• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 4
  • 3
  • Tagged with
  • 83
  • 83
  • 31
  • 23
  • 20
  • 18
  • 15
  • 15
  • 15
  • 15
  • 13
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

First-Principles Atomistic Simulations of Energetic Materials

Landerville, Aaron Christopher 02 April 2014 (has links)
This dissertation is concerned with the understanding of physico-chemical properties of energetic materials (EMs). Recently, a substantial amount of work has been directed towards calculations of equations of state and structural changes upon compression of existing EMs, as well as elucidating the underlying chemistry of initiation in detonating EMs. This work contributes to this effort by 1) predicting equations of state and thermo-physical properties of EMs, 2) predicting new phases of novel EMs, and 3) examining the initial stages of chemistry that result in detonation in EMs. The motivation for the first thrust, is to provide thermodynamic properties as input parameters for mesoscale modeling. Such properties are urgently sought for a wide range of temperatures and pressures, and are often difficult or even impossible to obtain from experiment. However, thermo-physical properties are obtained by calculating structural properties and vibration spectra using density function theory and employing the quasi-harmonic approximation. The second thrust is directed towards the prediction and investigation of novel polymorphs of known azide compounds to identify precursor materials for synthesis of polymeric nitrogen EMs. Structural searches are used to identify new polymorphs, while theoretical Raman spectra for these polymorphs are calculated to aid experimentalists in identifying the appearance of these azide compounds under high pressure. The final thrust is concerned with elucidating the initial chemical events that lead to detonation through hypervelocity collision simulations using first-principles molecular dynamics. The chemical mechanisms of initiation are determined from the atomic trajectory data, while heats of reaction are calculated to quantify energy trends of chemical transformations.
52

Characterization and detection of traces of energetic materials by Nanocalorimetry / Caractérisation et détection de matériaux énergétiques à l'état de traces par nanocalorimétrie

Piazzon, Nelly 19 November 2010 (has links)
Un nanocalorimètre permet l'analyse thermique de très faibles quantités d'échantillons (quelques nanogrammes ou picogrammes), ainsi que l'étude de films minces dont l'épaisseur varie de quelques nanomètres à plus d'un micron. Les vitesses de chauffe et de refroidissement sont nettement plus élevées que celles réalisées avec une DSC classique : les vitesses de chauffe peuvent atteindre 103 à 106 K/s, par conséquent, les mesures réalisées avec ce type d'appareil sont très rapides (quelques millisecondes). Du fait de sa sensibilité élevée, des vitesses de chauffe rapides atteintes et de l'acquisition rapide des données, le nanocalorimètre peut être utilisé pour la caractérisation et la détection de quelques nanogrammes de matériaux énergétiques. Les objectifs de cette thèse sont d'une part de mettre au point une procédure de calibration des capteurs nanocalorimétriques (calibration de la température, de la puissance, de la masse du microcristal à analyser) et d'autre part de caractériser des matériaux énergétiques afin de pouvoir effectuer des analyses quantitatives en vue d'applications pour la détection d'explosifs. Les matériaux énergétiques étudiés sont des films de nitrocellulose, des cristaux de penthrite, d'hexogène (principal constituant du C4), de 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (Cl20), et des nano-cristaux d'explosifs. Le travail réalisé a montré qu'il est possible de rapidement différencier des explosifs par leurs températures de fusion, de décomposition et d'évaporation. Il est aussi possible de déterminer des paramètres cinétiques d'un cristal isolé d'explosif. / Calorimetry is one of the main techniques of thermal analysis. Most of physical or chemical modifications of material are associated with thermal effects whereby heat is absorbed (i.e., melting) or released (i.e., thermal decomposition). Typically, calorimetric experiments are performed with Differential Scanning Calorimetry (DSC), which measures the heat flux absorbed or released by the sample following the same temperature program as a reference material. In these experiments, measurements are typically carried out on a few milligrams of sample. However, for many applications one has to handle nanograms or even picograms of sample. One of such applications is relevant to studies of materials which can release a significant amount of energy during their decomposition (energetic materials). Calorimetry able to handle nanograms of sample could find potential applications in the field of explosives detection. Nanocalorimetry allows to heat small amounts of sample (a few nanograms to a few hundred picograms) at extreme heating rates, i.e. up to one million °C/s. The temperature increase can initiate several phenomena in energetic materials, therefore the calorimetry could be an appropriate technique to characterize and to detect energetic materials. The energetic materials used in this study are nitrocellulose (NC), hexogen (RDX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-ltexaazaisowurtzitane (CL-20) and penthrite (PETN). The manuscript presents our results on the nanocalorimeter calibration, on the thermal behaviour of the explosives studied with nanocalorimetry and also includes an evaluation of nanocalorimetry as a tool for explosives detection.
53

