• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 64
  • 55
  • 18
  • 17
  • 15
  • 13
  • 13
  • 12
  • 12
  • 6
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 517
  • 407
  • 94
  • 74
  • 65
  • 64
  • 60
  • 59
  • 57
  • 55
  • 54
  • 53
  • 49
  • 48
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The Role of MicroRNA Regulation of Cardiac Ion Channel in Arrhythmia

Luo, Xiaobin 08 1900 (has links)
La fibrillation auriculaire (FA) est le trouble du rythme le plus fréquemment observé en pratique clinique. Elle constitue un risque important de morbi-mortalité. Le traitement de la FA reste un défi majeur en lien avec les nombreux effets secondaires associés aux approches thérapeutiques actuelles. Dans ce contexte, une meilleure compréhension des mécanismes sous-jacents à la FA est essentielle pour le développement de nouvelles thérapies offrant un meilleur rapport bénéfice/risque pour les patients. La FA est caractérisée par i) un remodelage électrique délétère associé le plus souvent ii) à un remodelage structurel du myocarde favorisant la récurrence et le maintien de l’arythmie. La diminution de la période réfractaire effective au sein du tissu auriculaire est un élément clef du remodelage électrique. Le remodelage structurel, quant à lui, se manifeste principalement par une fibrose tissulaire qui altère la propagation de l’influx électrique dans les oreillettes. Les mécanismes moléculaires impliqués dans la mise en place de ces deux substrats restent mal connus. Récemment, le rôle des microARNs (miARNs) a été pointé du doigt dans de nombreuses pathologies notamment cardiaques. Dans ce contexte les objectifs principaux de ce travail ont été i) d'acquérir une compréhension approfondie du rôle des miARNs dans la régulation de l’expression des canaux ioniques et ii) de mieux comprendre le rôle de ces molécules dans l’installation d’un substrat favorable a la FA. Nous avons, dans un premier temps, effectué une analyse bio-informatique combinée à des approches expérimentales spécifiques afin d’identifier clairement les miARNs démontrant un fort potentiel de régulation des gènes codant pour l’expression des canaux ioniques cardiaques humains. Nous avons identifié un nombre limité de miARNs cardiaques qui possédaient ces propriétés. Sur la base de ces résultats, nous avons démontré que l’altération de l'expression des canaux ioniques, observée dans diverse maladies cardiaques (par exemple, les cardiomyopathies, l’ischémie myocardique, et la fibrillation auriculaire), peut être soumise à ces miARNs suggérant leur implication dans l’arythmogénèse. La régulation du courant potassique IK1 est un facteur déterminant du remodelage électrique auriculaire associée à la FA. Les mécanismes moléculaires sous-jacents sont peu connus. Nous avons émis l’hypothèse que l'altération de l’expression des miARNs soit corrélée à l’augmentation de l’expression d’IK1 dans la FA. Nous avons constaté que l’expression de miR-26 est réduite dans la FA et qu’elle régule IK1 en modulant l’expression de sa sous-unité Kir2.1. Nous avons démontré que miR-26 est sous la répression transcriptionnelle du facteur nucléaire des lymphocytes T activés (NFAT) et que l’activité accrue de NFATc3/c4, aboutit à une expression réduite de miR-26. En conséquence IK1 augmente lors de la FA. Nous avons enfin démontré que l’interférence in vivo de miR-26 influence la susceptibilité à la FA en régulant IK1, confirmant le rôle prépondérant de miR-26 dans le remodelage auriculaire électrique. La fibrose auriculaire est un constituant majeur du remodelage structurel associé à la FA, impliquant l'activation des fibroblastes et l’influx cellulaire du Ca2 +. Nous avons cherché à déterminer i) si le canal perméable au Ca2+, TRPC3, jouait un rôle dans la fibrose auriculaire en favorisant l'activation des fibroblastes et ii) étudié le rôle potentiel des miARNs dans ce contexte. Nous avons démontré que les canaux TRPC3 favorisent l’influx du Ca2 +, activant la signalisation Ca2 +-dépendante ERK et en conséquence activent la prolifération des fibroblastes. Nous avons également démontré que l’expression du TRPC3 est augmentée dans la FA et que le blocage in vivo de TRPC3 empêche le développement de substrats reliés à la FA. Nous avons par ailleurs validé que miR-26 régule les canaux TRPC3 en diminuant leur expression dans les fibroblastes. Enfin, nous avons montré que l'expression réduite du miR-26 est également due à l’activité augmentée de NFATc3/c4 dans les fibroblastes, expliquant ainsi l’augmentation de TRPC3 lors de la FA, confirmant la contribution de miR-26 dans le processus de remodelage structurel lié à la FA. En conclusion, nos résultats mettent en évidence l'importance des miARNs dans la régulation des canaux ioniques cardiaques. Notamment, miR-26 joue un rôle important dans le remodelage électrique et