271 |
Study of 14O as a test of the unitarity of the CKM matrix and the CVC hypothesisBurke, Jason Timothy January 2004 (has links)
Thesis (Ph.D.); Submitted to the University of California Berkeley, Berkeley, CA (US); 1 Jun 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "LBNL--56278" Burke, Jason Timothy. USDOE Director. Office of Science. Office of High Energy and Nuclear Physics. Division of Nuclear Physics (US) 06/01/2004. Report is also available in paper and microfiche from NTIS.
|
272 |
Studies of "clean" and "disordered" Bilayer Optical Lattice Systems Circumventing the 'fermionic Cooling-problem'Prasad, Yogeshwar January 2018 (has links) (PDF)
The advancement in the eld of cold-atoms has generated a lot of interest in the condensed matter community. Cold-atom experiments can simulate clean, disor-der/impurity free systems very easily. In these systems, we have a control over various parameters like tuning the interaction between particles by the Feshbach resonance, tuning the hopping between lattice sites by laser intensity and so on. As a result, these systems can be used to mimic various theoretical models, which was hindered because of various experimental limitations. Thus, we have an ex-perimental tool in which we can start with a simple theoretical model and later tune the model experimentally and theoretically to simulate the real materials. This will be helpful in studying the physics of the real materials as we can control interactions as well as the impurities can also be taken care of. But the advance-ment in the eld of cold atoms has seen a roadblock for the fermions in optical lattices. The super uid and anti-ferromagnetic phases has not been achieved for fermions in optical lattices due to the \cooling problem" (entropy issues).
In this thesis, we have addressed the issue of the \cooling problem" for fermions in optical lattice systems and studied the system with determinant quantum Monte Carlo technique. We start by giving a general idea of cold-atoms and optical lat-tice potentials, and a brief review of the experimental work going on in the cold-atomic systems. Experimental limitations like \fermionic cooling problem" have been discussed in some detail. Then we proposed a bilayer band-insulator model to circumvent the \entropy problem" and simultaneously increasing the transi-tion temperature for fermions in optical lattices. We have studied the attractive Hubbard model, which is the minimal model for fermions in optical lattices. The techniques that we have used to study the model are mean- eld theory, Gaussian uctuation theory and determinant quantum Monte Carlo numerical technique. . Chapter-1 : provides a general introduction to the ultra-cold atoms, optical lattice and Feshbach resonance. In this chapter we have discussed about cold-atom experiments in optical lattice systems. Here, we have brie y discussed the control over various parameters in the experiments. The goal of these experiments is to realize or mimic many many-body Hamiltonians in experiments, which until now was just a theoretical tool to describe various many-body physics. In the end we give a brief idea for introducing disorder in the cold-atom experiments discuss the limitations of these experiments in realizing the \interesting" super uid and anti-ferromagnetic phases of fermionic Hubbard model in optical lattices.
Chapter-2 : gives a brief idea of \Determinant Quantum Monte-Carlo" (DQM C) technique that has been used to study these systems. In this chapter we will discuss the DQM C algorithm and the observables that can be calculated. We will discuss certain limitation of the DQM C algorithm like numerical instability and sign problem. We will brie y discuss how sign problem doesn't occur in the model we studied.
Chapter-3 : discusses the way by which we can bypass the \cooling problem" (high entropy state) to get a fermionic super uid state in the cold atom experi-ments. In this chapter we propose a model whose idea hinges on a low-entropy band-insulator state, which can be tuned to super uid state by tuning the on-site attractive interaction by Feshbach resonance. We show through Gaussian uctua-tion theory that the critical temperature achieved is much higher in our model as compared to the single-band Hubbard model. Through detailed variational Monte Carlo calculations, we have shown that the super uid state is indeed the most stable ground state and there is no other competing order. In the end we give a proposal for its realization in the ultra-cold atom optical lattice systems.
Chapter-4 : discusses the DQM C study of the model proposed in chapter-
3. Here we have studied the various single-particle properties like momentum distribution, double occupancies which can be easily measured in cold-atom ex-periments. We also studied the pair-pair and the density-density correlations in detail through DQM C algorithm and mapped out the full T U phase diagram. We show that the proposed model doesn't favor the charge density wave for the interaction strengths we are interested in.
Chapter-5 : gives a brief idea of the e ect of adding an on-site random disorder in our proposed bilayer-Hubbard model. We study the e ect of random disorder on various single-particle properties which can be easily veri ed in cold-atom ex-periments. We studied the suppression of the pair-pair correlations as we increase the disorder strength in our proposed model. We nd that the critical value of the interaction doesn't change in the weak-disorder limit. We estimated the critical disorder strength needed to destroy the super uid state and argued that the tran-sition from the super uid to Bose-glass phase in presence of disorder lies in the universality class of (d + 1) XY model. In the end, we give a schematic U V phase diagram for our system.