The Synthesis and Characterization of Energetic Materials From Sodium Azide

Aronson, Joshua Boyer 29 November 2004 (has links)
A tetrazole is a 5-membered ring containing 4 nitrogens and 1 carbon. Due to its energetic potential and structural similarity to carboxylic acids, this ring system has a wide number of applications. In this thesis, a new and safe sustainable process to produce tetrazoles was designed that acheived high yields under mild conditions. Also, a technique was developed to form a trityl-protected tetrazole in situ. The rest of this work involved the exploitation of the energetic potential of tetrazoles. This moiety was successfully applied in polymers, ionic liquids, foams, and gels. The overall results from these experiments illustrate the fact that tetrazoles have the potential to serve as a stable alternative to the troublesome azido group common in many energetic materials. Due to these applications, the tetrazole moiety is a very important entity.
54

Plasma propellant interactions in an electrothermal-chemical gun

Taylor, Michael J. January 2002 (has links)
This Thesis covers work conducted to understand the mechanisms underpinning the operation of the electrothermal-chemical gun. The initial formation of plasma from electrically exploding wires, through to the development of plasma venting from the capillary and interacting with a densely packed energetic propellant bed is included. The prime purpose of the work has been the development and validation of computer codes designed for the predictive modelling of the elect rothe rmal-ch em ical (ETC) gun. Two main discussions in this Thesis are: a proposed electrically insulating vapour barrier located around condensed exploding conductors and the deposition of metallic vapour resulting in a high energy flux to the surface of propellant, leading to propellant ignition. The vapour barrier hypothesis is important in a number of fields where the passage of current through condensed material or through plasma is significant. The importance may arise from the need to disrupt the fragments by applying strong magnetic fields (as in the disruption of metallic shaped charge jets); in the requirement to generate a metallic vapour efficiently from electrically exploding wires (as per ETC ignition systems); or in the necessity to re-use the condensed material after a discharge (as with lightning divertor strips). The ignition by metallic vapour deposition hypothesis relies on the transfer of latent heat during condensation. It is important for the efficient transfer of energy from an exploded wire (or other such metallic vapour generating device) to the surface of energetic material. This flux is obtained far more efficiently through condensation than from radiative energy transfer, because the energy required to evaporate copper is far less than that required to heat it to temperatures at which significant radiative flux would be emitted
55

Exploration and detection of ultra-traces of explosives by chip calorimetry / Exploration et détection d'ultra-traces d'explosifs par nanocalorimétrie

Doblas Jiménez, David 10 June 2015 (has links)
La détection de très faibles quantités de Matériaux Energétiques (ME) est un challenge important dans la lutte contre le terrorisme. En plus des méthodes de détection des ME par affinité chimique, il est aussi intéressant d'utiliser les variations enthalpiques dues à la décomposition des ME pour les détecter par analyse thermique. Cependant, la sensibilité des methodes classiques est insuffisante pour la détection des particules dont la masse se situe dans le domaine des nanogrammes. En revanche, la nanocalorimétrie est parfaitement adaptée pour la caractérisation de très faibles quantités d'échantillons et est de ce fait adaptée aux exigences de la détection. Afin d'explorer la possibilité de détecter et d'identifier des micro-particules solides de ME à l'aide de l'analyse thermique, nous avons élaboré des protocols optimisés pour la détection et l'identification de particules pures unitaires de quelques nanogrammes de ME ainsi que leurs mélanges. Les résultats montrent que la limite de détection se situe environ à quelques centaines de picrogrammes. Les expériences ont été complétées par de l'analyse structurale in-situ en utilisant sa combinaison avec de la DRX par faisceau nanofocus synchrotron. / Being able to sense the minuscule amounts of energetic materials is crucial in the context of the fight against terrorism. Apart from the methods of detection of EM, which are specific to the chemical structure, one could use the enthalpy variations of the EM decomposition process for their detection by means of thermal analysis. However, the sensitivity of classical methods would be still insufficient to sense particles in the nanogram range. By contrast, the recently developed technique of chip calorimetry is perfectly suited for characterizing small amounts of samples and is therefore fully adequate for this task.In order to explore the possibilities of detection and identification of solid micro-particles of EM with thermal analysis, we discuss on the protocols optimized for the detection and identification of nanogram-size particles of EM and its mixtures with the chip calorimeter accessory. The results obtained on pure EM and its mixtures show that the detection threshold can be put at approximately several hundred picograms. The experiments were completed by the in-situ structural analysis using a combination with nanofocus synchrotron XRD.
56