structurel associé à la FA et ce, en régulant IK1 et l’expression du canal TRPC3. Notre étude démasque ainsi un mécanisme moléculaire de contrôle de la FA innovateur associant des miARNs. miR-26 en particulier représente apres ces travaux une nouvelle cible thérapeutique prometteuse pour traiter la FA. / Atrial fibrillation (AF) is the most frequently-encountered arrhythmia in clinical practice and constitutes a major cause of cardiac morbidity and mortality. The management of AF remains a major challenge as current therapeutic approaches are limited by potential adverse effects and high rate of AF recurrence/persistence. A better understanding of the mechanisms underlying AF is of great importance to improve AF therapy. AF is characterized by impaired electrical and structural remodeling, both of which favors the recurrence and maintenance of the arrhythmia. A key feature in electrical remodeling is the reduced atrial effective refractory period, due to ion channel alteration. Structural remodeling, on the other hand, mainly results from atrial fibrosis. However, the precise molecular mechanisms underlying these remodeling processes are still incompletely understood. The importance of microRNAs (miRNAs) in various pathophysiological conditions of the heart has been well established, but little is known with regard to cardiac arrhythmias. Emerging evidence suggests that dysregulation of miRNAs may underlie heart rhythm disturbances. The aim of the present work was to acquire a comprehensive understanding of miRNA-mediated regulation of ion channels in cardiac arrhythmias. Notably, we will focus on the mechanistic insights of miRNAs related to the control of AF. Currently available experimental approaches do not permit thorough characterization of miRNA targeting. For this purpose, we performed bioinformatic analyses in conjunction with experimental approaches to identify miRNAs from the database that potentially regulate human cardiac ion channel genes. We found that only a subset of miRNAs target cardiac ion channel genes. Based on these results, we further demonstrated that the dysregulation of ion channel gene expression observed in various cardiac disorders (e.g. cardiomyopathy, myocardial ischemia, and atrial fibrillation) can be explained by the dysregulation of miRNAs. These findings further support the potential implication of miRNAs in arrhythmogenesis under these cardiac conditions. The upregulation of the cardiac inward rectifying potassium current, IK1, is a key determinant of adverse atrial electrical remodeling associated with AF. The molecular mechanisms underlying this ionic remodeling are poorly understood. We hypothesized that altered miRNA expression is responsible for IK1 upregulation in AF. We found that miR-26 is significantly downregulated in AF and regulates IK1 by controlling the expression of its underlying subunit Kir2.1. Moreover, we demonstrated that miR-26 is under the transcriptional repression of the nuclear factor of activated T cells (NFAT) and enhanced activities of members of the NFAT family, NFATc3/c4, results in miR-26 downregulation, which accounts for IK1 enhancement in AF. Furthermore, we observed that in vivo interference of miR-26 affects AF susceptibility via the regulation of IK1, suggesting an important role of miR-26 in atrial electrical remodeling. Atrial fibrosis is a major constituent in AF-associated adverse atrial structural remodeling, involving the activation of fibroblasts and cellular Ca2+ entry. Here, we sought to determine whether the Ca2+ permeable channel, TRPC3, plays a role in AF-induced fibrosis by promoting fibroblast activation. Furthermore, we investigated the potential role of miRNAs in this context. We found that TRPC3 channels promote Ca2+-entry, which results in activation of Ca2+-dependent ERK-signaling and consequently fibroblast activation. We also demonstrated that TRPC3 is upregulated in AF and in vivo TRPC3 blockade suppresses the development of AF-promoting substrate. Furthermore, we observed that miR-26 regulates TRPC3 channels via controlling the expression of the underlying channel subunit and is downregulated in AF-fibroblasts. Finally, we showed that the reduced expression of miR-26 is also due to the enhanced NFATc3/c4 activities in AF-fibroblasts and accounts for AF-induced upregulation of TRPC3, suggesting the potential contribution of miR-26 in AF-related adverse structural remodeling process. In conclusion, our findings emphasize the importance of miRNAs in the regulation of cardiac ion channels. Notably, miR-26 plays a crucial role in AF-associated electrical and structural remodeling via the regulation of IK1 and TRPC3 channel genes. Thus, our study unravels a novel molecular control mechanism of AF at the miRNA level, suggesting miR-26 as a new and promising therapeutic target for AF.
142