Chapter-6 : We studied the bilayer attractive Hubbard model in different lattice geometry, the bilayer honeycomb lattice, both in presence and in absence of the on-site random disorder. We discussed how the pair-pair and density-density cor-relations behave in the presence and absence of disorder. Through the finite-size scaling analysis we see the co-existence of the super fluid and the charge density wave order at half- lling. An in nitesimal disorder destroys the CDW order com-pletely while the super uid phase found to be robust against weak-disorder. We estimated the critical interaction strength, the critical temperature and the critical disorder strength through nite-size scaling, and provide a putative phase diagram for the system considered.
|
273 |
Experiments with Ultracold Fermi Gases : quantum Degeneracy of Potassium-40 and All-solid-state Laser Sources for Lithium / Expériences avec des Gaz de Fermi Ultrafroids : dégénérescence quantique de potassium-40 et sources lasers à l’état solide pour lithiumKretzschmar, Norman 26 June 2015 (has links)
Cette thèse présente de nouvelles techniques pour l'étude expérimentale des gaz quantique ultrafroids d'atomes fermioniques de lithium et de potassium. Dans la première partie de cette thèse, nous décrivons la conception et la caractérisation des nouveaux composants de notre dispositif expérimental capable de piéger et refroidir simultanément des atomes de $^6$Li et de $^{40}$K à des températures ultrabasses. Nous rendons compte d'une nouvelle technique de refroidissement sub-Doppler, reposant sur la transition de la raie D$_1$ des atomes alcalins, pour refroidir des atomes de lithium et de potassium par laser. Après cette étape de mélasse, nous avons mesuré une densité dans l'espace des phases de l'ordre de $10^{-4}$ à la fois pour le $^6$Li et le $^{40}$K. Nous présentons le refroidissement par évaporation forcée d'atomes de $^{40}$K qui commence dans un piège magnétique quadripolaire pluggé et continue dans un piège optique dipolaire. Dans ce contexte, nous rendons compte de la production d'un gaz quantique de Fermi dégénéré de $1.5\times10^5$ atomes de $^{40}$K dans un piège dipolaire croisé avec $T/T_{_F} = 0.17$, ce qui ouvre la voie à l'étude des superfluides de $^{40}$K en interaction forte. Dans la deuxième partie de cette thèse, nous présentons une source laser à état solide, de faible largeur spectrale et capable d'émettre 5.2 W de puissance autour de 671 nm, dans la gamme des longueurs d'onde des transitions de la raie D du lithium. La source repose sur un laser en anneau pompé par diode, émettant sur la transition à 1342 nm de Nd:YVO$_4$, capable de produire 6.5 W de lumière dans un faisceau monomode limité par la diffraction. Nous rendons compte de trois différentes approches pour la génération de seconde harmonique du faisceau de sortie, à savoir en utilisant une cavité amplificatrice comprenant un cristal ppKTP, par doublage de fréquence intracavité et par un structure de guide d'onde de ppZnO:LN. / This thesis presents novel techniques for the experimental study of ultracold quantum gases of fermionic lithium and potassium atoms. In the first part of this thesis, we describe the design and characterization of the new components of our experimental apparatus capable of trapping and cooling simultaneously $^6$Li and $^{40}$K atoms to ultracold temperatures. We report on a novel sub-Doppler cooling mechanism, operating on the D$_1$ line transition of alkali atoms, for laser cooling of lithium and potassium. The measured phase space densities after this molasses phase are on the order of $10^{-4}$ for both $^6$Li and $^{40}$K. We present the forced evaporative cooling of $^{40}$K atoms, starting in an optically plugged magnetic quadrupole trap and continuing in an optical dipole trap. In this context, we report on the production of a quantum degenerate Fermi gas of $1.5\times10^5$ atoms $^{40}$K in a crossed dipole trap with $T/T_{_F} = 0.17$, paving the way for the study of strongly interacting superfluids of $^{40}$K. In the second part of this thesis, we present a narrow-linewidth, all-solid-state laser source, emitting 5.2 W in the vicinity of the lithium D-line transitions at 671 nm. The source is based on a diode-end-pumped unidirectional ring laser operating on the 1342 nm transition of Nd:YVO$_4$, capable of producing 6.5 W of single-mode light delivered in a diffraction-limited beam. We report on three different approaches for second-haromonic generation of its output beam, namely by employing an enhancement cavity containing a ppKTP crystal, intracavity frequency doubling and a ppZnO:LN waveguide structure.
