Spelling suggestions: "subject:"equação dde place"" "subject:"equação dee place""
1 |
Estabilidade assintótica para um modelo dissipativo de equação de placas com p - Laplaciano e termo memória / Asymptotic stability for a dissipative model of plate equation with p - Laplacian and term memoryPaciência, Alan Kardec Reis 05 January 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-07-05T21:25:08Z
No. of bitstreams: 1
AlanPaciencia.pdf: 382837 bytes, checksum: 5f9c9a1520895e9d9b37a6549ee31251 (MD5) / Made available in DSpace on 2017-07-05T21:25:08Z (GMT). No. of bitstreams: 1
AlanPaciencia.pdf: 382837 bytes, checksum: 5f9c9a1520895e9d9b37a6549ee31251 (MD5)
Previous issue date: 2017-01-05 / In this work, we study situations involving the existence, uniqueness, decay rates and
asymptotic behavior of solutions for a class of nonlinear equations cards and memory. In
particular, in the first chapter we review some issues related to a number of results derived
from the general theory of functional analysis, which will be applied during this dissertation.
The next chapter will discuss an equation of the fourth order dissipative plate with
nonlinear perturbations of type p - Laplacian and locally Lipschitz and memory. Continuing,
we prove the exponential stability of energy corresponding to the homogeneous
problem with second-order term of memory. / No presente trabalho, estudaremos situações relacionadas a existência, unicidade, taxas
de decaimento e comportamentos assintóticos de soluções para uma classe de equações de
placas não linear e com termo de memória. Em particular, no primeiro capítulo revisamos
alguns assuntos relacionados a uma série de resultados oriundos da teoria geral da análise
funcional, os quais ser˜ao aplicados no decorrer dessa dissertação. No capítulo seguinte,
abordaremos uma equação da placa de quarta ordem dissipativa com pertubações não
lineares do tipo p - Laplaciano e localmente Lipschitz e com termo memória. Continuando,
provamos a estabilidade exponencial de energia correspondente ao problema homogêneo
com termo de memória de segunda ordem.
|
2 |
Equações de quarta ordem na modelagem de oscilações de pontes / Fourth order equations modelling oscillations on bridgesFerreira Junior, Vanderley Alves 31 March 2016 (has links)
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais. / Fourth order differential equations appear naturally when modeling oscillations in elastic structures such as those observed in suspension bridges. Two models describing oscillations in the roadway of a bridge are considered. In the one-dimensional model we study finite space blow up of solutions for a class of fourth order differential equations. The results answer a conjecture presented in [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] and imply the nonexistence of beam oscillation given by traveling wave profile with low speed propagation. In the two-dimensional model we analyze a nonlocal equation for a thin narrow prestressed rectangular plate where the two short edges are hinged and the two long edges are free. We prove existence and uniqueness of weak solution and we study its asymptotic behavior under viscous damping. We also study the stability of simple modes of oscillations which are classified as longitudinal or torsional.
|
3 |
Equações de quarta ordem na modelagem de oscilações de pontes / Fourth order equations modelling oscillations on bridgesVanderley Alves Ferreira Junior 31 March 2016 (has links)
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais. / Fourth order differential equations appear naturally when modeling oscillations in elastic structures such as those observed in suspension bridges. Two models describing oscillations in the roadway of a bridge are considered. In the one-dimensional model we study finite space blow up of solutions for a class of fourth order differential equations. The results answer a conjecture presented in [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] and imply the nonexistence of beam oscillation given by traveling wave profile with low speed propagation. In the two-dimensional model we analyze a nonlocal equation for a thin narrow prestressed rectangular plate where the two short edges are hinged and the two long edges are free. We prove existence and uniqueness of weak solution and we study its asymptotic behavior under viscous damping. We also study the stability of simple modes of oscillations which are classified as longitudinal or torsional.
|
Page generated in 0.0603 seconds