Spelling suggestions: "subject:"epitaxy."" "subject:"apitaxy.""
561 |
Structural characterization of epitaxial graphene on silicon carbideHass, Joanna R. 17 November 2008 (has links)
Graphene, a single sheet of carbon atoms sp2-bonded in a honeycomb lattice, is a possible all-carbon successor to silicon electronics. Ballistic conduction at room temperature and a linear dispersion relation that causes carriers to behave as massless Dirac fermions are features that make graphene promising for high-speed, low-power devices. The critical advantage of epitaxial graphene (EG) grown on SiC is its compatibility with standard lithographic procedures.
Surface X-ray diffraction (SXRD) and scanning tunneling microscopy (STM) results are presented on the domain structure, interface composition and stacking character of graphene grown on both polar faces of semi-insulating 4H-SiC. The data reveal intriguing differences between graphene grown on these two faces. Substrate roughening
is more pronounced and graphene domain sizes are significantly smaller on the SiC (0001) Si-face. Specular X-ray reflectivity measurements show that both faces have a carbon rich, extended interface that is tightly bound to the first graphene layer, leading to a buffering effect that shields the first graphene layer from the bulk SiC, as predicted by ab initio calculations.
In-plane X-ray crystal truncation rod analysis indicates that rotated graphene layers are interleaved in C-face graphene films and corresponding superstructures are observed in STM topographs. These rotational stacking faults in multilayer C-face graphene preserve the linear dispersion found in single layer graphene, making EG electronics possible even for a multilayer material.
|
562 |
The study of crystallization and interfacial morphology in polymer/carbon nanotube compositesMinus, Marilyn Lillith 08 July 2008 (has links)
This study illustrates the ability of SWNT to nucleate and template polymer crystallization and orientation, and produce materials with improved properties and unique polymer morphologies. This research work focuses primarily on the physical interaction between single-wall carbon nanotubes (SWNT) and the flexible polymer system polyvinyl alcohol (PVA). Polymer crystallization in the near vicinity of SWNT (interphase) has been studied to understand the capability of SWNT in influence polymer morphology in bulk films and fibers.
Fibrillar crystallization was achieved by shearing PVA/SWNT dispersions and resulted in the formation of oriented PVA/SWNT fibers or ribbons, while PVA solutions produce unoriented fibers. PVA single crystals were grown in PVA solutions as well as PVA/SWNT dispersions over a period of several months at room temperature (25 C). PVA single crystal growth in PVA/SWNT dispersions is templated by SWNT, and these crystals show the presence of new morphologies for PVA. PVA single crystals of differing morphology were also grown at elevated temperatures, and show morphology dependant electron beam irradiation resistance. Gel-spinning was used to produce PVA, and PVA/SWNT fibers where, PVA crystallization in the bulk fiber was observed. With 1 wt% SWNT loading in PVA, the fiber tensile strength increased from 1.6 GPa for the control PVA to 2.6 GPa for PVA/SWNT. Analysis of this data suggests stress of up to ~120 GPa on the SWNT. This is the highest reported stress on the SWNT to date and confirm excellent reinforcement and load transfer of SWNT in the PVA matrix. Raman spectroscopy data show high SWNT alignment in the fiber where the ratio is measured to be 106. High-resolution transmission electron microscopy (HR-TEM) is used to characterize polymer morphology near the polymer-SWNT interface for PVA/SWNT fibers. HR-TEM studies of Polymer/CNT composites show distinct morphological differences at the polymer-SWNT interface/interphase for semi-crystalline and amorphous polymer systems which may be related to polymer-SWNT interaction in the composite.
Studies on polymer crystallization, carbon nanotube (CNT)/polymer composite, and polymer composite interfacial literature in summarized in Chapter 1. Fibrillar crystallization of PVA and PVA/SWNT is presented in Chapter 2. PVA single crystal grown at varying temperatures is discussed in Chapter 3, followed by single crystal growth studies in PVA/SWNT dispersions in Chapter 4. Chapter 5 summarizes the gel-spinning studies of PVA and PVA/SWNT fibers. Conclusions and recommendations for future work pertaining to this study are given in Chapter 6. Results of HR-TEM studies on other polymer/SWNT composites are given in Appendix A, Appendix B summarizes work on PE crystallization in the SWNT/DMF dispersions, and studies of PVA and PVA/SWNT gel films are summarized in Appendix C.
|
563 |
Kinetically determined surface morphology in epitaxial growthJones, Aleksy K. 11 1900 (has links)
Molecular beam epitaxy has recently been applied to the growth and self assembly of nanostructures on crystal substrates. This highlights the importance of understanding how microscopic rules of atomic motion and assembly lead to macroscopic surface shapes. In this thesis, we present results from two computational studies of these mechanisms.
We identify a kinetic mechanism responsible for the emergence of low-angle facets in recent epitaxial regrowth experiments on patterned surfaces. Kinetic Monte Carlo simulations of vicinal surfaces show that the preferred slope of the facets matches the threshold slope for the transition between step flow and growth by island nucleation. At this crossover slope, the surface step density is minimized and the adatom density is maximized, respectively. A model is developed that predicts the temperature dependence of the crossover slope and hence the facet slope.