|
274 |
Exploration of 6-dimensional models with non trivial topology and their predictions for fermions masses and mixings, neutrino physics, flavour changing interactions and CP violationMollet, Simon 08 June 2016 (has links)
In this thesis, we study several scenarios which go beyond the Standard Model of particle physics with the aim of gaining a better understanding for the multiplication of fermion families, their masses and mixings pattern and its relation to CP violation. The common feature of the models we envisaged (and the guiding principle of the thesis) is the introduction of extra space dimensions. In a first attempt to explain the fermion mass structure, we elaborate on a model with two extra-dimensions and a Nielsen- Olesen vortex background established on it. In this framework, three families in 4D can be seen as different modes of a single generation in 6D, while their extra-dimensional wavefunctions turn out highly constrained by the dynamics, which allows to determined the mass matrices with few parameters. Moreover, with a few additional hypotheses only, it is possible to simultaneously account for the striking differences between neutrinos and charged fermions. After a summary of the model, we illustrate this with the explicit formulation of a benchmark model which reproduces convincingly all the mass and mixing parameters of the Standard Model, taking advantage of new, more precise numerical solutions of the field equations, and including the recent measurements of the Standard Model scalar boson mass and of the neutrino heta_13 mixing angle (the latter has however been correctly predicted by the model before its first measurement). We then turn to the predictions which mainly concern the neutrino and gauge sectors. In the former, we remind the Majorana nature, and the natural tendency for inverted hierarchy pattern with an almost maximally suppressed neutrinoless double beta decay. On the other hand, we predict new (neutral) gauge bosons whose couplings to fermions are not flavour-diagonal but are however constrained (in their strength and their flavour structure) by the 6D anatomy of the theory. We compare their detectability in precision low energy processes and at colliders (especially at the LHC), and show that in the simplest geometries at least, the bounds from the former exclude interesting phenomenology for the latter. Nevertheless, we turn to more phenomenological effective Lagrangians with the same overall structure and in which we are able to lower the mass scale of the new bosons to a reachable energy, and thus analyse the possible signatures for LHC.In the last part of this work, we turn to the issue of CP violation and show how in certain 6D models with non simply connected topologies, it is possible to generate a non negligible CP violation at the 4D level in a pure gauge approach. We carefully study how the 4D CP symmetry is related to particular transformations of the original 6D theory and subsequently show how an incompatibility of such transformations with the compactification scheme can lead to an effective CP breaking. As a proof of concept, we build a toy model with two extra-dimensions compactified on a flat torus and end in 4D with a light neutral fermion with a non zero electric dipole moment.Dans cette thèse, nous étudions plusieurs scénarios au-delà du Modèle Standard de la physique des particules à la recherche d'une meilleure compréhension de la multiplication des familles de fermions, de leurs masses et de leurs mélanges, ainsi que la relation à laviolation de CP.La caractéristique commune à tous les modèles envisagés (et le concept sous-jacent à toute la thèse) est l'introduction de nouvelles dimensions spatiales. Dans une première tentative pour expliquer le spectre des fermions, nous développons un modèle où une structure de vortex à la Nielsen-Olesen est établie sur deux dimensions supplémentaires. Dans ce cadre, les trois familles à 4D peuvent être vues comme différents modes d'une unique génération à 6D, tandis que leur fonctions d'onde extra-dimensionnelles s'avèrent fortement contraintes par la dynamique ;ceci permet d'établir les matrices de masses en terme d'un petit nombre de paramètres. De plus, grâce à quelques hypothèses additionnelles seulement, il est possible de justifier simultanément les différences marquées entre neutrinos et fermions chargés. Nous synthétisons le modèle et l'illustrons en en formulant une réalisation particulière qui parvient à reproduire de manière convaincante tous les paramètres de masse et de mélange du Modèle Standard. Pour l'occasion, nous exploitons de nouvelles solutions aux équations des champs, numériquement plus précises, et prenons en compte les mesures récentes de la masse du boson scalaire et de l'angle de mélange heta_13 pour les neutrinos (le modèle avait cependant prédit ce dernier avant qu'il ne soit mesuré pour la première fois). Nous nous tournons ensuite vers les prédictions du modèle et qui concernent principalement le secteur des neutrinos et celui des bosons de jauge. Pour le premier, nous rappelons la nature "Majorana" des neutrinos, ainsi que la tendance naturelle à une hiérarchie inverse avec une suppression quasi maximale de la double désintégration bêta sans neutrino. D'autre part, nous prédisons de nouveaux bosons de jauge (neutres) dont les couplages aux fermions ne sont pas diagonaux dans l'espace des saveurs mais sont contraints (autant en terme de valeurs qu'en termes de structure) par l'anatomie de la théorie à 6D. Nous comparons leurs détections potentielles dans les processus de précision à basse énergie et auprès des collisionneurs (en particulier au LHC). Nous montrons que, dans les géométries les plus simples du moins, les limites imposées par les premiers excluent toute phénoménologie intéressante du côté des seconds. Toutefois, en nous tournantvers des Lagrangiens effectifs qui conservent la même structure d'ensemble mais ouvrent à une étude plus phénoménologique, nous sommes capables de réduire l'échelle de masse de ces nouveaux bosons jusqu'à une énergie accessible, et donc d'en analyser de potentielles signatures au LHC.Dans la dernière partie de ce travail, nous nous intéressons à la question de la violation de CP et montrons comment dans certains modèles à 6D avec une topologie non-simplement connexe, il est possible de générer une violation de CP non négligeable à 4D dans une approche de "pure jauge". Nous étudions attentivement comment la symétrie CP à 4D est reliée à des transformations particulières de la théorie originale à 6D, suite à quoi nous montrons comment l'incompatibilité de ces transformations avec la façon dont sont "compactifiées" les dimensions supplémentaires peut conduire à une brisure effective de CP. Pour illustrer la faisabilité de notre approche, nous élaborons un "modèle jouet" où deux dimensions supplémentaires sont compactifiées sur un tore plat, et obtenons à 4D un fermion neutre léger et qui possède un moment électrique dipolaire non nul. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