The Role of MicroRNA Regulation of Cardiac Ion Channel in Arrhythmia

Luo, Xiaobin 08 1900 (has links)
La fibrillation auriculaire (FA) est le trouble du rythme le plus fréquemment observé en pratique clinique. Elle constitue un risque important de morbi-mortalité. Le traitement de la FA reste un défi majeur en lien avec les nombreux effets secondaires associés aux approches thérapeutiques actuelles. Dans ce contexte, une meilleure compréhension des mécanismes sous-jacents à la FA est essentielle pour le développement de nouvelles thérapies offrant un meilleur rapport bénéfice/risque pour les patients. La FA est caractérisée par i) un remodelage électrique délétère associé le plus souvent ii) à un remodelage structurel du myocarde favorisant la récurrence et le maintien de l’arythmie. La diminution de la période réfractaire effective au sein du tissu auriculaire est un élément clef du remodelage électrique. Le remodelage structurel, quant à lui, se manifeste principalement par une fibrose tissulaire qui altère la propagation de l’influx électrique dans les oreillettes. Les mécanismes moléculaires impliqués dans la mise en place de ces deux substrats restent mal connus. Récemment, le rôle des microARNs (miARNs) a été pointé du doigt dans de nombreuses pathologies notamment cardiaques. Dans ce contexte les objectifs principaux de ce travail ont été i) d'acquérir une compréhension approfondie du rôle des miARNs dans la régulation de l’expression des canaux ioniques et ii) de mieux comprendre le rôle de ces molécules dans l’installation d’un substrat favorable a la FA. Nous avons, dans un premier temps, effectué une analyse bio-informatique combinée à des approches expérimentales spécifiques afin d’identifier clairement les miARNs démontrant un fort potentiel de régulation des gènes codant pour l’expression des canaux ioniques cardiaques humains. Nous avons identifié un nombre limité de miARNs cardiaques qui possédaient ces propriétés. Sur la base de ces résultats, nous avons démontré que l’altération de l'expression des canaux ioniques, observée dans diverse maladies cardiaques (par exemple, les cardiomyopathies, l’ischémie myocardique, et la fibrillation auriculaire), peut être soumise à ces miARNs suggérant leur implication dans l’arythmogénèse. La régulation du courant potassique IK1 est un facteur déterminant du remodelage électrique auriculaire associée à la FA. Les mécanismes moléculaires sous-jacents sont peu connus. Nous avons émis l’hypothèse que l'altération de l’expression des miARNs soit corrélée à l’augmentation de l’expression d’IK1 dans la FA. Nous avons constaté que l’expression de miR-26 est réduite dans la FA et qu’elle régule IK1 en modulant l’expression de sa sous-unité Kir2.1. Nous avons démontré que miR-26 est sous la répression transcriptionnelle du facteur nucléaire des lymphocytes T activés (NFAT) et que l’activité accrue de NFATc3/c4, aboutit à une expression réduite de miR-26. En conséquence IK1 augmente lors de la FA. Nous avons enfin démontré que l’interférence in vivo de miR-26 influence la susceptibilité à la FA en régulant IK1, confirmant le rôle prépondérant de miR-26 dans le remodelage auriculaire électrique. La fibrose auriculaire est un constituant majeur du remodelage structurel associé à la FA, impliquant l'activation des fibroblastes et l’influx cellulaire du Ca2 +. Nous avons cherché à déterminer i) si le canal perméable au Ca2+, TRPC3, jouait un rôle dans la fibrose auriculaire en favorisant l'activation des fibroblastes et ii) étudié le rôle potentiel des miARNs dans ce contexte. Nous avons démontré que les canaux TRPC3 favorisent l’influx du Ca2 +, activant la signalisation Ca2 +-dépendante ERK et en conséquence activent la prolifération des fibroblastes. Nous avons également démontré que l’expression du TRPC3 est augmentée dans la FA et que le blocage in vivo de TRPC3 empêche le développement de substrats reliés à la FA. Nous avons par ailleurs validé que miR-26 régule les canaux TRPC3 en diminuant leur expression dans les fibroblastes. Enfin, nous avons montré que l'expression réduite du miR-26 est également due à l’activité augmentée de NFATc3/c4 dans les fibroblastes, expliquant ainsi l’augmentation de TRPC3 lors de la FA, confirmant la contribution de miR-26 dans le processus de remodelage structurel lié à la FA. En conclusion, nos résultats mettent en évidence l'importance des miARNs dans la régulation des canaux ioniques cardiaques. Notamment, miR-26 joue un rôle important dans le remodelage électrique et structurel associé à la FA et ce, en régulant IK1 et l’expression du canal TRPC3. Notre étude démasque ainsi un mécanisme moléculaire de contrôle de la FA innovateur