and transcytosis is influenced by the length of PEG chains. In contrast, differences in the length of PEG chains did not significantly modulate the expression of cytokines and inflammatory chemokines. These results contribute to develop nanoformulations that cross the BBB more efficiently while keeping the toxic and inflammatory effects minimal, particularly on the vascular endothelial cells of the BBB. Nevertheless, these perspectives have to be confirmed on in vivo models.
137

Modulation of Cargo Transport and Sorting through Endosome Motility and Positioning

Höpfner, Sebastian 14 November 2005 (has links)
Utilizing various systems such as cell-based assays but also multicellular organisms such as Drosophila melanogaster and C.elegans, for example, the endocytic system has been shown to consist of a network of biochemically and morphologically distinct organelles that carry out specialized tasks in the uptake, recycling and catabolism of growth factors and nutrients, serving a plethora of key biological functions (Mellman, 1996). Different classes of endosomes were found to exhibit a characteristic intracellular steady state distribution. This distribution pattern observed at steady state results from a dynamic interaction of endosomes with the actin and the microtubule cytoskeleton. It remains unclear, however, which microtubule-based motors besides Dynein control the intracellular distribution and motility of early endosomes and how their function is integrated with the sorting and transport of cargo. The first part of this thesis research outlines the search for such motor. I describe the identification of KIF16B which functions as a novel endocytic motor protein. This molecular motor, a kinesin-3, transports early endosomes to the plus end of microtubules, in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the peri-nuclear region, delayed receptor recycling to the plasma membrane and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. In displaying Rab5 and PI(3)P-containing cargo selectivity, a remarkable property of KIF16B is that it is subjected to the same regulatory principles governing the membrane tethering and fusion machinery (Zerial and McBride, 2001). Since KIF16B can modulate growth factor degradation, we propose that this motor could have also important implications for signaling. Importantly, KIF16B has provided novel insight into how intracellular localization of endosomes governs the transport activity of these organelles. The second part of this thesis describes the proof-of-principle of a genome-wide screening strategy aimed at gaining insights into the next level of understanding: How the spatial distribution of organelles is linked to their function in an experimental system which features cellular polarity, for example, a tissue or organ. The suitability of C. elegans as a model organism to identify genes functioning in endocytosis has been demonstrated by previous genetic screens (Grant and Hirsh 1999; Fares and Greenwald, 2001). Offering excellent morphological resolution and polarization, the nematode intestine represents a good system to study the apical sorting of a transmembrane marker. The steady state localization of such a marker is likely the result of a dynamic process that depends on biosynthetic trafficking to the apical surface, apical endocytosis and recycling occurring through apical recycling endosomes. Therefore, mis-sorting of this marker upon RNA-mediated interference will be indicative of a failure in one of the aforementioned processes. Furthermore, since it is still largely unclear why apical endosomes maintain their polarized localization, this screen will also monitor the morphology of this endocytic compartment using a second marker. Following image acquisition based on an automated confocal microscope, data can be analyzed using custom-built software allowing objective phenotypic analysis. The successful establishment of the proof-of-principle marks the current state-of-the-art of this large-scale screening project.
138

Augmentation de l’absorption intestinale à l’aide de promédicaments se liant aux gangliosides GM1

St-Jean, Isabelle 08 1900 (has links)
No description available.
139

Characterisation of Novel Rab5 Effector Proteins in the Endocytic Pathway

Schnatwinkel, Carsten 04 November 2004 (has links)
Endocytosis, a process of plasma membrane invaginations, is a fundamental cellular mechanism, ensuring uptake of nutrients, enhanced communication between cells, protective functions against invasive pathogens and remodelling of the plasma membrane composition. In turn, endocytic mechanisms are exploited by pathogens to enter their host cells. Endocytosis comprises multiple forms of which our molecular understanding has mostly advanced with respect to clathrin-mediated endocytosis and phagocytosis. Studies on the small GTPase Rab5 have provided important insights into the molecular mechanism of endocytosis and transport in the early stages of the endocytic pathways. Rab5 is a key regulator of clathrin-mediated endocytosis, but in addition, localises to several distinct endocytic carriers including phagosomes and pinocytic vesicles. On early endosomes, Rab5 coordinates within a spatially restricted domain enriched in phosphatidylinositol-3 phosphate PI(3)P a complex network of effectors, including PI3-Kinase (PI3-K), the FYVE-finger proteins EEA1 and Rabenosyn-5 that functionally cooperate in membrane transport. Moreover, Rab5 regulates endocytosis from the apical and basolateral plasma membrane in polarised epithelial cells. During my PhD thesis, I investigated the molecular mechanisms of endocytosis both in polarised and non-polarised cells. I obtained new insights into the molecular mechanisms of endocytosis and their coordination through the functional characterization of a novel Rab5 effector, termed Rabankyrin-5. I could demonstrated that Rabankyrin-5 is a novel PI(3)P-binding Rab5 effector that localises to early endosomes and stimulates their fusion activity in vitro. The latter activity depends on the oligomerisation of Rabankyrin-5 on the endosomal membrane via the N-terminal BTB/POZ domain. In addition to early endosomes, however, Rabankyrin-5 localises to large vacuolar structures that correspond to macropinosomes in epithelial cells and fibroblasts. Overexpression of Rabankyrin-5 increases the number of macropinosomes and stimulates fluid phase uptake whereas its downregulation through RNA interference inhibits these processes. In polarised epithelial cells, the function of Rabankyrin-5 is primarily restricted to the apical membrane. It localises to large pinocytic structures underneath the apical surface of kidney proximal tubule cells and its overexpression in polarised MDCK cells specifically stimulates apical but not basolateral, non-clathrin mediated pinocytosis. In demonstrating a regulatory role in endosome fusion and (macro)-pinocytosis, my studies suggest that Rab5 regulates and coordinates different endocytic mechanisms through its effector Rabankyrin-5. Furthermore, the active role in apical pinocytosis in epithelial cells suggests an important function of Rabankyrin-5 in the physiology of polarised cells. The results obtained in this thesis are central not only for our understanding of the basic principles underlying the regulation of multiple endocytic mechanisms. They are also relevant for the biomedical field, since actin-dependent (macro)-pinocytosis is an important mechanism for the physiology of cells and organisms and is upregulated under certain pathological conditions (e.g. cancer).
140