275 |
Mixtures of Bose and Fermi Superfluids / Mélanges de superfluides de Bose et de FermiFerrier-Barbut, Igor 31 October 2014 (has links)
On trouve des manifestations de la physique quantique au niveau thermodynamique dansde nombreux systèmes. Un exemple marquant est la superfluidité, découverte au début du20ème siècle, que l’on retrouve de l’hélium aux étoiles à neutrons. Les gaz dilués ultrafroidsoffrent une polyvalence unique pour étudier des systèmes quantiquesmacroscopiques, pouvant directement tester les théories grâce à un environnementcontrôlé. Dans cette thèse, nous présentons plusieurs études expérimentales de gaz froidsde lithium. Le lithium fournit la possibilité de réaliser des ensembles de bosons et defermions, avec des interactions contrôlables entre les constituants. Nous présentons lestechniques utilisées pour préparer et étudier des gaz dégénérés de lithium, et uneamélioration possible des méthodes existantes. Nous décrivons premièrement une étudede la recombinaison à trois bosons avec une interaction à deux corps résonante. Comparésquantitativement à la théorie, ces résultats fournissent une référence pour les étudesfutures du gaz de Bose unitaire. Pour finir, nous présentons la première observationexpérimentale d’un mélange de superfluides de Bose et de Fermi. Nous démontrons queles deux composants sont superfluides et que leur écoulement relatif vérifie les propriétésdes écoulement superfluides, avec une absence de viscosité en dessous d’une vitessecritique puis la présence de dissipation au-delà. En utilisant des excitations collectives dece mélange, nous mesurons l’interaction entre les deux superfluides, en accord avec unmodèle théorique. / Manifestations of Quantum Physics at the thermodynamical level are found in a broadrange of physical systems. A famous example is superfluidity, discovered at the beginningof the 20th century and found in many different situations, from liquid helium to neutronstars. Dilute ultracold gases offer a unique versatility to engineer quantum many-bodysystems, which can be directly compared with theory thanks to the controllability of theirenvironment. In this thesis we present several experimental investigations led on ultracoldlithium gases. Lithium provides the possibility to study ensembles of bosons andfermions, with controllable interactions between the constituents. We present experimentaltechniques for preparation and studies of degenerate gases of lithium, with prospects forimprovement of the existing methods. We first report on an investigation of three-bodyrecombination of bosons under a resonant two-body interaction. This study, quantitativelycompared with theory constitutes a benchmark for further studies of the unitary Bose gas.Finally, we present the first experimental realization of a mixture of a Bose superfluid witha Fermi superfluid. We demon- strate that both components are in the superfluid regime,and that the counter-flow motion between them possesses the characteristics of superfluidflow, with the absence of viscosity below a critical velocity, and an onset of friction above.Using collective oscillations of the mixture, we measure the coupling between the twosuperfluids in close agreement with a theoretical model.
|
276 |
Cohérence, brouillage et dynamique de phase dans un condensat de paires de fermions / Coherence, blurring and phase dynamics in a pair-condensed Fermi gasKurkjian, Hadrien 19 May 2016 (has links)
On considère généralement que la fonction d’onde macroscopique décrivant un condensat de paires de fermions possède une phase parfaitement définie et immuable. En réalité, il n’existe que des systèmes de taille finie, préparés à température non nulle ; le condensat possède alors un temps de cohérence fini, même lorsque le système est isolé. Cet effet fondamental, crucial pour les applications qui exploitent la cohérence macroscopique, restait très peu étudié.Dans cette thèse, nous relions le temps de cohérence à la dynamique de phase du condensat, et nous montrons par une approche microscopique que la dérivée temporelle de l’opérateur phase ˆθ0 est proportionnelle à un opérateur potentiel chimique qui inclut les deux branches d’excitations du gaz : celle, fermionique, de brisure des paires et celle, bosonique, de mise en mouvement de leur centre de masse. Pour une réalisation donnée de l’énergie E et du nombre de particules N, la phase évolue aux temps longs comme −2μmc(E,N)t/~ où μmc(E,N) est le potentiel chimique microcanonique ; les fluctuations de E et de N d’une réalisation à l’autre conduisent alors à un brouillage balistique de la phase, et à une décroissance gaussienne de la fonction de cohérence temporelle avec un temps caractéristique ∝ N1/2. En l’absence de telles fluctuations, la décroissance est au contraire exponentielle avec un temps de cohérence qui diverge linéairement en N à cause du mouvement diffusif de ˆθ0 dans l’environnement des modes excités. Nous donnons une expression explicite de ce temps caractéristique à bassetempérature dans le cas d’une branche d’excitation bosonique convexe lorsque les phonons interagissent via les processus 2 ↔ 1 de Beliaev-Landau. Enfin, nous proposons des méthodes permettant de mesurer avec un gaz d’atomes froids chaque contribution au temps de cohérence / It is generally assumed that a condensate of paired fermions at equilibrium is characterized by a macroscopic wavefunction with a well-defined, immutable phase. In reality, all systems have a finite size and are prepared at non-zero temperature ; the condensate has then a finite coherence time, even when the system is isolated. This fundamental effect, crucial for applicationsusing macroscopic coherence, was scarcely studied. Here, we link the coherence time to the condensate phase dynamics, and show using a microscopic theory that the time derivative of the condensate phase operator ˆθ0 is proportional to a chemical potential operator which includes both the fermionic pair-breaking and the bosonic pair-motion excitation branches.For a given realization of the number of particle N and of the energy E, the phase evolves at long times as −2μmc(E,N)t/~ where μmc(E,N) is the microcanonical chemical potential ; fluctuations of N and E from one realization to the other then lead to a ballistic spreading of the phase and to a Gaussian decay of the temporal coherence function with a characteristictime ∝ N1/2. On the contrary, in the absence of energy and number fluctuations, the decay of the temporal coherence function is exponential with a characteristic time scaling as N due to the diffusive motion of ˆθ0 in the environnement created by the excited modes. We give an explict expression of this characteristic time at low temperature in the case where the bosonicbranch is convex and the phonons undergo 2 ↔ 1 Beliaev-Landau process. Finally, we propose methods to measure each contribution to the coherence time using ultracold atoms.