We also examine the "step bunching" instability thought to be present in step flow growth on surfaces with a downhill diffusion bias. One mechanism thought to produce the necessary bias is the inverse Ehrlich Schwoebel (ES) barrier. Using continuum, stochastic, and hybrid models of one dimensional step flow, we show that an inverse ES barrier to adatom migration is an insufficient condition to destabilize a surface against step bunching.
|
564 |
Développement de procédés d'épitaxie basse température pour les technologies CMOS FD-SOI avancées / Low temperature raised source and drain epitaxy for Fully Depleted Silicon on Insulator (FD-SOI) technologyLabrot, Maxime 05 December 2016 (has links)
Ce travail de thèse s’inscrit dans la technologie de fabrication de transistors à canal mince (Si ou SiGe) totalement déserté sur isolant (Fully-Depleted Silicon-on-Insulator ou FDSOI) qui constitue une option prometteuse pour les nœuds 14nm et au-delà. Les problèmes liés à cette nouvelle technologie sont dus à : (1) l’existence d’instabilités morphologiques conduisant, lors de recuits haute température, à la fragmentation de la couche mince formant le canal, (2) la nécessité d’une reprise d’épitaxie SiGe:B afin de former, sur le canal, des sources et drains surélevées (Raised Source and Drain ou RSD) et (3) des problèmes liés à l’hétérogénéité du dopage induits par l’importance des interfaces substrat/canal, canal/Source et canal/Drain.Ce travail expérimental a été effectué au sein de la société STMicroelectronics en partenariat avec le Centre Interdisciplinaire de Nanoscience de Marseille. Les principaux résultats obtenus sont : 1/ La mise au point, puis l’optimisation d’une méthode de nettoyage de surface à basse température permettant d’éviter la fragmentation du canal observée lors de recuits haute température.2/ L’optimisation des conditions de préparation de la surface du canal permettant de réaliser une bonne reprise d’épitaxie pour les sources et drains surélevées.3/ L’optimisation, via l’incorporation de carbone, des profils de dopage au bore des sources et drains épitaxiés. Les tests électriques effectués sur dispositifs industriels montrent que, grâce aux développements réalisés au cours de ces travaux de thèse, le pourcentage de puces actives sur une plaque est passé de 40% à 90%. / This work concerns the Fully-Depleted Silicon-On-Insulator (FD-SOI) technology, which is a promising option for the technical nodes beyond 14nm.The use of a very thin Si or SiGe channel causes new technological problems due to (1) morphological instabilities that break the film during its high temperature annealing, (2) the necessity to grow Raised Source & Drain (RSD) by epitaxial Chemical-Vapor Deposition (CVD) of SiGe:B, (3) the non-uniformity of the boron profile in the channel because of the number of interfaces (substrate/channel, channel/ source, channel/drain). This experimental work has been performed at STMicroelectronics and Nanoscience Interdisciplinary Center of Marseille laboratory. The main results are:1/ The definition and the improvement of an efficient low temperature surface-cleaning process that avoids the dewetting of the channel.2/ The optimization of the surface preparation of the channel for a subsequent epitaxial growth of RSD materials compatible with electronic requirements.3/ The improvement, via carbon incorporation, of the boron dopant profile in the epitaxially grown RSD. Analysis of electrical devices show that all these improvements lead to a huge enhancement of the percentage of electrical active dies per wafer (from 40% to 90 %).
|
565 |
Strained HgTe/CdTe topological insulators, toward spintronic applications / Réalisation d'isolants topologiques HgTe/CdTe, application à la spintroniqueThomas, Candice 15 December 2016 (has links)
Les isolants topologiques constituent une nouvelle classe de matériaux caractérisés par l'association d'un volume isolant et de surfaces conductrices. Avec des propriétés électroniques similaires au graphene, notamment un transport régit par des particules à énergie de dispersion linéaire couramment appelés fermions de Dirac ainsi qu'une protection topologique empêchant tout phénomène de rétrodiffusion, ces matériaux suscitent un intérêt grandissant dans la quête d'une électronique de faible consommation. En effet, la production de courants de spin non-dissipatifs et polarisés ainsi que la formation de courants de spin purs en l'absence de matériaux magnétiques constituent une partie des attentes de ces matériaux topologiques.L'objectif de cette thèse a été de démontrer expérimentalement le potentiel de l'isolant topologique HgTe pour des applications notamment dans le domaine de la l'électronique de spin ou spintronique.Pour ce faire, d'importants efforts ont été mis en œuvre pour améliorer le procédé de croissance par épitaxie par jets moléculaires.La composition chimique, la contrainte ainsi que la qualité des interfaces de la couche de HgTe ont été identifiées comme des axes majeurs de travail et d'optimisation afin d'obtenir une structure de bande inversée, l'ouverture d'un gap de volume, ainsi que pour protéger les propriétés électroniques des états de surface topologiques. Fort de ces caractéristiques, notre matériau possède à priori toutes les qualités nécessaires pour permettre de sonder les propriétés topologiques. Accéder à ces propriétés particulières est en particulier possible par des mesures d'effet Hall quantique sur des structures de type barres de Hall. La fabrication de ces dispositifs a néanmoins requis