Spelling suggestions: "subject:"explosives."" "subject:"xplosives.""
271 |
Differential sensing of hydrophobic analytes with serum albuminsIvy, Michelle Adams 14 November 2013 (has links)
In the last decade, there has been a growing interest in the use of differential sensing for molecular recognition. Inspired by the mammalian olfactory system, differential sensing employs an array of non-selective receptors, which through cross-reactive interactions, create a distinct pattern for each analyte tested. The unique fingerprints obtained for each analyte with differential sensing are studied with statistical analysis techniques, such as principal component analysis and linear discriminant analysis. It was postulated that serum albumin proteins would be applicable to differential sensing schemes due to significant differences in sequence identity between different serum albumin species, and due to the wide range of hydrophobic molecules which are known to bind to these proteins. Consequently, cross-reactive serum albumin arrays were developed, utilizing hydrophobic fluorescent indicators to detect hydrophobic molecules. As such, serum albumin cross-reactive arrays were employed to discriminate subtly different hydrophobic analytes, and mixtures of these analytes, in the form of terpenes and perfumes, plasticizers and plastic explosive mixtures, and glycerides and adipocyte extracts. In this doctoral work, a detailed review of the field of differential sensing, and a thorough study of principal component analysis and linear discriminant analysis in various differential sensing scenarios, are given. These introductory chapters aid in better understanding the methods and techniques applied in later experimental chapters. In chapter 3, serum albumins, a PRODAN indicator, and an additive are shown to discriminate five terpene analytes and terpene doped perfumes. Chapter 4 describes an array with serum albumins, two dansyl fluorophores, and an additive which successfully differentiate the plasticizers found within the plastic explosives C4 and Semtex and simulated C4 and Semtex mixtures. Discrimination of these simulated mixtures was also achieved with this array in the presence of soil contaminants, demonstrating the potential real-world applicability of this sensing ensemble. Finally, chapter 5 details an array consisting of serum albumins, several fluorescent indicators, and a Grubb's olefin metathesis reaction, to differentiate saturated and unsaturated triglycerides, diglycerides, and monoglycerides. Mixtures of glycerides in adipocyte extracts taken from rats with different health states were then successfully discriminated, showing promise for clinical applications in differentiating adipoctyes from pre-diabetic, type 2 diabetic, and non-diabetic individuals. / text
|
272 |
Signal Processing for Spectroscopic ApplicationsGudmundson, Erik January 2010 (has links)
Spectroscopic techniques allow for studies of materials and organisms on the atomic and molecular level. Examples of such techniques are nuclear magnetic resonance (NMR) spectroscopy—one of the principal techniques to obtain physical, chemical, electronic and structural information about molecules—and magnetic resonance imaging (MRI)—an important medical imaging technique for, e.g., visualization of the internal structure of the human body. The less well-known spectroscopic technique of nuclear quadrupole resonance (NQR) is related to NMR and MRI but with the difference that no external magnetic field is needed. NQR has found applications in, e.g., detection of explosives and narcotics. The first part of this thesis is focused on detection and identification of solid and liquid explosives using both NQR and NMR data. Methods allowing for uncertainties in the assumed signal amplitudes are proposed, as well as methods for estimation of model parameters that allow for non-uniform sampling of the data. The second part treats two medical applications. Firstly, new, fast methods for parameter estimation in MRI data are presented. MRI can be used for, e.g., the diagnosis of anomalies in the skin or in the brain. The presented methods allow for a significant decrease in computational complexity without loss in performance. Secondly, the estimation of blood flow velo-city using medical ultrasound scanners is addressed. Information about anomalies in the blood flow dynamics is an important tool for the diagnosis of, for example, stenosis and atherosclerosis. The presented methods make no assumption on the sampling schemes, allowing for duplex mode transmissions where B-mode images are interleaved with the Doppler emissions.