|
277 |
Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T = Co, Cu) at extreme conditions of pressure and temperatureDionicio, Gabriel Alejandro 15 December 2006 (has links)
This investigation address the effect that pressure, p, and temperature, T, have on 4f-states of the rare-earth elements in the isostructural YbRh2Si2, EuCo2Ge2, and EuCu2Ge2 compounds. Upon applying pressure, the volume of the unit cell reduces, enforcing either the enhancement of the hybridization of the 4f-localized electrons with the ligand or a change in the valence state of the rare-earth ions. Here, we probe the effect of a pressure-induced lattice contraction on these system by means of electrical resistivity, from room temperature down to 100 mK. At ambient pressure, the electrical resistivity of YbRh2Si2 shows a broad peak at 130 K related to the incoherent scattering on the ground state and the excited crystalline electrical field (CEF) levels. At T_N = 70 mK, YbRh2Si2 undergoes a magnetic phase transition. Upon applying pressure up to p_1 = 4 GPa , T_N increases monotonously while the peak in the electrical resistivity is shifted to lower temperatures. For p < p_1 a different behavior is observed; namely, T_N depends weakly on the applied pressure and a decomposition of the single peak in the electrical resistivity into several shoulders and peaks occurs. Above p_2 = 9 GPa, the electrical resistivity is significantly reduced for T < 50 K and this process is accompanied by a sudden enhancement of T_N. Thus, our results confirm the unexpected behavior of the magnetization as function of pressure reported by Plessel et al. The small value of the magnetic ordering temperature for p < p_2 and the strength of the mechanism that leads to the peaks and shoulders in the electrical resistivity suggest that the f-electrons are still screened by the conduction electrons. Therefore, the observed behavior for pressures lower than p_2 might be a consequence of the competition of two different types of magnetic fluctuations (seemingly AFM and FM). Furthermore, the results suggest that a sudden change of the CEF scheme occurs at pressures higher than p_1, which would have an influence on the ground state. Additionally, a comparison of the pressure dependent features in the electrical resistivity of YbRh2Si2 with similar maxima in other isostructural YbT2X2 (T = transition metal; X = Si or Ge) compounds was performed. For the comparison, a simple relation that considers the Coqblin-Schrieffer model and the hypothesis of Lavagna et al. is proposed. A systematic behavior is observed depending on the transition metal; namely, it seems that the higher the atomic radii of the T-atom the smallest the pressure dependence of the maximum in the electrical resistivity, suggesting a weaker coupling of localized- and conduction-electrons. It is also observed that an increase in the density of conduction electrons reduces the pressure dependence of the characteristic Kondo temperature. The mechanism responsible for the sudden enhancement of T_N in YbRh2Si2 at about p_2 is still unknown. However two plausible scenarios are discussed. The Eu-ions in EuCo2Ge2 and EuCu2Ge2 have a divalent character in the range 100 mK < T < 300 K. Therefore, these systems order magnetically at T_N = 23 K and T_N = 12 K, respectively. The studies performed on EuCo2Ge2 and EuCu2Ge2 as a function of pressure suggest that a change to a non-magnetic trivalent state of the Eu-ions might occur at zero temperature for pressures higher than 3 GPa and 7 GPa, respectively. A common and characteristic feature on EuCo2Ge2 and EuCu2Ge2 is the absence of a clear first order transition from the divalent to the trivalent state of the Eu-ions at finite temperature for p > 3 GPa and for p > 7 GPa, respectively. In other isostructural Eu-based compounds, a discontinuous and abrupt change in the thermodynamic and transport properties associated to the valence transition of the Eu-ions is typically observed at finite temperatures. In contrast, the electrical resistivity of EuCo2Ge2 and EuCu2Ge2 changes smoothly as a function of pressure and temperature. The analysis of the the electrical resistivity of EuCo2Ge2 suggest that a classical critical point might be close to the AFM-ordered phase, being a hallmark of this compound. The overall temperature dependence of the the electrical resistivity of EuCo2Ge2 changes significantly at 3 GPa; therefore, it seems that the system suddenly enters to a T-dependent valence-fluctuating regime. Additionally, the pressure-dependent electrical-resistivity isotherms show a step-like behavior. Thus, it is concluded that discontinuous change of the ground state might occur at 3 GPa. The electrical resistivity of EuCu2Ge2 at high pressure is characterized by a negative logarithmic T-dependence in the pressure range 5 GPa < p < 7 GPa for T > T_N and by a broad peak in the pressure dependent residual resistivity, whose maximum is located at 7.3 GPa. The first behavior resembles the incoherent scattering process typical for an exchange coupling mechanism between the localized electrons and the ligand. This and the peak effect in the local 4f susceptibility observed in NMR measurements are consistent with such a coupling mechanism. Thus, it would be for the first time that a dense Eu-based compound like EuCu2Ge2 show such a behavior. Combining the results of the experiment performed at high pressures on EuCu2Ge2 with the studies performed in the EuCu2(Ge1-xSix)2 series, a crossover from an antiferromagnetically ordered state into a Fermi-liquid state for pressures higher than 7.3 GPa may be inferred from the analysis. Therefore, it may be possible that the sudden depopulation of 4f-level occur mediated by quantum fluctuation of the charge due to a strong Coulomb repulsion between the localized-electrons and the ligand. This phenomenon would explain the broad peak in the residual resistivity. To our knowledge, this would be the first Eu-based compound, isostructural to ThCr2Si2, that show such a transition as function of pressure at very low temperatures.