une attention particulière à cause de la forte volatilité du mercure et a nécessité le développement d'un procédé de nanofabrication à basses températures.Des mesures d'effet Hall quantique à très basses températures ont ensuite été réalisées dans un cryostat à dilution. Tout d'abord des couches épaisses de HgTe ont été mesurées et ont démontrées des mécanismes de transport très complexes mêlant les états de surface topologiques à d'autres contributions attribuées au volume et aux états de surface latéraux. La réduction de l'épaisseur des couches de HgTe a permis de limiter l'impact de ces contributions en les rendant négligeable pour les couches les plus fines. Dans ces conditions, ces structures ont affiché les propriétés attendues de l'effet Hall quantique avec notamment une annulation de la résistance. Avec ces propriétés, l'analyse en température de l'effet Hall quantique a permis de démontrer la nature des porteurs circulant sur les états de surface topologiques et de les identifier à des fermions de Dirac.Avec la mise en évidence de la nature topologique de notre système, l'étape suivante a été d'utiliser les propriétés topologiques et plus particulièrement le blocage entre le moment et le spin d'un électron pour tester le potentiel du système 3D HgTe/CdTe pour la spintronique. Premièrement, des mesures de pompage de spin ont été réalisées et ont mis en exergue la puissance de ces structures pour l'injection et la détection de spin. Deuxièmement, ces structures ont été implémentéessous la forme de jonction p-n dans l'idée de réaliser un premier dispositif de spintronique qui présente à ce jour des premiers signes de fonctionnement. / With graphene-like transport properties governed by massless Dirac fermions and a topological protection preventing from backscattering phenomena, topological insulators, characterized by an insulating bulk and conducting surfaces, are of main interest to build low power consumption electronic building-blocks of primary importance for future electronics.Indeed, the absence of disorder, the generation of dissipation-less spin-polarized current or even the possibility to generate pure spin current without magnetic materials are some of the promises of these new materials.The objective of this PhD thesis has been to experimentally demonstrate the eligibility of HgTe three dimensional topological insulator system for applications and especially for spintronics.To do so, strong efforts have been dedicated to the improvement of the growth process by molecular beam epitaxy.Chemical composition, strain, defect density and sharpness of the HgTe interfaces have been identified as the major parameters of study and improvement to ensure HgTe inverted band structure, bulk gap opening and to emphasize the resulting topological surface state electronic properties. Verification of the topological nature of this system has then been performed using low temperature magneto-transport measurements of Hall bars designed with various HgTe thicknesses. It is worth noting that the high desorption rate of Hg has made the nanofabrication process more complex and required the development of a low temperature process adapted to this constraint. While the thicker samples have evidenced very complex transport signatures that need to be further investigated and understood, the thickness reduction has led to the suppression of any additional contributions, such as bulk or even side surfaces, and the demonstration of quantum Hall effect with vanishing resistance. Consequently, we have managed to demonstrate direct evidences of Dirac fermions by temperature dependent analysis of the quantum Hall effect. The next step has been to use the topological properties and especially the locking predicted between momentum and spin to test the HgTe potential for spintronics. Spin pumping experiments have demonstrated the power of these topological structures for spin injection and detection. Moreover, the implementation of HgTe into simple p-n junction has also been investigated to realize a first spin-based logic element.
|
566 |
Optimisation des jonctions de dispositifs (FDSOI, TriGate) fabriqués à faible température pour l’intégration 3D séquentielle / Low temperature devices (FDSOI, TriGate) junction optimization for 3D sequential integrationPasini, Luca 15 March 2016 (has links)
L’intégration 3D séquentielle représente une alternative potentielle à la réduction des dimensions afin de gagner encore en densité d’une génération à la suivante. Le principal défi concerne la fabrication du transistor de l’étage supérieur avec un faible budget thermique; ceci afin d’éviter la dégradation du niveau inférieur. L’étape de fabrication la plus critique pour la réalisation du niveau supérieur est l’activation des dopants. Celle-ci est généralement effectuée par recuit à une température supérieure à 1000 °C. Dans ce contexte, cette thèse propose des solutions pour activer les dopants à des températures inférieures à 600 °C par la technique dite de recristallisation en phase solide. Les conditions de dopage ont été optimisées pour améliorer le niveau d’activation et le temps de recuit tout en réduisant la température d’activation jusqu’à 450°C. Les avancées obtenues ont été implémentées sur des dispositifs avancés FDSOI et TriGate générant des dispositifs avec des performances inférieures aux références fabriquées à hautes températures (supérieures à 1000 °C). En utilisant des simulations TCAD et en les comparant aux mesures électriques, nous avons montré que la région la plus