|
273 |
Quantification of potential elemental impact of a munitions production and testing facility on its immediate surroundings / Unique Janse van RensburgJanse van Rensburg, Unique January 2010 (has links)
The study attempted to quantify the elemental concentrations and possible accumulation levels in the antelope's organ tissue at Rheinmetal Denel Munitions (RDM), as well as to correlate the findings with the surrounding environment. To achieve this, the elemental concentrations within the kidney, liver and lung tissue of the antelope, and environmental factors such as the soil, vegetation and waterholes were quantified. STATISTICA was used to determine meaningful differences between variables and Canoco to determine the relationship between the different datasets. PCA analyses of the vegetation confirmed that the natural slope at RDM could have contributed to the distribution and variation of the elemental concentration. It became apparent that positive associations existed between the liver tissue and the K, the kidney tissue and Ni and Cd, and the lung tissue had a positive association with Mg, Mn, V, Rb and Co elemental concentrations. It became evident in this study that the elemental concentrations of Al and Ni were higher in the liver and kidney tissue of the antelope than the recommended concentration for livestock (Puls, 1994). The elemental concentration of Al, Ca, Fe and Mn also exceeded the recommended elemental concentration for livestock, in the water sampled at RDM (Puls, 1994). Four distinct areas were identified within the study area, the area above the factory, the area under the factory, the testing area and the area under the factory. Significant differences between the testing area and the area under the factory were found regarding the Tl, Ag, Hg and B elemental concentrations in the vegetation. Furthermore, it became apparent that the amount of precipitation could have contributed to the variation of the elemental concentrations and distribution in the study area as well as in the organ tissue of the antelope. / Thesis (M.Sc. (Environmental Science and Management))--North-West University, Potchefstroom Campus, 2011.
|
274 |
Quantification of potential elemental impact of a munitions production and testing facility on its immediate surroundings / Unique Janse van RensburgJanse van Rensburg, Unique January 2010 (has links)
The study attempted to quantify the elemental concentrations and possible accumulation levels in the antelope's organ tissue at Rheinmetal Denel Munitions (RDM), as well as to correlate the findings with the surrounding environment. To achieve this, the elemental concentrations within the kidney, liver and lung tissue of the antelope, and environmental factors such as the soil, vegetation and waterholes were quantified. STATISTICA was used to determine meaningful differences between variables and Canoco to determine the relationship between the different datasets. PCA analyses of the vegetation confirmed that the natural slope at RDM could have contributed to the distribution and variation of the elemental concentration. It became apparent that positive associations existed between the liver tissue and the K, the kidney tissue and Ni and Cd, and the lung tissue had a positive association with Mg, Mn, V, Rb and Co elemental concentrations. It became evident in this study that the elemental concentrations of Al and Ni were higher in the liver and kidney tissue of the antelope than the recommended concentration for livestock (Puls, 1994). The elemental concentration of Al, Ca, Fe and Mn also exceeded the recommended elemental concentration for livestock, in the water sampled at RDM (Puls, 1994). Four distinct areas were identified within the study area, the area above the factory, the area under the factory, the testing area and the area under the factory. Significant differences between the testing area and the area under the factory were found regarding the Tl, Ag, Hg and B elemental concentrations in the vegetation. Furthermore, it became apparent that the amount of precipitation could have contributed to the variation of the elemental concentrations and distribution in the study area as well as in the organ tissue of the antelope. / Thesis (M.Sc. (Environmental Science and Management))--North-West University, Potchefstroom Campus, 2011.