associant des miARNs. miR-26 en particulier représente apres ces travaux une nouvelle cible thérapeutique prometteuse pour traiter la FA. / Atrial fibrillation (AF) is the most frequently-encountered arrhythmia in clinical practice and constitutes a major cause of cardiac morbidity and mortality. The management of AF remains a major challenge as current therapeutic approaches are limited by potential adverse effects and high rate of AF recurrence/persistence. A better understanding of the mechanisms underlying AF is of great importance to improve AF therapy. AF is characterized by impaired electrical and structural remodeling, both of which favors the recurrence and maintenance of the arrhythmia. A key feature in electrical remodeling is the reduced atrial effective refractory period, due to ion channel alteration. Structural remodeling, on the other hand, mainly results from atrial fibrosis. However, the precise molecular mechanisms underlying these remodeling processes are still incompletely understood. The importance of microRNAs (miRNAs) in various pathophysiological conditions of the heart has been well established, but little is known with regard to cardiac arrhythmias. Emerging evidence suggests that dysregulation of miRNAs may underlie heart rhythm disturbances. The aim of the present work was to acquire a comprehensive understanding of miRNA-mediated regulation of ion channels in cardiac arrhythmias. Notably, we will focus on the mechanistic insights of miRNAs related to the control of AF. Currently available experimental approaches do not permit thorough characterization of miRNA targeting. For this purpose, we performed bioinformatic analyses in conjunction with experimental approaches to identify miRNAs from the database that potentially regulate human cardiac ion channel genes. We found that only a subset of miRNAs target cardiac ion channel genes. Based on these results, we further demonstrated that the dysregulation of ion channel gene expression observed in various cardiac disorders (e.g. cardiomyopathy, myocardial ischemia, and atrial fibrillation) can be explained by the dysregulation of miRNAs. These findings further support the potential implication of miRNAs in arrhythmogenesis under these cardiac conditions. The upregulation of the cardiac inward rectifying potassium current, IK1, is a key determinant of adverse atrial electrical remodeling associated with AF. The molecular mechanisms underlying this ionic remodeling are poorly understood. We hypothesized that altered miRNA expression is responsible for IK1 upregulation in AF. We found that miR-26 is significantly downregulated in AF and regulates IK1 by controlling the expression of its underlying subunit Kir2.1. Moreover, we demonstrated that miR-26 is under the transcriptional repression of the nuclear factor of activated T cells (NFAT) and enhanced activities of members of the NFAT family, NFATc3/c4, results in miR-26 downregulation, which accounts for IK1 enhancement in AF. Furthermore, we observed that in vivo interference of miR-26 affects AF susceptibility via the regulation of IK1, suggesting an important role of miR-26 in atrial electrical remodeling. Atrial fibrosis is a major constituent in AF-associated adverse atrial structural remodeling, involving the activation of fibroblasts and cellular Ca2+ entry. Here, we sought to determine whether the Ca2+ permeable channel, TRPC3, plays a role in AF-induced fibrosis by promoting fibroblast activation. Furthermore, we investigated the potential role of miRNAs in this context. We found that TRPC3 channels promote Ca2+-entry, which results in activation of Ca2+-dependent ERK-signaling and consequently fibroblast activation. We also demonstrated that TRPC3 is upregulated in AF and in vivo TRPC3 blockade suppresses the development of AF-promoting substrate. Furthermore, we observed that miR-26 regulates TRPC3 channels via controlling the expression of the underlying channel subunit and is downregulated in AF-fibroblasts. Finally, we showed that the reduced expression of miR-26 is also due to the enhanced NFATc3/c4 activities in AF-fibroblasts and accounts for AF-induced upregulation of TRPC3, suggesting the potential contribution of miR-26 in AF-related adverse structural remodeling process. In conclusion, our findings emphasize the importance of miRNAs in the regulation of cardiac ion channels. Notably, miR-26 plays a crucial role in AF-associated electrical and structural remodeling via the regulation of IK1 and TRPC3 channel genes. Thus, our study unravels a novel molecular control mechanism of AF at the miRNA level, suggesting miR-26 as a new and promising therapeutic target for AF.
143