Rab-domain dynamics in endocytic membrane trafficking

Rink, Jochen C. 07 March 2005 (has links)
Eukaryotic cells depend on cargo uptake into the endocytic membrane system, which comprises a functionally interconnected network of endosomal compartments. The establishment and maintenance of such diverse compartments in face of the high rates of exchange between them, poses a major challenge for obtaining a molecular understanding of the endocytic system. Rab-GTPases have emerged as architectural key element thereof: Individual family members localize selectively to endosomal compartments, where they recruit a multitude of cytoplasmic effector proteins and coordinate them into membrane sub-domains. Such "Rab-domains" constitute modules of molecular membrane identity, which pattern the endocytic membrane system into a mosaic of Rab-domains. The main objective of this thesis research was to link such "static" mosaic-view with the highly dynamic nature of the endosomal system. The following questions were addressed: How are neighbouring Rab-domains coordinated? Are Rab-domains stable or can they undergo assembly and disassembly? Are the dynamics of Rab-domains utilized in cargo transport? The first part of this thesis research focused on the organization of Rab-domains in the recycling pathway. Utilizing Total Internal Reflection (TIRF) microscopy, Rab11-, but neither Rab4- nor Rab5-positive vesicles were observed to fuse with the plasma membrane. Rab4-positive membranes, however, could be induced to fuse in presence of Brefeldin A. Thus, these experiments complete the view of the recycling pathway by the following steps: a) Rab11-carriers likely mediate the return of recycling cargo to the surface; b) such carriers are presumably generated in an Arf-dependent fission reaction from Rab4-positive compartments. Rab11-chromatography was subsequently carried out in the hope of identifying Rab11-effectors functioning at the Rab4-Rab11 domain interface. An as yet uncharacterized ubiquitin ligase was identified, which selectively interacts with both Rab4 and Rab11. Contrary to expectations, however, the protein (termed RUL for *R*ab interacting *U*biquitin *L*igase) does not function in recycling,but appears to mediate trafficking between Golgi/TGN and endosomes instead.In order to address the dynamics of Rab-domains, fluorescently tagged Rab-GTPases were imaged during cargo transport reactions in living cells. Herefore high-speed/long-term imaging procedures and novel computational image analysis tools were developed. The application of such methodology to the analysis of Rab5-positive early endosomes showed that a) The amount of Rab5 associated with individual endosomes fluctuates strongly over time; b) such fluctuations can lead to the "catastrophic" loss of the Rab5-machinery from membranes; c) Rab5 catastrophe is part of a functional cycle of early endosomes, involving net centripetal motility, continuous growth and increase in Rab5 density. Next, the relevance of Rab5 catastrophe with respect to cargo transfer into either the recycling- or degradative pathway was examined. Recycling cargo (transferrin) could be observed to exit Rab5-positive early endosomes via the frequent budding of tubular exit carriers. Exit of degradative cargo (LDL) from Rab5-positive endosomes did not involve budding, but the rapid loss of Rab5 from the limiting membrane.Rab5-loss was further coordinated with the concomitant acquisition of Rab7, suggesting "Rab conversion" as mechanism of transport between early- and late endosomes.Altogether, this thesis research has shown that first, Rab-machineries can be acquired and lost from membranes. Second, such dynamics provide a molecular mechanism for cargo exchange between endosomal compartments. Jointly, these findings lead to the concept of Rab-domain dynamics modulation in /trans/ between neighbouring domains as mechanistic principle behind the dynamic organization of membrane trafficking pathways.

Page generated in 0.0409 seconds