|
275 |
Minhund och en elektronisk nos för detektion av minor : utifrån den militära nyttan vid en undsättningsinsats / Mine detection dog and an electronic nose for landmine detection : on the basis of the military utility in a mine rescue team operationLinfeldt, Anna January 2013 (has links)
Minor utgör ett hot mot civilbefolkningen men även personal i fredsfrämjande insatser riskerar att skadas av minorna under patruller i insatsområdet. Idag används minhunden i Försvarsmakten för att lokaliera minor i kombination med minpik och metalldetektor. Hunden har sina begränsningar och har under flera perioder varit på väg att fasas ut till förmån för tekniken. Minans doftbild, minhunden och den elektroniska nosen beskrivs och mynnar ut i en analys där för-/nackdelar presenteras och därefter diskuteras. Den militära nyttan i den militära kontexten, insats med undsättningsstyrka (MRT) utgör ramverk i uppsatsen. Vid en undsättningsinsats med MRT är det av största vikt att minorna kan lokaliseras, märkas ut och undvikas. Hunden har förmåga till lokalisering av minor vilket den elektroniska nosen Fido saknar. Minornas doftbild överlappar varandra. Fido kan inte särskilja minorna från varandra utan endast bekräfta förekomst i ett område vilket inte bidrar till den militära nyttan när en fri väg ska sökas fram till en skadeplats. / Landmines pose a threat to the civilian population but personnel in peacekeeping operations could also be harmed by landmines during patrols in the area. Today the Swedish Armed Forces use mine detection dogs to locate landmines. The mine detection dogs are used in combination with prodders and metal detectors. The dogs have their limitations and there have been several attempts to phase them out and replace them with technology. Substances detected by dogs and electronic noses, the mine detection dog and the electronic dog nose Fido are described and incorporated in an analysis where advantages/disadvantages are presented and then discussed. Military utility in a military context constitute the frame of the essay. The military context is an operation with a mine rescue team to rescue an injured person in a mine field. In a rescue operation with a mine rescue team the most important thing is to locate, mark and avoid the landmines. The dog can locate landmines but the electronic nose Fido cannot. The chemical signatures from the landmines overlap each other making it difficult for Fido to pinpoint the exact location. Fido can confirm the presence of landmines in an area which does not have military utility during mine rescue team operations to find a free path and rescue an injured person out from a minefield.
|
276 |
Raman Spectroscopy Applications to High Energy MaterialsSil, Sanchita January 2014 (has links) (PDF)
Detection of explosives has always been a challenging issue all over the world. Different analytical techniques and instrumentation methods have been explored to obtain a 100% fail proof detector. Some technologies have matured and have been deployed in the field already. However, active research is still being pursued to make the ultimate explosive detection device. The present thesis broadly addresses the development of Raman spectroscopy based techniques for the detection of explosives. Although Raman spectroscopy has technologically developed and has become a regular tool for chemical identification, its use in the field of detection of explosives has been limited. Two aspects of detection were addressed in this thesis.
The first part consists of the detection of minute quantities or traces of explosives using a Raman based method. In order to approach this problem, surface enhanced Raman spectroscopy (SERS), an offshoot of Raman spectroscopy was explored. Chapters 2-4 deal with developing efficient SERS substrates. In this endeavour, the first and the most obvious choice as SERS substrates were silver (Ag) nanoparticles (NPs). However, we were exploring methods that could be simple one-pot synthesis methods, cost-effective and without employing strong reducing agents (green). Therefore, Ag NPs were synthesized using biosynthetic route. These nanoparticles were used to study their SERS efficiency. Sub-nano molar concentration of dye as well explosive like trinitrotoluene (TNT) and hexanitrohexaazaisowurtzitane (CL-20) could be obtained for both the clove reduced as well as pepper Ag nanoparticles. Hence Ag NPs are very efficient SERS substrates. In the second part of the work on SERS, bimetallic nanoparticles with core-shell (Agcore-Aushell) architecture were synthesized, characterized and tested for SERS activity. After successful synthesis and characterization of the bimetallic nanoparticles, these were tested for their SERS activities