Plasma propellant interactions in an electrothermal-chemical gun

Taylor, M J 24 November 2009 (has links)
This Thesis covers work conducted to understand the mechanisms underpinning the operation of the electrothermal-chemical gun. The initial formation of plasma from electrically exploding wires, through to the development of plasma venting from the capillary and interacting with a densely packed energetic propellant bed is included. The prime purpose of the work has been the development and validation of computer codes designed for the predictive modelling of the elect rothe rmal-ch em ical (ETC) gun. Two main discussions in this Thesis are: a proposed electrically insulating vapour barrier located around condensed exploding conductors and the deposition of metallic vapour resulting in a high energy flux to the surface of propellant, leading to propellant ignition. The vapour barrier hypothesis is important in a number of fields where the passage of current through condensed material or through plasma is significant. The importance may arise from the need to disrupt the fragments by applying strong magnetic fields (as in the disruption of metallic shaped charge jets); in the requirement to generate a metallic vapour efficiently from electrically exploding wires (as per ETC ignition systems); or in the necessity to re-use the condensed material after a discharge (as with lightning divertor strips). The ignition by metallic vapour deposition hypothesis relies on the transfer of latent heat during condensation. It is important for the efficient transfer of energy from an exploded wire (or other such metallic vapour generating device) to the surface of energetic material. This flux is obtained far more efficiently through condensation than from radiative energy transfer, because the energy required to evaporate copper is far less than that required to heat it to temperatures at which significant radiative flux would be emitted
57

Prediction of Delivered and Ideal Specific Impulse using Random Forest Models and Parsimonious Neural Networks

Peter Joseph Salek (12455760) 29 April 2022 (has links)
<p>Development of complex aerospace systems often takes decades of research and testing. High  performing propellants are important to the success of rocket propulsion systems. Development  and testing of new propellants can be expensive and dangerous. Full scale tests are often required  to understand the performance of new propellants. Many industries have started using data science  tools to learn from previous work and conduct smarter tests. Material scientists have started using  these tools to speed up the development of new materials. These data science tools can be used to  speed up the development and design better propellants. I approach the development of new solid  propellants through two steps: Prediction of delivered performance from available literature tests,  prediction of ideal performance using physics-based models. Random Forest models are used to  correlate the ideal performance to delivered performance of a propellant based on the composition  and motor properties. I use Parsimonious Neural Networks (PNNs) to learn interpretable models  for the ideal performance of propellants. I find that the available open literature data is too biased  for the models to learn from and discover families of interpretable models to predict the ideal  performance of propellants. </p>
58

Coupling Nanomechanical and Chemical Characterization for Evaluating Properties of Small-Scale Moleuclar Crystals

Hugh Patrick Grennan (16509906) 26 July 2023 (has links)
<p>  </p> <p>Molecular crystals are used in a wide variety of applications, from pharmaceuticals and sweeteners to energetic materials. Understanding their chemical and mechanical properties provides insight into their performance and use. These properties are especially critical for energetic material systems, which may be sensitive to impact and require specific handling and storage practices. The mechanical properties of energetic molecular crystals are typically determined using nanoindentation by measuring elastic modulus, hardness, yield point, and fracture behavior. Reports of the properties and mechanical behavior of as-grown molecular crystals are limited due to the relative difficulty of performing good quality measurements. This work’s contributions include the first known measurements of elastic and plastic properties for crystals of DAAF, CL-20, NTO, ETN, and R-salt.</p> <p>When studying molecular crystalline systems, some important assumptions and behaviors typical to metallic and ionic systems begin to break down. The energetic material diaminoazoxyfurazan (DAAF) exhibits highly irregular mechanical behavior, which is likely explained by a complex combination of chemical and material attributes. This work investigates and compares the irregular mechanical response in DAAF—including high variance in mechanical properties, broad range of load-depth behavior, and non-conforming indentation impression geometries—to other energetic molecular crystals. The yield points (i.e., onset of plasticity) for several energetic materials, whose elastic modulus values range from 9.6 to 25.5 GPa, are also compared to identify the parameters that govern the onset of plasticity. This includes an investigation into yield point dependence on (or independence from) elastic modulus, hardness, near-neighbor spacing, and activation volume. When these materials reach the onset of plasticity, the maximum shear stress in each material ranges from 2-7% of their elastic modulus value. Analysis of the yield behavior in these materials suggests that there is not a strong correlation between yield stress and hardness, thus establishing that the mechanisms governing dislocation nucleation are not controlled by hardness, and vice-versa. By recognizing and accounting for the added complexities associated with inherently non-spherical molecules in a crystal lattice, this work advances the comprehension of mechanical response in molecular crystal systems.</p>
59