|
278 |
Low-dimensional electron systems studied by angle- and spin-resolved photoemission spectroscopy / Systèmes électroniques de basse dimensionnalité étudiés par spectroscopie de photoémission résolue en angle et en spinDai, Ji 09 October 2019 (has links)
Les matériaux dans lesquels des interactions à plusieurs particules, un confinement de faible dimension et/ou un fort couplage spin-orbite sont présents témoignent d’une grande variété de phénomènes, mais sont encore mal compris. Des informations essentielles sur l’origine de tels phénomènes peuvent être obtenues en mesurant leur structure électronique. Cette thèse présente une étude expérimentale de la structure électronique de matériaux de faible dimension et/ou fortement corrélés présentant un intérêt fondamental actuel, en utilisant la spectroscopie par photoémission résolue en angle et en spin (ARPES et SARPES).Dans la partie introductive, je présente mon travail sur deux exemples de type "livre de texte", mais innovants, montrant comment les interactions affectent la structure de bande d'un matériau: le couplage des électrons avec des phonons dans une distribution de Debye dans un système électronique à deux dimensions (2DES) dans ZnO, semi-conducteur à oxyde à bande interdite large utilisé dans les applications photovoltaïques, et le dédoublement induit par un fort couplage spin-orbite (SOC) dans la bande de valence du ZnTe, un autre semi-conducteur important utilisé dans les dispositifs optoélectroniques. Ensuite, dans la suite de cette thèse, je discute de mes résultats originaux dans trois systèmes différents de basse dimensionnalité et d'intérêt actuel en recherche : 1.La réalisation d'un 2DES à la surface (110) de SnO₂, le premier du genre dans une structure rutile. L'ajustabilité de la densité de ses porteurs au moyen de la température ou du dépôt d'Eu, et la robustesse vis-à-vis les reconstructions de surface et l'exposition aux conditions ambiantes rendent ce 2DES prometteur pour les applications. Au moyen d'une simple réaction redox à la surface, ces travaux ont prouvé que les lacunes en oxygène pouvaient doper la bande de conduction à la surface de SnO₂, résolvant ainsi un problème longtemps débattu concernant le rôle desdites lacunes dans le dopage de type n dans SnO₂. 2.L'étude des états de surface topologiques dans M₂Te₂X (avec M = Hf, Zr ou Ti; et X = P ou As), une nouvelle famille de métaux topologiques en trois dimensions, provenant du SOC et étant protégés par la symétrie du renversement du temps. Leur structure électronique et leur texture de spin, étudiées par ARPES et SARPES, révèlent la présence de fermions de Dirac sans masse donnant naissance à des arcs de nœuds de Dirac. 3.L'étude du matériau YbNi₄P₂ à fermions lourds quasi unidimensionnel, qui présente une transition de phase quantique de second ordre d’une phase ferromagnétique à une phase paramagnétique de liquide de Fermi lors de la substitution partielle du phosphore par l'arséniure. Une telle transition ne devrait se produire que dans les systèmes zéro ou unidimensionnels, mais la mesure directe de la structure électronique des matériaux ferromagnétiques quantiques critiques faisait jusqu'à présent défaut. Grâce à une préparation et nettoyage méticuleux in situ de la surface des monocristaux YbNi₄P₂, qui sont impossibles à cliver, leur structure électronique a été mesurée avec succès au moyen de l'ARPES, dévoilant ainsi le caractère quasi-1D, nécessaire à la compréhension de la criticité quantique ferromagnétique, dans YbNi₄P₂. Le protocole utilisé pour rendre ce matériau accessible à l'ARPES peut être facilement généralisé à d'autres matériaux exotiques dépourvus de plan de clivage. / Materials in which many-body interactions, low-dimensional confinement, and/or strong spin-orbit coupling are present show a rich variety of phenomena, but are still poorly understood. Essential information about the origin of such phenomena can be obtained by measuring their electronic structure. This thesis presents an experimental study of the electronic structure of some low-dimensional and/or strongly correlated materials of current fundamental interest, using angle- and spin-resolved photoemission spectroscopy (ARPES and SARPES). In the introductory part, I present my work on two innovative textbook examples showing how interactions affect the band structure of a material: the coupling of electrons with phonons in a Debye distribution in a two-dimensional electron system (2DES) in ZnO, a wide-band-gap oxide semiconductor used in photovoltaic applications, and the splitting induced by strong spin-orbit