using a dye molecule and an explosive molecule. SERS spectra could be obtained for the bimetallic nanoparticles. It was observed that the sensitivity of these NPs were almost at par with the mono-metallic Ag NPs. In order to bring SERS from laboratory to field, a more practical approach was to prepare solid SERS substrates or SERS substrates on solid platform. In the next chapter, we ventured into the most abundant material which forms the backbone of the organic world, carbon. Various carbonaceous materials ranging from chemically synthesized graphene, graphene oxide, multi-walled carbon nanotube (MWCNT), graphite and activated charcoal were explored as potential substrates for surface enhanced Raman spectroscopic applications. The analytes chosen for this particular study were some fluorescent molecules such as rhodamine B (RB), rhodamine 6G (R6G), crystal violet (CV), Nile blue A (NBA) and a non-fluorescent molecule acetaminophen, commonly known as paracetamol. Enhanced Raman signals were observed for the fluorescent molecules, especially for the molecules whose absorbance maxima are near the excitation wavelength of the laser (514.5 nm). The most interesting outcome of this work was obtaining enhanced Raman signals of nanomolar concentration of R6G on activated charcoal. However, for the non-fluorescent molecule, paracetamol, Raman spectra could not be observed beyond
-5 10M concentration for all the carbon substrates including chemically synthesized graphene and MWCNT. This study was crucial in our quest for an ideal SERS substrate. Our observations let us to conclude that chemically synthesized graphene was not the only candidate for the preparation of SERS substrates. Since carbon materials efficiently adsorb and also provide a separate channel for energy decay (fluorescence quenching), even activated charcoal could be employed as a SERS platform. However, carbon alone could not provide an effective solution for the preparation of SERS substrates. Therefore, combining the plasmonic effect of the metal nanoparticles with the efficient adsorption and fluorescence quenching of carbon materials would be ideal. In the next part of the carbon studies, graphene-Ag composites which were either prepared by in situ reduction process or physically mixed were studied for SERS activity. An ideal SERS substrate should possess the following properties:
(i) Support plasmon, thereby provide SERS enhancement
(ii) Easy to fabricate or synthesize (large scale/bulk)
(iii) Ensure high reproducibility and sensitivity
(iv) Low false alarm from matrix chemicals
(v) Cost effective
(vi) Solid substrate (in the form of chip, pellet, slide etc.)
Hence, as a final study, carbon silver based composites were explored. R6G was chosen as an analyte again and SERS experiments were conducted. Raman signals at low concentration could be obtained for the carbon-Ag composites as well. In addition, feasibility experiments were also conducted for an explosive molecule, FOX-7. From these preliminary experiments we observed that carbon-metal NP composites can be efficient, cost-effective SERS substrates that will overcome the current issue.
The previous chapters dealt with the trace detection of explosives. The next part of the thesis deals with the development of the Raman spectroscopic methods for non-invasive detection of concealed objects. Chapters 4 and 5 primarily focus on explosives detection. Spatially offset Raman spectroscopy (SORS) instrumentation was developed in the laboratory for non-invasive detection solid and liquid explosives. Several experiments were carried out to detect concealed materials inside high density polyethylene (HDPE) containers, coloured glass bottles, envelopes etc. with this technique, Raman signals of materials could be retrieved even within 4 mm thick outer-layer. SORS imaging experiments were also performed on bilayered compounds, tablets etc. However, while performing the SORS experiments, it was observed that due to the restriction in geometry imposed by the method, the signals from the inner-layers could be obtained only up to a certain depth. This posed a serious limitation of SORS for practical scenarios, where the thickness of the outer layer may be tens of mm. In such situation, SORS may not be an effective method. We then performed Raman experiments using a transmission geometry using a series of samples. The transmission Raman (TR) experiments yielded better SNR for the inner (concealed) material as compared to the outer material. Although transmission Raman experiments yielded better signal but these experiments were again geometry dependent, hence, less flexible and TR experiments did not provide information about the position of the underlying materials.