critique en termes d’activation se trouve sous les espaceurs de la grille. Nous montrons alors qu’une intégration dite « extension first » est le meilleur compromis pour obtenir de bonnes performances sur des dispositifs fabriqués à faible température. En effet, l’implantation des dopants avant l’épitaxie qui vise à surélever les sources et drains compense l’absence de diffusion à basse température. Ces résultats ont par la suite été étendus pour des dispositifs TriGate et FinFETs sur isolants. Pour la première fois, l’intégration « extension first » a été démontrée pour des N et PFETs d’une technologie 14 nm FDSOI avec des résultats prometteurs en termes de performances. Les résultats obtenus montrent notamment qu’il est possible d’amorphiser partiellement un film très mince avant d’effectuer une recroissance épitaxiale sur une couche dopée. Finalement, une implantation ionique à relativement haute température (jusqu’à 500 °C) a été étudiée afin de doper les accès sans amorphiser totalement le film mince, ce qui est critique dans le cas des dispositifs FDSOI et FinFET. Nous montrons que les niveaux d’activation après implantation sont trop faibles pour obtenir des bonnes performances et que l’implantation ionique « chaude » est prometteuse à condition d’être utilisée avec un autre mécanisme d’activation comme le recuit laser. / 3D sequential integration is a promising candidate for the scaling sustainability for technological nodes beyond 14 nm. The main challenge is the development of a low temperature process for the top transistor level that enables to avoid the degradation of the bottom transistor level. The most critical process step for the top transistor level fabrication is the dopant activation that is usually performed at temperature higher than 1000 °C. In the frame of this Ph.D. work, different solutions for the dopant activation optimization at low temperature (below 600 °C) are proposed and integrated in FDSOI and TriGate devices. The technique chosen for the dopant activation at low temperature is the solid phase epitaxial regrowth. First, doping conditions have been optimized in terms of activation level and process time for low temperatures (down to 450 °C) anneals. The obtained conditions have been implemented in FDSOI and TriGate devices leading to degraded electrical results compared to the high temperature process of reference (above 1000 °C). By means of TCAD simulation and electrical measurements comparison, the critical region of the transistor in terms of activation appears to be below the offset spacer. The extension first integration scheme is then shown to be the best candidate to obtain high performance low temperature devices. Indeed, by performing the doping implantation before the raised source and drain epitaxial growth, the absence of diffusion at low temperature can be compensated. This conclusion can be extrapolated for TriGate and FinFET on insulator devices. Extension first integration scheme has been demonstrated for the first time on N and PFETs in 14 nm FDSOI technology showing promising results in terms of performance. This demonstration evidences that the two challenges of this integration i.e. the partial amorphization of very thin films and the epitaxy regrowth on implanted access are feasible. Finally, heated implantation has been investigated as a solution to dope thin access regions without full amorphization, which is particularly critical for FDSOI and FinFET devices. The as-implanted activation levels are shown to be too low to obtain high performance devices and the heated implantation appears a promising candidate for low temperature devices if used in combination with an alternative activation mechanism.
|
567 |
Nanofils de GaN/AlGaN pour les composants quantiques / GaN/AlGaN nanowires for quantum devicesAjay, Akhil 25 September 2018 (has links)
Ce travail se concentre sur l'ingénierie Intersubband (ISB) des nanofils où nous avons conçu des hétérostructures de GaN / (Al, Ga) N intégrées dans un nanofil GaN pour le rendre optiquement actif dans la région spectrale infrarouge (IR), en utilisant un faisceau moléculaire assisté par plasma épitaxie comme méthode de synthèse. Les transitions ISB se réfèrent aux transitions d'énergie entre les niveaux confinés quantiques dans la bande de conduction de la nanostructure.Un contrôle précis des niveaux élevés de dopage est crucial pour les dispositifs ISB. Par conséquent, nous explorons Ge comme un dopant alternatif pour GaN et AlGaN, pour remplacer le Si couramment utilisé. Nous avons cultivé des couches minces de GaN dopé Ge avec des concentrations de porteurs atteignant 6,7 × 1020 cm-3 à 300 K, bien au-delà de la densité de Mott, et nous avons obtenu des couches minces conductrices AlxGa1-xN dopées Ge avec une fraction molaire Al jusqu'à x = 0,64. Dans le cas de GaN, la présence de Ge n'affecte pas la cinétique de croissance ou les propriétés structurales des échantillons. Cependant, dans des échantillons AlxGa1-xN dopés par Ge avec x> 0,4, la formation de grappes riches en Ge a été observée, avec une baisse de la concentration du porteur.Ensuite, nous avons réalisé une étude comparative du dopage Si vs Ge dans des hétérostructures GaN / AlN pour des dispositifs ISB dans la gamme IR à courte longueur d'onde. Nous considérons les architectures planaire et nanofils avec des niveaux de dopage et des dimensions de puits identiques. Sur la base de cette étude, nous pouvons conclure que les deux Si et Ge sont des dopants appropriés pour la fabrication d'hétérostructures