OPTICAL IGNITION AND COMBUSTION CHARACTERIZATION OF METAL FLUOROPOLYMER COMPOSITES

Kyle Uhlenhake (14153403) 28 November 2022 (has links)
<p>The ignition of energetic materials, and specifically solid propellants, is a complex process</p> <p>that must be safe, consistent, and precisely controlled. There is a wide range of applications with</p> <p>specific ignition requirements for solid propellants including inflation of airbags, propulsion</p> <p>systems (including rockets), as well as arm and fire devices. Currently, electrical or percussion</p> <p>pyrotechnic igniters are most the commonly used ignition systems. These systems must be</p> <p>carefully designed to deliver the proper amount of energy to a specified surface area of the</p> <p>propellant. A photon light source (i.e. flash or laser-based, ranging from UV to IR wavelengths)</p> <p>can potentially be used to ignite energetic materials with lower input energy and more precise</p> <p>spatial and temporal control, thereby improving safety and reliability by eliminating electrical</p> <p>systems used in pyrotechnic igniters. In addition, they could be potentially safer from stray</p> <p>electrical charges causing unintentional ignition.</p> <p>The purpose of this work is to further explore the potential of optical ignition for energetic</p> <p>systems and identify ideal materials that can be used for optical ignition. In order to identify</p> <p>optically sensitive materials, we will study ignition energies, ignition delays, flame temperatures,</p> <p>and other combustion characteristics for possible energetic materials. This research addresses a</p> <p>gap in understanding of optical ignition for energetic materials, as finding and integrating materials</p> <p>that are optically sensitive while still being practical can be extremely challenging. These</p> <p>challenges include: (1) a lack of absorptivity to optical wavelengths in the UV to low-IR range,</p> <p>and subsequently, a very high sensitivity to input energy at the absorptive wavelengths that makes</p> <p>sustained ignition difficult, (2) a need for full density materials in practical energetic systems,</p> <p>while optically sensitive materials are exceedingly difficult to ignite as packing density increases</p> <p>due to heat transfer, and (3) the lack of research regarding novel fuels/oxidizers for the specific</p> <p>purpose of optical ignition.</p> <p>Metal/fluoropolymer energetic materials have been of interest to the energetic materials</p> <p>community for many years. Due to fluorine’s excellent oxidizing ability, they can be used in</p> <p>composite materials with metal fuels to produce energetic materials for a wide variety of</p> <p>applications. Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polycarbon</p> <p>13</p> <p>monofluoride (PMF), and terpolymers such as tetrafluoroethylene, hexafluoropropylene, and</p> <p>vinylidene fluoride (THV) have already seen extensive use in applications ranging including</p> <p>protective coatings, strain gauges, and electronics. However, when combined with metals such as</p> <p>lithium, magnesium, aluminum, or titanium, they also present an opportunity for a wide variety of</p> <p>energetic materials. For this study, metal/fluoropolymer composites present a novel opportunity</p> <p>for exploring optical ignition of widely absorptive, full-density energetic materials. This work will</p> <p>characterize the combustion and sensitivity of metal/fluoropolymer composites to provide novel</p> <p>materials for optical ignition of energetics.</p> <p>Specifically, this work will begin with finding a suitable energetic composite that is optically</p> <p>sensitive. Once this material has been identified, research will be done to thoroughly characterize</p> <p>the optically sensitive composite by looking at additive manufacturability, flame temperatures, and</p> <p>ignition sensitivities from various methods and formulations. Once the material has been</p> <p>thoroughly characterized, it will be implemented into solid propellants to test the feasibility of the</p> <p>material in practical energetic systems. Finally, the lessons learned from this work will be applied</p> <p>to novel formulations to identify new optically sensitive energetic composites.</p>
60

Computational Investigation of Strain and Damage Sensing in Carbon Nanotube Reinforced Nanocomposites with Descriptive Statistical Analysis