Sénescence, remodelage tissulaire et membranaire, risque thrombotique au cours de la fibrillation auriculaire / Senescence, tissue and membrane remodeling, thrombotic risk in atrial fibrillation

Jesel-Morel, Laurence 21 September 2016 (has links)
Nos travaux montrent qu’au cours de la fibrillation atriale (FA), les microparticules (MP) reflètent et contribuent à un état d’hypercoagulabilité et pro-inflammatoire. Leurs concentrations similaires dans les deux oreillettes de patients en FA témoignent d’une absence de différence de statut pro-thrombotique entre ces deux cavités cardiaques. Au cours des procédures d’ablation de FA, les concentrations de MP évoluent parallèlement à l’augmentation de l’activation cellulaire et plaquettaire. Nous avons également montré dans l'altération tissulaire des oreillettes en FA, l'importance de la sénescence qui évolue avec la progression du trouble du rythme. Nous avons caractérisé un modèle cellulaire de sénescence réplicative de cellules endothéliales auriculaires de porc permettant d'identifier l'apparition d'un phénotype pro-thrombotique, pro-inflammatoire, pro-adhésif et de mieux comprendre la physiologie de la cellule endothéliale atriale sénescente et le rôle majeur du système rénine-angiotensine dans ces mécanismes. / Our data evidence that during atrial fibrillation (AF), microparticles (MP) contribute to an enhanced hypercoagulable and pro-inflammatory state. Similar concentrations of MP measured in left and right atria of AF patients highlight the absence of chamber-specific enhanced thrombogenic status. During AF ablation procedures, MP concentrations progress in parallel with cell and platelet activation. We also showed that AF progression is strongly related to human atrial senescence burden pointing toward a possible network that links in human atrium, senescence burden, endothelial dysfunction, thrombogenicity and atrial remodeling. We also developed a model of left atrium endothelial cell replicative senescence providing compelling evidences indicating that atrial endothelial senescence promotes thrombogenicity, inflammation and proteolysis. These data underline the major role of renin-angiotensin system in endothelial atrial cell senescence.
144

Dynamique calcique dans les cardiomyocytes de veines pulmonaires de rat : une hétérogénéité source d'arythmie ? / Calcium dynamics in pulmonary vein cardiac myocytes of the rat : an heterogeneity related source of arrhythmias ?