In order to obtain complete information, it was necessary to understand photon migration in a multiple scattering medium. It is known that a photon in a multiple scattering medium may be approximated to undergo a random-walk. Statistically, the photon that undergoes multiple scattering in a medium loses its sense of origin (direction), hence, there is a finite probability to observe the exiting photon in any direction. Rayleigh and NIR based imaging modalities have been conducted using this model. Diffuse optical tomographic (DOT) measurements also deal with measuring the photons that have exited the sample after undergoing multiple scattering in a turbid medium. If it was possible to collect the Rayleigh photons or the diffuse photons in DOT experiments, in principle, Raman photons could also be collected from several directions. It was then proposed that if Rayleigh scattered photons can exit at 4π solid angle from a sample, then it can be assumed that some Rayleigh photons may convert to Raman photons, which in turn, shall have a finite probability to exit the sample from all the sides (4π solid angles). This idea of collecting Raman photons has never been discussed before! Thus, as expected based on the above principles, we were able to record Raman scattered photons at all angles and on all sides. This new technique has been
termed as ‘Universal Multiple Angle Raman Spectroscopy (UMARS)’. Monte Carlo
simulation studies were also performed to understand the distribution of photons in a multiple scattering medium. Simulation studies also revealed that Raman photons exited from all sides of the medium at varying percentages. Hence, several fiber optic probes were designed for illumination and collection to perform the UMARS experiments for samples concealed at depths beyond 20 mm. UMARS was not only applied successfully for the detection of concealed explosives, but also for biologically relevant samples as well. In fact a pharmaceutical tablet as thick as 7 mm was also tested with UMARS and signals could be successfully obtained. Since the UMARS signals were obtained from all possible angles, imaging experiments were also conducted to obtain sample specific information. Frequency-specific images of bilayer materials could be obtained. In the case where one material was concealed within another, the reconstruction of the frequency-specific intensities in a contour plot revealed the position of the concealed layer. One of the most challenging and exciting studies that was conducted was to use UMARS to obtain shapes of hidden materials. Several shapes such as dumbbell, ellipsoid etc were fabricated (made of glass) and were filled with a test chemical, trans-stilbene (TS). This shape was placed inside an outer material like ammonium nitrate (AN) that was taken in a glass beaker. The diameter of the beaker was varied from 25 mm to 60 mm. A series of UMARS measurement was carried out with 10
collection fiber optic probes. The spatial resolution (vertical) was varied from 200 μm to 1 mm. Series of UMARS images were obtained which were then processed and the intensity of the individual fibers were averaged (CCD row pixels) based on the image of the individual fiber on the CCD. The frequency specific intensity of the materials was utilized to reconstruct 2D or a 3D shape. The shapes of the objects could be clearly discerned using UMARS imaging. This marks a major step for the development of UMARS as a 3D imaging modality. UMARS experiments conducted so far have affirmed our belief that this technology can be used as an effective technique for screening solid and liquid samples at airports, railway stations and other entry points. 3D imaging for biomedical diagnostics will provide molecular information in addition to the location and shape of an object inside a tissue such as calcified masses and bones.
In the final part of the thesis, 2D Raman correlation spectroscopic method was applied to understand the dynamics of a system that was subjected to external perturbation. In the field of explosive processing and formulations, large batches are generally prepared. However, it is very difficult to ascertain the molecular or structural changes that occur during the processing of these formulations in situ. Analytical methods to monitor the changes online are limited. Raman spectroscopy can be an effective technique for such measurements. This process however, generates a large number of spectra. In such cases, it becomes cumbersome to handle such large number of data and obtain meaningful information. 2D correlation spectroscopy can be applied under such situations. 2D correlation analysis generates essentially two maps, synchronous and asynchronous. In this study, 2D Raman correlation spectroscopy was applied to ammonium nitrate that was subjected to temperature variations. 2D maps were constructed to obtain information about the structural changes associated with temperature. The synchronous map reveals the overall similarity of the intensity changes. Whereas, the 2D asynchronous maps provide the sequence of changes that occur. Based on the set of well defined rules proposed by Isao Noda, the synchronous and the asynchronous correlation maps were analysed. Hence, generalized 2D correlation spectroscopy can be extended to any kind of perturbation and will prove useful in understanding the structural dynamics.