Talamadupula, Krishna Kiran 11 September 2020 (has links)
Polymer bonded explosives (PBXs) are composites comprised of energetic crystals with a very high energy density surrounded by a polymer binder. The formation of hotspots within polymer bonded explosives can lead to the thermal decomposition and initiation of the energetic material. A frictional heating model is applied at the mesoscale to assess the potential for the formation of hotspots under low velocity impact loadings. Monitoring of the formation and growth of damage at the mesoscale is considered through the inclusion of a piezoresistive carbon nanotube network within the energetic binder providing embedded strain and damage sensing. A coupled multiphysics thermo-electro-mechanical peridynamics framework is developed to perform computational simulations on an energetic material microstructure subject to these low velocity impact loads. With increase in impact energy, the model predicts larger amounts of sensing and damage thereby supporting the use of carbon nanotubes to assess damage growth and subsequent formation of hotspots. The framework is also applied to assess the combined effects of thermal loading due to prescribed hotspots with inertial effects due to low velocity impact loading. It has been found that the present model is able to detect the presence of hotspot dominated regions within the energetic material through the piezoresistive sensing mechanism. The influence of prescribed hotspots on the thermo-electro-mechanical response of the energetic material under a combination of thermal and inertial loading was observed to dominate the lower velocity impact response via thermal shock damage. In contrast, the higher velocity impact energies demonstrated an inertially dominated damage response. Quantifying the piezoresistive effect derived from embedding carbon nanotubes in polymers remains a challenge since these nanocomposites exhibit significant variation in their electro-mechanical properties depending upon factors such as CNT volume fraction, CNT dispersion, CNT alignment and properties of the polymer. Of interest is electrical percolation where the electrical conductivity of the CNT/polymer nanocomposite increases through orders of magnitude with increase in CNT volume fraction. Estimates and distributions for the electrical conductivity and piezoresistive coefficients of the CNT/polymer nanocomposite are obtained and analyzed with increasing CNT volume fraction and varying barrier potential, which is a parameter that controls the extent of electron tunneling. The effect of CNT alignment is analyzed by comparing the electro-mechanical properties in the alignment direction versus the transverse direction for different orientation conditions. Estimates of piezoresistive coefficients are converted into gage factors and compared with experimental sources in literature. The methodology for this work uses automated scripts which are used in conjunction with high performance computing to generate several 5 μm ×5 μm realizations for different CNT volume fractions. These realizations are then analyzed using finite elements to obtain volume averaged effective values, which are then subsequently used to generate measures of central tendency (estimated mean) and variability (standard deviation, coefficient of variation, skewness and kurtosis) in a descriptive statistical analysis. / Doctor of Philosophy / Carbon nanotubes or CNTs belong to a class of novel materials known as nanomaterials which are materials with length scales on the order of nanometers. CNTs have been widely studied due to their unique mechanical, electrical and thermal properties in comparison to traditional materials such as metals or plastics. Often times, research and applications concerning the use of CNTs involves embedding the CNTs as a filler within a larger composite material system. In the present work, CNTs are considered to be embedded within a polymer. It is known that the electrical properties of such a CNT/polymer composite change in response to the application of a mechanical force. This change in electrical properties is caused due to the presence of CNTs and is used as a means of sensing the mechanical state of the composite, i.e. real time structural monitoring. The extent of the change in electrical properties, also known as sensing, depends upon a number of different factors such as the amount of CNTs used per unit volume of the polymer, how well dispersed or clumped together the CNTs are within the polymer and the type of polymer material used, among other factors. A statistical analysis is performed with several case studies where these factors are varied and the resulting change in the sensing response is monitored. Several important conclusions were made from the statistical analysis with some of the results providing new insights into the sensing behavior of CNT/polymer composites. For example, it was found that a key parameter known as barrier potential, which directly influences the extent of sensing achieved through a mechanism known as electrical tunneling, needs to be several orders of magnitude lower than previously reported values to accurately capture the sensing effects. Key metrics quantifying the extent of sensing from the analysis were found to be in agreement with previously reported experimental results. The significance of such a statistical study lies in the fact that CNT embedded composites are increasingly being proposed and used for sensing applications. The use of CNT embedded polymers to encase explosive crystalline grains such as HMX or RDX is one such example. These explosive grains are used in a number of different civil and military applications such as fuel rocket propellants, industry explosives, military munitions etc. The grains possess extremely high energy densities and are susceptible to undergo violent chemical reaction if a trigger is provided through thermal or mechanical means. As such, the monitoring of the structural state of these explosives is crucial for their safe handling and processing. In this work, the sensing response of a composite material comprising of explosive grains surrounded by polymer material containing CNTs is studied in response to different types of mechanical loads, ranging from mild stimuli to impact. It was found that the sensing mechanism was capable of tracking mechanical damage as well as the resulting temperature increases interior to the composite. In addition to its application to safety and preventative measures, the use of CNTs in this context also provided insight into the mechanisms related to the sudden release of energy in these explosive grains which is of significant interest since this is an active area of research as well.

Page generated in 0.0617 seconds