Pasqualin, Côme 25 November 2016 (has links)
Les activités électriques ectopiques à l’origine des épisodes de fibrillation atriale pourraient être dues à des échanges calciques anormaux dans les cardiomyocytes (CM) de veine pulmonaire (VP). Le cycle du calcium des CM de VP a donc été caractérisé et comparé à celui des CM d’oreillette gauche (OG) et de ventricule gauche (VG). Des outils ont été développés pour mesurer la régularité d’organisation des réseaux de tubules transverses et la contractilité des CM de VP. Contrairement aux CM d’OG et de VG, l’organisation hétérogène du réseau de tubules dans la population des CM de VP conduit à une grande variabilité de forme des transitoires calciques et d’amplitude de contraction. Au sein des VP, ces différents types de CM sont regroupés en îlots. La fréquence des libérations calciques spontanées est également plus grande dans les CM de VP que dans ceux d’OG et de VG. La population des CM de VP présente une dynamique calcique aux caractéristiques uniques pouvant être source d’arythmies. / Ectopic foci leading to atrial fibrillation episodes might be due to abnormal calcium handling by the pulmonary vein (PV) cardiomyocytes (CM). Therefore, the calcium cycle of PV CM was characterized and compared to those of left atria (LA) and left ventricle (LV) CM. Some tools have been developed to measure the organization of transverse tubular networks and contractility of PV CM. Unlike LA and LV CM, the heterogeneous organization of the tubular networks in the PV CM population leads to wide ranges of calcium transient shapes and contraction amplitudes. Within the whole PV, these different types of CM are gathered in islets. The frequency of spontaneous calcium release is also higher in PV CM than in LA and LV CM. The special features of the calcium handling properties of the PV CM population could be a source of arrhythmias.
145

Fibrillation atriale : des mécanismes physiopathologiques à la prise en charge thérapeutique / Atrial Fibrillation : from pathophysiology to therapy

Martins, Pedro Raphaël 17 June 2014 (has links)
La fibrillation atriale (FA) est l’arythmie soutenue la plus fréquente ; elle entraine une majoration significative de la morbidité et de la mortalité. Les mécanismes qui en sont responsables sont encore incomplètement connus, et sa prise en charge n’est pas optimale. Afin de mieux comprendre la physiopathologie de la FA, nous avons mené différents travaux sur des coeurs de moutons isolés et perfusés par un système de Langendorff mais également en créant un modèle chronique de FA persistante de longue durée. Dans un modèle ovin de FA persistante, nous avons ainsi démontré que la fréquence dominante (DF) de la FA augmentait progressivement pendant les premières semaines de l’arythmie, alors que les épisodes étaient paroxystiques, phénomène en rapport avec le raccourcissement de la durée du potentiel d’action secondaire au remodelage électrophysiologique. La DF se stabilisait dès lors que la FA devenait persistante, une fois le remodelage électrophysiologique maximal. L’accélération de la DF (dDF/dt) était significativement corrélée au temps nécessaire à la transition vers la FA persistante. Le remodelage structurel n’apparaissait que secondairement, une fois l’arythmie devenue persistante. Sur le plan thérapeutique, nous avons étudié les mécanismes anti-arythmiques de la chloroquine (bloqueur d’IK1) et de la ranolazine (bloqueur d’INa), molécules entrainant un ralentissement de la fréquence de rotation des rotors, une diminution de la DF et un retour en rythme sinusal. Ces travaux nous ont permis de mieux appréhender le rôle des ces courants ioniques dans le maintien de la FA. Enfin, nous avons démontré l’efficacité de l’ablation de la FA en utilisant le cryoballon (CB) de deuxième génération, efficacité grevée d’un taux de parésie du nerf phrénique élevé, dont nous avons pu prédire la survenue à l’aide d’un prédicteur simple, la distance entre le bord du CB et la cathéter permettant de stimuler le nerf phrénique pendant l’application. Une meilleure compréhension des mécanismes à l’origine de l’initiation et du maintien de cette arythmie, ainsi qu’une meilleure prise en charge thérapeutique permettraient d’améliorer la qualité de vie des patients et d’en diminuer le taux de complications. / Atrial fibrillation (AF) is the most common sustained arrhythmia, significantly increasing patients’ morbidity and mortality. The mechanisms explaining the initiation and maintenance of the arrhythmia are incompletely understood, and the current treatment strategy is suboptimal. To better understand the pathophysiology of AF, we conducted various projects using Langendorff-perfused sheep hearts and a chronic model of long-standing persistent AF. In the model of persistent AF, we demonstrated that dominant frequency (DF) progressively increases during the first weeks of the arrhythmia, during its paroxysmal stage, due to the electrophysiological remodeling resulting in atrial action potential shortening. DF stabilizes once the electrophysiological remodeling is maximal, and the arrhythmia becomes persitent. The rate of DF increase (dDF/dt) was strongly correlated with the time to persistent AF. Structural remodeling appears secondarily, once transition has occured. We also studied the anti-arrhythmic mechanisms of chloroquine (IK1 blocker) and ranolazine (INa blocker), which slow the frequency of rotation of rotors, decrease the DF and favor reversal to sinus rhythm. These projects helped us to better understand the importance of these currents in AF dynamics. Lastly, we demonstrated the increased efficacy of AF ablation when using the second generation cryoballoon (CB), which regrettably increases the occurrence of phrenic nerve palsy. A simple, reliable predictor of this complication was found, the distance between the lateral edge of the CB and the phrenic nerve stimulating catheter. A better understanding of the mechanisms underlying the initiation and maintenance of AF, in conjunction with better therapeutic strategies will help to improve patients’ quality of life and decrease the complications of the arrhythmia.
146