GaN / AlN pour l'étude des phénomènes optoélectroniques ISB, à la fois dans les hétérostructures planaires et nanofils. Dans cette étude, nous rapportons la première observation de l'absorption d'ISB dans des puits quantiques GaN / AlN dopés au Ge et dans des hétérostructures de nanofils GaN / AlN dopés au Si. Dans le cas des nanofils, nous avons obtenu une largeur de ligne d'absorption ISB record de l'ordre de 200 meV. Cependant, cette valeur est encore plus grande que celle observée dans les structures planaires, en raison des inhomogénéités associées au processus de croissance auto-assemblé.En essayant de réduire les inhomogénéités tout en gardant les avantages de la géométrie des nanofils, nous présentons également une analyse systématique de l'absorption de l'ISB dans les micro et nanopillars résultant d'un traitement top-down des hétérostructures planaires GaN / AlN. Nous montrons que lorsque l'espacement du réseau de piliers est comparable aux longueurs d'onde sondées, les résonances des cristaux photoniques dominent les spectres d'absorption. Cependant, lorsque ces résonances sont à des longueurs d'onde beaucoup plus courtes que l'absorption ISB, l'absorption est clairement observée, sans aucune dégradation de son amplitude ou de sa largeur de raie.Nous explorons également la possibilité d'étendre cette technologie de nanofils à des longueurs d'onde plus longues, pour les absorber dans la région IR à mi-longueur d'onde. En utilisant des hétérostructures de nanofils GaN / AlN, nous avons fait varier la largeur du puits GaN de 1,5 à 5,7 nm, ce qui a conduit à un décalage rouge de l'absorption ISB de 1,4 à 3,4 μm. Remplaçant les barrières AlN par Al0.4Ga0.6N, le composé ternaire représente une réduction de la polarisation, ce qui conduit à un nouveau décalage rouge des transitions ISB à 4,5-6,4 um.L'observation de l'absorption de l'ISB dans des ensembles de nanofils nous a motivés pour le développement d'un photodétecteur infrarouge à puits quantiques à base de nanofils. La première démonstration d'un tel dispositif, incorporant une hétérostructure de nanofils GaN / AlN qui absorbe à 1,55 μm, est présentée dans ce manuscrit. / Due to its novel properties nanowires have emerged as promising building blocks for various advanced device applications. This work focuses on Intersubband (ISB) engineering of nanowires where we custom design GaN/(Al,Ga)N heterostructures to be inserted in a GaN nanowire to render it optically active in the infrared (IR) spectral region. ISB transitions refer to energy transitions between quantum confined levels in the conduction band of the nanostructure. All the structures analised in this thesis were synthesized by plasma-assisted molecular beam epitaxy.Precise control of high doping levels is crucial for ISB devices. Therefore, we explored Ge as an alternative dopant for GaN and AlGaN, to replace commonly-used Si. We grew Ge-doped GaN thin films with carrier concentrations of up to 6.7 × 1020 cm−3 at 300 K, well beyond the Mott density, and we obtained conductive Ge-doped AlxGa1-xN thin films with an Al mole fraction up to x = 0.66. In the case of GaN, the presence of Ge does not affect the growth kinetics or structural properties of the samples. However, in Ge doped AlxGa1-xN samples with x > 0.4 the formation of Ge rich clusters was observed, together with a drop in the carrier concentration.Then, we performed a comparative study of Si vs. Ge doping in GaN/AlN heterostructures for ISB devices in the short-wavelength IR range. We considered both planar and nanowire architectures with identical doping levels and well dimensions. Based on this study, we concluded that both Si and Ge are suitable dopants for the fabrication of GaN/AlN heterostructures for the study of ISB optoelectronic phenomena, both in planar and nanowire heterostructures. Within this study, we reported the first observation of ISB absorption in Ge-doped GaN/AlN quantum wells and in Si-doped GaN/AlN nanowire heterostructures. In the case of nanowires, we obtained a record ISB absorption linewidth in the order of 200 meV. However, this value is still larger than that observed in planar structures, due to the inhomogeneities associated to the self-assembled growth process.Trying to reduce the inhomogeneities while keeping the advantages of the nanowire geometry, we also presented a systematic analysis of ISB absorption in micro- and nanopillars resulting from top-down processing GaN/AlN planar heterostructures. We showed that, when the spacing of the pillar array is comparable to the probed wavelengths, photonic crystal resonances dominate the absorption spectra. However, when these resonances are at much shorter wavelengths than the ISB absorption, the absorption is clearly observed, without any degradation of its magnitude or linewidth.We also explore the possibility to extend this nanowire technology towards longer wavelengths, to absorb in the mid-wavelength IR region. Using GaN/AlN nanowire heterostructures, we varied the GaN well width from 1.5 to 5.7 nm, which led to a red shift of the ISB absorption from 1.4 to 3.4 µm. Replacing the AlN barriers by Al0.4Ga0.6N, the reduction of polarization led to a further red shift of the ISB transitions to 4.5-6.4 µm.The observation of ISB absorption in nanowire ensembles motivated us for the development of a nanowire-based quantum well infrared photodetector (NW-QWIP). The first demonstration of such a device, incorporating a GaN/AlN nanowire heterostructure that absorbs at 1.55 µm, is presented in this manuscript.