The objective of the thesis was to explore various facets of Raman spectroscopy that would be useful in the field of high energy materials specifically in the detection of explosives. Attempts were made for the development of trace detection of explosives using Raman based technique, SERS. In addition, bulk detection of concealed explosives was performed non-invasively using SORS and UMARS. In the field of high energy materials, these techniques will find immense applications. Raman spectroscopy, as we saw is a very important technique that can be used as a stand-alone method and can also be interfaced with other analytical or imaging modalities. This treatise is an example where the strength of this powerful spectroscopic method has been explored to some extent.
|
277 |
Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS)Weligamage De Silva, Imesha 12 1900 (has links)
This study addressed five key applications of paper spray mass spectrometry (PS-MS): (i) comparative analysis of the microporous substrate with the cellulose-based substrate in drug detection; (ii) detection of more than 190 fentanyl analogs with their fragmentation pattern can be implemented in the future reference for quicker, accurate and sensitive determination; (iii) exploring sweat in a fingerprint to be considered an alternate method to recognize non-invasive markers of metabolites, lipids, narcotics, and explosive residues that can be used in forensic testing applications; (iv) extending and improving better, cost-effective and quick real-time monitoring of the diseased stage using biofluid samples to obtain vastly different lipid information in viral infection such as COVID-19; and (v) mass spectral detection in chemical warfare agent (CWA) stimulant gas exposure with microporous structure absorbency capabilities in air quality monitoring. This novel synthetic material is known as Teslin® (PPG Industries), consisting of a microporous polyolefin single-layered silica matrix, can be used for precise, sensitive, selective, and rapid sample analysis with PS-MS. The Teslin® substrate provided longer activation time for samples and an active signal with a higher concentration of ion formation and mobility compared to cellulose-based papers. Direct analysis of multiple samples showed that, besides being more sensitive to the study and highly efficient with less sample size and spray solvent needed, Teslin® had less interaction with paper source molecules. For less than 60 seconds of processing time, PS-MS can be used as a rapid detection tool, with limited sample preparation requiring less than one microgram of the sample. Overall, the data in this analysis indicate the capacity of the PS-MS as an alternative approach for direct chemical analysis in many applications. Specifically, the waterproof and microporosity characteristics of Teslin® have proven its usefulness in detecting a variety of chemical components in liquid, solid, and gaseous phases without requiring any chemical treatment or substrate alteration.
|
278 |
Radiofrekvenční metoda detekce výbušnin a drog - NQR / RF detection method of explosives and drugs - NQRMotyčka, Lukáš January 2013 (has links)
The thesis deals with RF spectroscopic methods, which are applicable for the detection of hazardous substances such as explosives or drugs. Particular attention is focused on promising method of nuclear quadrupole resonance. Abroad this method has recently been applied in the detection of energetic materials in hazardous locations. The cornerstone of the nuclear quadrupole resonance is to evaluate the interaction between electromagnetic radiation, in the range of medium to very short waves, and the researched substance. Observed parameter are the resonant frequencies of the substance. Spectral analysis of signal is used for their evaluation. Resonant frequencies are always typical for the crystalline structure, therefore every explosive or drug is clearly identifiable by this method.
|
279 |
Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactionsSalinas Soler, Yolanda 02 September 2013 (has links)
La presente tesis doctoral titulada ¿Materiales funcionales híbridos para el reconocimiento
óptico de explosivos nitroaromáticos mediante interacciones supramoleculares¿ se basa en la
combinación de principios de Química Supramolecular y de Ciencia de los Materiales para el
diseño y desarrollo de nuevos materiales híbridos orgánico-inorgánicos funcionales capaces de
detectar explosivos nitroaromáticos en disolución.
En primer lugar se realizó una búsqueda bibliográfica exhaustiva de todos los sensores
ópticos (cromogénicos y fluorogénicos) descritos en la bibliografía y que abarca el periodo
desde 1947 hasta 2011. Los resultados de la búsqueda están reflejados en el capítulo 2 de esta
tesis.