Facilitation de la procédure d’ablation de fibrillation auriculaire persistante après restauration du rythme sinusal pré-procédure : une étude multicentrique comparative

Rivard, Lena 08 1900 (has links)
No description available.
147

Participation à l'étude du rôle du système adénosinergique en pathologie cardiovasculaire / Participation to the study of the adenosinergic system role in cardiovascular pathology

Vairo, Donato 11 December 2018 (has links)
L'adénosine est un nucléotide purinergique ubiquitaire qui exerce plusieurs fonctions dans l'organisme, notamment au sein du tissu cardiovasculaire, via ses 4 récepteurs RCPGs: A1, A2a, A2B, A3. Le système adénosinergique est donc particulièrement impliqué dans la pathologie cardiovasculaire et en particulier dans la maladie coronarienne et dans la fibrillation auriculaire.Dans la maladie coronarienne, le rôle du récepteur A2a est crucial puisqu'il participe au contrôle du flux coronaire. Nous avons comparé le niveau d’expression de ce récepteur dans les cellules mononuclées circulantes et dans des fragments d’artères coronaires prélevés chez des patients atteints de coronaropathie. L’expression du récepteur A2a dans les PBMCs est corrélée à celle mesurée dans les artères coronaires. Ces résultats indiquent que le récepteur A2a exprimé par les PBMCs a un comportement similaire à celui de son homologue in situ.L’adénosine affecte également le rythme cardiaque. Nous avons donc étudié son implication, via les récepteurs A1 et A2a, dans la fibrillation auriculaire. Nous avons observé une élévation très importante de l’adénosine dans la cavité auriculaire au cours de l’épisode de fibrillation auriculaire, et cette augmentation de l’adénosinémie pourrait participer à la permanence de la fibrillation.Dans une troisième partie nous avons évalué la corrélation entre les valeurs de l’ionogramme sanguin et celles de l’ionogramme sudoral et nous avons observé une corrélation entre la kaliémie et le potassium sudoral. Cela pourrait permettre de surveiller de manière continue etnon invasive les dyskaliémies, actrices des troubles du rythme. / The adenosine is an ubiquitous purinergic nucleotide which performs several functions in the body, in particular within the cardiovascular system, via his 4 receptors GPCRs: A1, A2a, A2B, A3. Thus the adenosinergic system is particularly involved in the cardiovascular pathology and in particular in the coronary disease and in the atrial fibrillation.In the coronary disease, the role of the A2a receptor is crucial because it participates in the control of the coronary flow. We compared the level of expression of this receptor in PBçCs and in fragments of coronary arteries taken from patients with coronaropathie. The expression of the A2a receptor in the PBMCs is correlated with that measured in the coronary arteries. These results indicate that the A2a receptor expressed by the PBMCs has a behavior similar to that of his in situ counterpart.The adenosine also modulates the heart rhythm. We thus studied her implication, via the A1 and A2a receptor, in the atrial fibrillation. We observed a very important rise of the adenosine in the left atrium during the episode of fibrillation, and we suggest that this increase in peripheral adenosine concentration could participate in the durability of the fibrillation.In the third part we estimated the correlation between the values of the blood ionogramme and those of the sweat ionogramme and we observed a correlation between the bllod concentration of potassium and the sweatpotassium. It could allow monitoring in a continuous and non-invasive way changes in blood potassium concentration which has a major role in cardiac rhytm diseases.
148