|
568 |
Nanofils à hétérostructures axiales GaAs/InAs pour applications photoniques sur Si / Axial GaAs/InAs nanowire heterostructures for photonic applications on SiBeznasyuk, Daria Vyacheslavovna 24 September 2018 (has links)
Un objectif technologique important de l’industrie des semiconducteurs concerne l’intégration sur Si de semiconducteurs III-V à bande interdite directe tels que InAs et GaAs, pour réaliser des émetteurs et détecteurs de lumière aux longueurs d'onde de télécommunication. L'épitaxie de couches minces d'InAs et de GaAs sur Si est cependant difficile en raison de la grande différence de paramètre de maille entre ces matériaux. Ces films minces épitaxiés présentent une interface de mauvaise qualité limitant les performances de futurs dispositifs. Pour surmonter le défi de l’épitaxie de matériaux à fort désaccord de maille, il a été proposé d’utiliser des nanofils en raison de leur dimension latérale réduite et de leur rapport hauteur/largeur élevé. Ainsi, les nanofils relâchent la contrainte par relaxation élastique sur la paroi latérale des nanofils. Dans ce contexte, ma thèse visait à faire croître des hétérostructures axiales de nanofils GaAs/InAs sur des substrats Si pour réaliser des émetteurs à photons uniques. Lors de ce travail expérimental, j'ai fait croître des nanofils par le mécanisme vapeur-solide-liquide assisté par catalyseurs d'or dans un réacteur d'épitaxie par jet moléculaire. Les nanofils ont ensuite été caractérisés en utilisant la spectroscopie à rayons X par dispersion d'énergie et la microscopie électronique à transmission pour évaluer leur composition et leur structure cristalline. La distribution de la contrainte a été étudiée expérimentalement par analyse de phase géométrique, puis comparée à des simulations par éléments finis. Au cours de cette thèse, j'ai abordé différents défis inhérents aux hétérostructures axiales de nanofils, tels que la formation de nanofils tordus, la composition graduelle de l’interface et la croissance radiale parasite. J'ai d'abord optimisé le protocole de croissance pour éviter la formation de nanofils tordus. Les nanofils changent habituellement de direction de croissance lorsque le catalyseur d'or à l'extrémité du nanofil a été déstabilisé. En gardant une forte sursaturation dans la gouttelette d'or pendant toute la procédure de croissance, j’ai obtenu des nanofils droits d’InAs/GaAs avec un rendement de 92%. J’ai alors optimisé les flux de matériaux pour réduire la composition graduelle de l'interface entre les segments d’InAs et de GaAs. Grâce à l'analyse de la composition chimique des nanofils, j'ai observé que le segment nominalement pur d’InAs est en fait un alliage ternaire InxGa1-xAs. J'ai découvert que l'incorporation de Ga dans le segment nominal InAs est due à la diffusion d'adatomes Ga créés thermiquement sur les nanofils GaAs et sur la couche de GaAs bidimensionnelle développée sur le substrat de Si. L'utilisation de diamètres larges de nanofils supprime la diffusion de Ga le long des parois latérales des nanofils, permettant ainsi la croissance d’un segment d’InAs pur au-dessus de celui de GaAs. Enfin, j'ai étudié la distribution de la contrainte de 7% à l’interface InAs/GaAs. Celle-ci est répartie le long du nanofil et dépend du diamètre du nanofil et de la composition de l'interface. J'ai observé que les nanofils de diamètre inférieur à 40 nm sont exempts de dislocations: la contrainte est relaxée élastiquement via la courbure des plans cristallins proches des parois latérales du nanofil. D'autre part, les nanofils avec des diamètres supérieurs à 95 nm relaxent à la fois élastiquement et plastiquement, par une courbure des plans et la formation de dislocations. En conclusion, j'ai fabriqué des hétérostructures de matériaux à fort désaccord de maille. J’ai pu confirmer que les interfaces axiales GaAs/InAs sont pseudomorphiques en dessous d'un certain diamètre critique. Ces résultats constituent une première étape vers la réalisation de boîtes quantiques InAs dans des nanofils de GaAs intégrés sur Si: un système prometteur pour l'émission de photons uniques sur puce. / Combining direct bandgap III-V compound semiconductors, such as InAs and GaAs, with silicon to realize on-chip optical light emitters and detectors at telecommunication wavelengths is an important technological objective. However, traditional thin film epitaxy of InAs and GaAs on silicon is challenging because of the high lattice mismatch between the involved materials. These epitaxial thin films exhibit a poor quality at the interface with silicon, limiting the performance of future devices. Nanowires can overcome the mismatch challenge owing to their small lateral size and high aspect ratio. Thanks to their free, unconstrained surfaces, nanowires release the mismatch strain via elastic lateral relaxation. In this context, my thesis aimed at growing axial GaAs/InAs nanowire heterostructures on silicon substrates to realize on-chip, integrated, single-photon emitters. In this experimental work, I grew nanowires by gold-assisted vapor liquid solid mechanism in a molecular beam epitaxy reactor. The nanowires were then characterized using energy dispersive x-ray spectroscopy and transmission electron microscopy to evaluate their composition and crystalline structure. Strain distribution was studied experimentally using geometrical phase analysis and compared theoretically with finite element simulations, performed with the COMSOL software. During this thesis, I tackled different challenges inherent to axial nanowire heterostructures, such as kinking during material exchange, compositionally graded interfaces, and radial overgrowth. First, I developed an optimized a growth protocol to prevent the formation of kinks. Kinks usually appear when the gold catalyst at the nanowire tip has been destabilized. By keeping a high supersaturation in the gold droplet during the entire growth procedure, straight InAs-on-GaAs nanowires were achieved with a yield exceeding 90%. By a careful tuning of the material fluxes supplied during growth, I significantly improved the interface sharpness between the InAs and GaAs nanowire segments: the use of a high In flux during the growth of the InAs segment resulted in a 5 nm composition gradient at the InAs/GaAs interface. Through the careful analysis of the nanowires’ chemical composition, I observed that the nominally pure InAs segments grown on top of GaAs are in fact ternary InxGa1-xAs alloys. I found out that Ga incorporation in the nominal InAs segment is due to the diffusion of Ga adatoms thermally created on the GaAs nanowire sidewalls and on the two-dimensional GaAs layer grown on silicon substrate. I demonstrated that the use of large nanowire diameters prevents Ga diffusion along the nanowire sidewalls, resulting in the growth of pure InAs segments on top of GaAs. Finally, I studied how 7% mismatch strain at the InAs/GaAs interface is distributed along the nanowire, depending on the nanowire diameter and interface sharpness. I observed that nanowires with diameters below 40 nm are free of misfit dislocations regardless of the interface sharpness: strain is fully, elastically released via crystalline planes bending close to the nanowire sidewalls. On the other hand, nanowires with diameters above 95 nm at the interface exhibit strain relaxation, both elastically and plastically, via plane bending and the formation of misfit dislocations, respectively. In conclusion, I have successfully fabricated highly mismatched heterostructures, confirming the prediction that axial GaAs/InAs interfaces are pseudomorphic below a certain critical diameter. These findings establish a first step towards the realization of high quality InAs quantum dots in GaAs nanowires on silicon: a promising system for on-chip single photon emission.