coupling (SOC) in the bulk valence band of ZnTe, another important semiconductor used in optoelectronic devices. Then, in the rest of this thesis, I discuss my original results in three different low-dimensional systems of current interest: 1.The realisation of a 2DES at the (110) surface of SnO₂, the first of its kind in a rutile structure. Tunability of its carrier density by means of temperature or Eu deposition and robustness against surface reconstructions and exposure to ambient conditions make this 2DES promising for applications. By means of a simple redox reaction on the surface, this work has proven that oxygen vacancies can dope the conduction band minimum at the surface of SnO₂, solving a long-debated issue about their role in n-type doping in SnO₂. 2.The study of topological surface states in M₂Te₂X (with M = Hf, Zr, or Ti; and X = P or As), a new family of three-dimensional topological metals, originating from SOC and being protected by time-reversal symmetry. Their electronic structure and spin texture, studied by ARPES and SARPES, reveal the presence of massless Dirac fermions giving rise to Dirac-node arcs. 3.The investigation of the quasi-one-dimensional heavy-fermion material YbNi₄P₂, which presents a second-order quantum phase transition from a ferromagnetic to a paramagnetic phase upon partial substitution of phosphorous by arsenide. Such a transition is expected to occur only in zero- or one-dimensional systems, but a direct measurement of the electronic structure of ferromagnetic quantum-critical materials was missing so far. By careful in-situ preparation and cleaning of the surface of YbNi₄P₂ single crystals, which are impossible to cleave, their electronic structure has been successfully measured by ARPES, thus effectively unveiling the quasi-one-dimensionality of YbNi₄P₂. Moreover, the protocol used to make this material accessible to ARPES can be readily generalised to other exotic materials lacking a cleavage plane.
|
279 |
[pt] O FORMALISMO CLOCKWORK PARA HIERARQUIAS NATURAIS DE FÉRMIONS / [en] THE CLOCKWORK APPROACH TO NATURAL FERMION HIERARCHIESFERNANDO ABREU ROCHA DE SOUZA 02 August 2019 (has links)
[pt] O Modelo Padrão de física de partículas é uma das teorias mais bem estabelecidas no campo da física, sendo capaz de fazer previsões verificadas experimentalmente até doze algoritmos significativos. No entanto, o Modelo deixa algumas perguntas sem resposta, o que vem perturbando os físicos por muitos anos. Uma dessas questões é a estrutura hierárquica presente no setor dos férmions, onde matrizes Yukawas possuem autovalores que diferem um do outro por várias ordens de magnitude. Outro aspecto cabível de investigação é relacionado com a matriz CKM, responsável pela mistura entre férmions de sabores distintos. Por que tal matriz é aproximadamente diagonal e por que os ângulos de mistura são tão pequenos? Por que o elétron é muito mais leve que seus primos de outras gerações? A mesma pergunta
pode ser feita para os quarks e o Modelo Padrão não seria capaz de responder nenhuma delas. Nesse trabalho, uma explicação proposta vem da utilização de um novo modelo, chamado de Mecanismo Clockwork, que pressupõe a existência de novos férmions pesados, nomeados Clockwork Gears, que são
capazes de naturalmente gerar acoplamentos exponencialmente suprimidos a partir de Yukawas de ordem um, após a ocorrência de quebra espontânea de simetria. Além disso, simulações foram feitas com o objetivo de otimizar os parâmetros livres do modelo, assim como confirmar sua eficiência em acomodar os dados experimentais. Por fim, foi feita uma análise de alguns processos, envolvendo correntes neutras que trocam sabor, no regime de teoria efetiva de campo, para poder-se estipular um limite para a escala
típica de massa para essas novas partículas. / [en] The Standard Model of particle physics is one of the most well established theories in the field of physics and is able to make predictions correctly measured and verified up to twelve significant figures. However,
the theory leaves some unanswered questions that have been bothering physicist for many years. One of those questions is the hierarchical structure of the fermion sector, where Yukawa matrices have eigenvalues that differ from each other by several orders of magnitude. Another aspect concerns the CKM matrix, which dictates the mixing between fermions of distinct flavours: why is this matrix almost diagonal, and why are the mixing angles so small? Why is the electron so much lighter than its cousins from different generations? The same question could be made for the quarks and the Standard Model would not be able to answer neither of these. In this work, an explanation is proposed by employing a novel model, called Clockwork Mechanism, which assumes the existence of new heavy fermion particles, named Clockwork Gears, which are able to naturally generate exponentially suppressed couplings out of order-one Yukawas, after spontaneously symmetry breaking occurs. In addition, simulations were run in order to optimize the free parameters of the model, as well as to confirm its efficiency at fitting with experimental data. Lastly, a few processes involving Flavour Changing Neutral Currents were considered in the effective field theory regime as a means to stipulate a typical mass scale for these new particles.