El primer material híbrido preparado está basado en la aplicación de la aproximación de los
canales iónicos y, para ello, emplea nanopartículas de sílice funcionalizadas con unidades
reactivas y unidades coordinantes (ver capítulo 3). Este soporte inorgánico se funcionaliza con
tioles (unidad reactiva) y una poliamina lineal (unidad coordinante) y se estudia el transporte
de una escuaridina (colorante) a la superficie de la nanopartícula en presencia de diferentes
explosivos. En ausencia de explosivos, la escuaridina (color azul y fluorescencia intensa) es
capaz de reaccionar con los tioles anclados en la superficie decolorando la disolución. En
presencia de explosivos nitroaromáticos se produce una inhibición de la reacción escuaridinatiol y la suspensión permanece azul. Esta inhibición es debida a la formación de complejos de
transferencia de carga entre las poliaminas y los explosivos nitroaromáticos.
En la segunda parte de esta tesis doctoral se han preparado materiales híbridos con
cavidades biomiméticas basados en el empleo de MCM-41 como soporte inorgánico
mesoporoso (ver capítulo 4). Para ello se ha procedido al anclaje de tres fluoróforos (pireno,
dansilo y fluoresceína) en el interior de los poros del soporte inorgánico y, posteriormente, se
ha hidrofobado el interior de material mediante la reacción de los silanoles superficiales con
1,1,1,3,3,3-hexametildisilazano. Mediante este procedimiento se consiguen cavidades
hidrófobas que tienen en su interior los fluoróforos. Estos materiales son fluorescentes cuando
se suspenden en acetonitrilo mientras que cuando se añaden explosivos nitroaromáticos a
estas suspensiones se observa una desactivación de la emisión muy marcada. Esta
desactivación de la emisión es debida a la inclusión de los explosivos nitroaromáticos en la
cavidad biomimética y a la interacción de estas moléculas (mediante interacciones de ¿-
stacking) con el fluoróforo. Una característica importante de estos materiales híbridos
sensores es que pueden ser reutilizados después de la extracción del explosivo de las
cavidades hidrofóbicas. En la última parte de esta tesis doctoral se han desarrollado materiales híbridos orgánicoinorgánicos funcionalizados con ¿puertas moleculares¿ que han sido empleados también para
detectar explosivos nitroaromáticos (ver capítulo 5). Para la preparación de estos materiales
también se ha empleado MCM-41 como soporte inorgánico. En primer lugar, los poros del
soporte inorgánico se cargan con un colorante/fluoróforo seleccionado. En una segunda etapa,
la superficie externa del material cargado se ha funcionalizado con ciertas moléculas con
carácter electrón dador (pireno y ciertos derivados del tetratiafulvaleno). Estas moléculas ricas
en electrones forman una monocapa muy densa (debida a las interacciones dipolo-dipolo
entre estas especies) alrededor de los poros que inhibe la liberación del colorante. En
presencia de explosivos nitroaromáticos se produce la ruptura de la monocapa, debido a
interacciones de ¿-stacking con las moléculas ricas en electrones, con la consecuencia de una
liberación del colorante atrapado en el interior de los poros observándose una respuesta
cromo-fluorogénica / Salinas Soler, Y. (2013). Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31663 / Premios Extraordinarios de tesis doctorales
|
280 |
Entwicklung immunchemischer Methoden zur Spurenanalytik der Sprengstoffe Nitropenta und TrinitrotoluolHesse, Almut 04 May 2017 (has links)