|
569 |
Vers une source de photons uniques opérationnelle à base de nanofils semiconducteurs / Toward an operationnal single photon source based on semiconductor nanowiresCremel, Thibault 08 November 2016 (has links)
Le développement récent de la théorie quantique de l’information porte la communauté scientifique à s’intéresser de plus en plus aux sources de photons uniques. En effet, ces sources peuvent par exemple être utilisées pour le calcul quantique optique ou la cryptographie quantique pour améliorer les performances de distribution des clés et éviter les écoutes ou tentatives de hacking. Par conséquent, il est nécessaire de disposer de sources fiables et pour des applications réalistes, le défi est d'obtenir des sources de photons uniques qui fonctionnent jusqu'à température ambiante.Notre groupe à récemment démontré qu'en insérant une boîte quantique de CdSe dans un nanofil de ZnSe, l'émission de photons uniques pouvait être obtenue jusqu'à température ambiante. Néanmoins, ces nanofils avaient un rendement quantique faible et n'étaient pas orientés verticalement à la surface des échantillons du fait de leur croissance suivant l'orientation cristallographique (001). Ces nanofils verticaux ont pour intérêt de pouvoir être aisément couplés à des structures photoniques pour augmenter la collection des photons et leur croissance est favorisée avec des substrats orientés suivant l'orientation cristallographique (111).Dans ce contexte, le but de ce travail de doctorat est de développer la croissance de boîtes quantiques de CdSe insérées dans des nanofils de ZnSe verticaux suivant l'orientation cristallographique (111) par épitaxie par jet moléculaire, d'en étudier les propriétés optiques jusqu'à température ambiante pour des applications potentielles en tant que sources de photons uniques, et de coupler ces nano-objets à des structures photoniques pour augmenter la collection de photons. Pour atteindre ces objectifs, nous avons divisé notre étude en trois points.La première étape de ce travail est concentrée sur le développement de la croissance de nanofils de ZnSe verticalement orientés et passivés par une coquille semiconductrice de ZnMgSe. Nous observons que grâce à cette coquille, l’émission lumineuse de nanofils uniques augmente de plus de deux ordres de grandeur. Dans un second temps, nous démontrons la possibilité d’insérer des boîtes de CdSe dans ces nanofils de ZnSe suivant différentes conditions de croissance. L’influence de ces conditions de croissance est mise en évidence par des études structurales et de composition de ces nano-objets. Des études optiques en fonction de la température montrent que ces nanofils émettent jusqu'à température ambiante. De plus, l'étude du temps de déclin de nanofils uniques révèle que ces fils sont robustes et insensibles aux canaux de recombinaison non-radiatifs jusqu'à 200 K. La troisième étape de ce travail concerne l'augmentation de la collection des photons de ces nano-objets. Nous montrons dans un premier temps qu’en changeant l’environnement diélectrique d’une boîte quantique, son taux d’émission spontanée peut être augmenté. Puis nous montrons la possibilité de créer des fils photoniques à partir des boîtes quantiques insérées dans des nanofils, en recouvrant ces fils d'une épaisse coquille diélectrique. A la lumière d'expériences de microphotoluminescence - qui montrent que ces fils photoniques augmentent efficacement la collection de photons - et de simulations, nous discutons l'intérêt de l'orientation du dipôle (parallèle ou perpendiculaire à l'axe de croissance du nanofil) dans ces structures. / The recent development of the quantum information theory focuses the interest of the scientific community on single-photon sources. Indeed, these sources can be used for instance for optical quantum computing or quantum cryptography to improve the quantum key distribution performances and avoid eavesdropping. Consequently, it is necessary to have reliable single-photon sources and for realistic applications, the challenge is to get a single-photon source operating up to room temperature.Our group recently demonstrated that by inserting a quantum dot of CdSe in a nanowire of ZnSe, single-photon emission could be obtained up to room temperature. Still, these nanowires had a low quantum yield and were not vertically oriented on the as-grown sample since they were grown along the (001) crystallographic orientation. The interest of vertically oriented nanowires is that they can be coupled to photonic structures to increase their photons collection and their growth is favored on (111)-oriented substrates.In this context, the aim of this PhD work is to develop the growth of vertically oriented ZnSe-CdSe nanowire quantum dots along the (111) crystallographic orientation by molecular beam epitaxy, to study their luminescence up to room temperature for single-photon sources applications, and to couple these nano-objects to photonic structures to increase the photons collection. To reach this goal, we divided this project in three steps.The first step focuses on the development of vertically oriented ZnSe nanowires, passivated with a semiconductor shell of ZnMgSe to enhance their luminescence. In a second step, we demonstrate the possibility to insert CdSe quantum dots in these ZnSe nanowires, using different growth conditions for the quantum dot. The influence of these growth conditions is studied with structural and composition analysis of these nano-objects. Optical studies as a function of the temperature show that these nanowires emit up to room temperature. Moreover, decay-time studies on single nanowire quantum dots reveal that these nanowires are robust and insensitive to non-radiative recombination channels up to 200 K. The third step of this work concerns the enhancement of the light collection from these nano-objects. First, we show that by changing the dielectric environment of the quantum dot, its decay-rate can be increased. Then, we show the possibility to create photonic wires by covering these nanowire quantum dots with a thick dielectric shell. In the light of microphotoluminescence experiments – which show that these photonic wires efficiently increase the photons collection – and simulations, we discuss the interest of the dipole orientation (parallel or perpendicular to the nanowire growth axis) in these structures.