|
280 |
The Hubbard model on a honeycomb lattice with fermionic tensor networksSchneider, Manuel 09 December 2022 (has links)
Supervisor at Deutsches Elektronen-Synchrotron (DESY) in Zeuthen: Dr. Habil. Karl Jansen / Mit Tensor Netzwerken (TN) untersuchen wir auf einem hexagonalen Gitter das Hubbard-Modell mit einem chemischen Potential. Wir zeigen, dass ein TN als Ansatz für die Zustände des Modells benutzt werden kann und präsentieren die berechneten Eigenschaften bei niedrigen Energien. Unser Algorithmus wendet eine imaginäre Zeitentwicklung auf einen fermionischen projected engangled pair state (PEPS) auf einem endlichen Gitter mit offenen Randbedingungen an. Der Ansatz kann auf einen spezifischen fermionischen Paritätssektor beschränkt werden, was es uns ermöglicht, den Grundzustand und den Zustand mit einem Elektron weniger zu simulieren. Mehrere in unserer Arbeit entwickelte Verbesserungen des Algorithmus führen zu einer erheblichen Steigerung der Effizienz und Genauigkeit. Wir messen Erwartungswerte mit Hilfe eines boundary matrix product state. Wir zeigen, dass Observablen in dieser Näherung mit einer weniger starken Trunkierung, als in der Literatur erwartet wird, berechnet werden können. Dies führt zu einer erheblichen Reduzierung der numerischen Kosten des Algorithmus. Für verschiedene Stärken der lokalen Wechselwirkung, sowie für mehrere chemische Potentiale berechnen wir die Energie, die Teilchenzahl und die Magnetisierung mit guter Genauigkeit. Wir zeigen die Abhängigkeit der Teilchenzahl vom chemischen Potential und berechnen die Energielücke. Wir demonstrieren die Skalierbarkeit zu großen Gittern mit bis zu 30 × 15 Gitterpunkten und machen Vorhersagen in einem Teil des Phasenraums, der für Monte-Carlo nicht zugänglich ist. Allerdings finden wir auch Limitierungen des Algorithmus aufgrund von Instabilitäten, die die Berechnungen im Paritätssektor behindern, welcher orthogonal zum Grundzustand ist. Wir diskutieren Ursachen und Indikatoren und schlagen Lösungen vor. Unsere Arbeit bestätigt, dass TN genutzt werden können, um den niederenergetischen Sektors des Modells zu erforschen. Dies eröffnet den Weg zu einem umfassenden Verständnis des Phasendiagramms. / Using tensor network (TN) techniques, we study the Hubbard model on a honeycomb lattice with a chemical potential, which models the electron structure of graphene. In contrast to Monte Carlo methods, TN algorithms do not suffer from the sign problem when a chemical potential is present. We demonstrate that a tensor network state can be used to simulate the model and present the calculated low energy properties of the Hubbard model. Our algorithm applies an imaginary time evolution to a fermionic projected entangled pair state (PEPS) on a finite lattice with open boundary conditions. The ansatz can be restricted to a specific fermionic parity sector which allows us to simulate the ground state and the state with one electron less. Several improvements of the algorithm developed in our work lead to a substantial performance increase of the efficiency and precision. We measure expectation values with a boundary matrix product state and show that observables can be calculated with a lower bond dimension of this approximation than expected from the literature. This decreases the numerical costs of the algorithm significantly. For varying onsite interactions and chemical potentials we calculate the energy, particle number and magnetization with good precision. We show the dependence of the particle number on the chemical potential and compute the single particle gap. We demonstrate the scalability to large lattices of up to 30 × 15 sites and make predictions in a part of the phase space that is not accessible to Monte Carlo methods. However, we also find limitations of the algorithm due to instabilities that spoil the calculations in the parity sector orthogonal to the ground state. We discuss the causes and indicators of such instabilities and propose solutions. Our work validates that TNs can be utilized to study the low energy properties of the Hubbard model on a honeycomb lattice with a chemical potential, thus opening the road to finally understand its phase diagram.
|
Page generated in 0.0273 seconds