Der Sprengstoff PETN ist äußerst schwer zu detektieren. Ein verbesserter anti-PETN-Antikörper wurde durch Anwendung des Bioisosterie-Konzepts entwickelt. Diese polyklonalen IgGs sind sehr selektiv und sensitiv. Die Nachweisgrenze des ELISAs beträgt 0,15 µg/L. Der Messbereich des Immunoassays liegt zwischen 1 und 1000 µg/L. Die Antikörper sind recht pH-stabil als auch robust gegen Lösungsmittelzusätze. Für die Umweltanalytik von TNT wurde eine HPLC-kompatible Affinitätssäule mit porösem Glas als Trägermaterial hergestellt. Um die anti-TNT-Antikörper selektiv aus den TNT-Seren zu isolieren, wurde eine Trennung an einer Dinitrophenyl-Affinitätssäule durchgeführt. Zur Optimierung der Kopplungsmethode wurden orangefarbene Dabsyl-Proteine synthetisiert und auf der Oberfläche gebunden. Die Färbung wurde als Indikator für die Ligandendichte verwendet. Wegen der hohen Affinitätskonstanten der anti-TNT-IgGs lässt sich TNT nicht reversibel von der TNT-Affinitätssäule eluieren. Daher wurde eine neuartige Elutionsmethode entwickelt, die thermische Online-Elution. Die maximale Kapazität einer TNT- Affinitätssäule betrug 650 ng TNT bzw. 10 µg/mL Säulenvolumen. Um die Ligandendichte der TNT-Affinitätssäulen zu bestimmen, wurde ein neues Verfahren entwickelt, da die spektroskopischen Proteinbestimmungsmethoden nicht geeignet waren. Zur Proteinbestimmung wurde eine HPLC-Trennung der Aminosäuren Tyr und Phe ohne vorherige Derivatisierung entwickelt. Die Proteinhydrolysezeit wurde durch Einsatz einer Mikrowelle von 22 h auf 30 min verkürzt. Zur internen Kalibrierung wurden HTyr und FPhe verwendet. Die Nachweisgrenze bei 215 nm ist sowohl für Tyr als auch für Phe 0,05 µM (~ 10 µg/L). Dieses neue Verfahren, das als Aromatische Aminosäureanalyse (AAAA) bezeichnet werden kann, wurde zur Proteinbestimmung von homogenen Proben mit NIST-BSA validiert, wobei die Nachweisgrenze für Proteine 16 mg/L (~ 300 ng BSA) ist. Die relative Standardabweichung incl. der Hydrolysestufe beträgt 5%. / The explosive Pentaerythritol tetranitrate (PETN) is extremely difficult to detect. An improved antibody against PETN was developed by using the bioisosteric concept. These polyclonal antibodies are highly selective and sensitive. The limit of detection (LOD) of the ELISA was determined to be 0.15 µg/L. The dynamic range of the assay was found to be between 1 and 1000 µg/L. The antibodies are sufficiently pH-stable and resistant to solvent additives. An HPLC-compatible TNT-affinity column with porous glass as support material was prepared for the environmental analysis. In order to isolate the anti-TNT antibodies of the TNT sera a separation was carried out on a dinitrophenyl-affinity column. To optimize the immobilization method, orange-coloured dabsyl proteins were synthesized and bound to the surface. The colour intensity was found to be an indicator for the immobilization rate. In consequence of the high affinity constants of the anti-TNT antibodies, TNT can''t elute by a typical acidic elution step. Therefore, a novel separation approach, the thermal online-elution was developed. The maximum capacity of an affinity column was 650 ng TNT or 10 µg/mL of column volume. To quantify the immobilization rate of proteins, a new method has been developed, because the usual protein determination methods were unsuitable. Therefore an HPLC separation method of Tyr and Phe was developed without prior derivatization. Two internal standard compounds, HTyr and FPhe, were used for calibration. The LOD was estimated to be 0.05 µM (~ 10 µg/L) for Tyr and Phe at 215 nm. The protein hydrolysis time was reduced from 22 h to 30 min using microwave technique. This procedure, that was termed aromatic amino acid analysis (AAAA), has been validated for protein determination of homogeneous samples with NIST-BSA. The LOD for proteins was calculated to be below 16 mg/L (~ 300 ng BSA absolute). The relative standard deviation, including the hydrolysis step, is 5%.
|
Page generated in 0.0624 seconds