|
570 |
Nanostructures à base de semi-conducteurs nitrures pour l'émission ultraviolette / III-Nitride nanostructures for UV emittersHimwas, Charlermchai 27 January 2015 (has links)
Ce travail porte sur la conception, l’épitaxie, et la caractérisation structural et optique de deux types de nanostructures, à savoir des boîtes quantiques AlGaN/AIN et des nanodisques AlGaN/AIN sur nanofils GaN. Ces nanostructures ont été synthetisées par épitaxie par jets moléculaires assistée par plasma (PA-MBE) et ont été conçues pour être le matériau actif d’une lampe ultraviolette à pompage électronique (EPUV) pour la purification de l'eau. En modifiant la composition Al et la géométrie des boîtes quantiques AlGaN/AlN, leur longueur d'onde d'émission peut être réglée dans la gamme 320-235 nm tout en gardant une grande efficacité quantique interne (> 35%). Le confinement quantique a été confirmé par la stabilité de l'intensité et du temps de déclin de la photoluminescence avec la température. La quantité optimale d’AlGaN dans les boîtes pour obtenir une luminescence maximale à la température ambiante est un compromis entre densité de boîtes quantiques et rendement quantique interne. L'effet de la variation du rapport hauteur/diamètre de base sur les transitions interbande et intrabande dans les boîtes a été explorée par ajustement des données expérimentales à des calculs tridimensionnels du diagramme de bande et des niveaux quantiques. En ce qui concerne les nanodisques d’AlGaN sur nanofils GaN, l'interdiffusion Al-Ga aux interfaces et l'hétérogénéité de l'alliage ternaire sont attribuées aux processus de relaxation des contraintes. Cette interprétation a été prouvée par la corrélation des données expérimentales avec des calculs de distribution déformation en trois dimensions effectuées sur des structures qui imitent la séquence de croissance réelle. Malgré le défi du manque d'homogénéité, la longueur d'onde d'émission des nanodisques AlGaN/AIN peut être réglée dans la gamme ultraviolette en préservant une haute efficacité quantique interne. Un prototype de lampe EPUV a été fabriqué en utilisant une région active à base de boîtes quantiques AlGaN/AIN avec les valeurs optimals d'épaisseur de la région active, d'épaisseur de la barrière AlN, et de quantité d’AlGaN dans chaque couche de boîtes. Pour ce premier dispositif, le SiC a été utilisé comme substrat pour éviter les problèmes associés à l’évacuation de charge ou de chaleur. Un essai de purification de l'eau par une telle lampe a été réalisé. Tous les échantillons ont été purifiés avec succès à la dose prévue. / This work reports on the design, epitaxial growth, and the structural, and optical characterization of two types of nanostructures, namely AlGaN/AlN Stranski-Krastanov quantum dots (SK-QD) and AlGaN/AlN nanodisks (NDs) on GaN nanowires (NWs). These nanostructures were grown using plasma-assisted molecular beam epitaxy (PA-MBE) and were conceived to be the active media of electron-pumped ultraviolet (EPUV) emitters for water purification, operating in mid-ultraviolet range. The peak emission wavelength of three-dimensional SK-QD can be tuned in mid-ultraviolet range while keeping high internal quantum efficiency (IQE > 35%) by modifying the Al composition and the QD geometry. The efficient carrier confinement was confirmed by the stability of the photoluminescence intensity and decay time with temperature. The optimal deposited amount of AlGaN in AlGaN/AlN QDs which grants maximum luminescence at room temperature was determined by finding a compromise between the designs providing maximum IQE and maximum QD density. The effect of the variation of the QD height/base-diameter ratio on the interband and intraband optical properties was explored by fitting the experimental data with three-dimensional calculations of the band diagram and quantum levels. Regarding AlGaN/AlN NDs on GaN NWs, the Al-Ga intermixing at Al(Ga)N/GaN interfaces and the alloy inhomogeneity in AlGaN/AlN NDs are attributed to the strain relaxation process. This interpretation was proved by correlation of experimental data with three-dimensional strain distribution calculations performed on structures that imitate the real growth sequence. Despite the challenge of inhomogeneity, the emission wavelength of AlGaN/AlN NDs can be tuned in mid-ultraviolet range while preserving high IQE by adjusting the ND thickness and Al content. A prototype of EPUV emitter was fabricated using the AlGaN/AlN SK-QDs active region with proposed optimal design of active region thickness, AlN barrier thickness, and amount of AlGaN in each QD layer. For this first device, SiC was used as a substrate to prevent problems associated to charge or heat evacuation. A water purification test by such prototype EPUV emitter was carried out by irradiating E-coli bacteria, showing that all the specimens were successfully purified at the predicted ultraviolet dose.
|
Page generated in 0.0295 seconds