Genetic Background and Biomarkers of Atrial Fibrillation Progression and Recurrence

Büttner, Petra 28 August 2019 (has links)
Vorhofflimmern (VHF) ist eine progressive Krankheit, die sich morphologisch als fibrotische Remodellierung des Vorhofs manifestiert und klinisch durch einen Wechsel von paroxysmalem zu persistierendem VHF, eine Vergrößerung des links-atrialen Diameters und die intra-prozedurale Detektion von atrialen Bereichen mit niedrigen Potentialen gekennzeichnet ist. VHF-Progression ist mit schlechteren Therapieergebnissen, z.B. einer höheren VHF-Rezidivrate assoziiert. Zugrunde liegende Pathomechanismen sind unvollständig charakterisiert, geeignete Biomarker zur individuellen therapeutischen Stratifizierung sind nicht bekannt. Die Mehrzahl häufiger genetischer Varianten, die mit der VHF-Progression assoziiert sind, hat nur sehr kleine Effekte. Viele Varianten könnten hingegen additiv die Progression von VHF modulieren. Dieser Hypothese folgend wurden mit VHF-Progression assoziierte Varianten identifiziert und deren nicht-zufällige Häufung in Gen-Loci als Indiz für eine kontextuelle Relevanz des jeweiligen Gens gewertet. Die identifizierten Gene wurden der Kalzium-Signaltransduktion und der extrazelluläre Matrix (ECM)-Rezeptor-Interaktion zugeordnet. Zusätzlich wurden die zentralen Regulatoren dieser Signalwege, namentlich EGFR, RYR2, PRKCA, FN1 und LAMA1 identifiziert, die als pharmakologische Ziele in Frage kommen bzw. hinsichtlich ihrer Rolle bei der VHF-Progression untersucht werden müssen. Mit einer vergleichbaren Herangehensweise wurde gezeigt, dass die mit der Manifestation von VHF assoziierten Gene ZFHX3, ITGA9 und SOX5 auch mit der VHF-Progression assoziiert sind. Eine Analyse potentieller Biomarker identifizierte NT-pro ANP als spezifischen Marker mit direkter Korrelation zum Progressionsgrad des VHF. Zusätzlich wurde für die Marker NT-proANP, NT-proBNP und VCAM1 ein stufenweise signifikanter Anstieg korrelierend mit einem klinischen Wert zur Prognose von VHF-Rezidiven gezeigt. Durch die Anwendung unkonventioneller Konzepte und der Verwendung spezifischer Charakteristika der VHF-Progression konnten in der vorliegenden Arbeit potentielle Regulatoren und Biomarker der VHF-Progression identifiziert werden.:1. Introduction 5 1.1. Atrial fibrillation incidence and associated risk 5 1.2. Atrial fibrillation therapy and recurrence 6 1.3. Atrial fibrillation progression phenotypes 7 1.3.1. Atrial fibrillation type 7 1.3.2. Left atrial diameter 8 1.3.3. Low voltage areas 8 1.3.4. PR interval 8 1.4. Pathomechanisms of atrial fibrillation progression 9 1.4.1. Electrical remodeling 9 1.4.2. Structural remodeling and fibrosis 10 1.4.3. Autonomic remodeling 11 1.5. Genetic background of atrial fibrillation 11 1.5.1. Heritable atrial fibrillation and the impact of rare variants 12 1.5.2. Genetic predisposition and the impact of common variants 12 1.5.3. New concepts for GWAS analysis of genetic background 13 1.6. Personalized medicine 15 1.6.1. Clinical scores for risk prediction in atrial fibrillation 15 1.6.2. Clinical scores for prediction of AF progression and recurrence 15 1.6.3. New concepts in personalized medicine 16 1.7.1. Schematic overview on AF progression and associated open questions 16 2. Hypotheses 18 3. Publications 19 3.1. New concepts on genetic background of AF progression and recurrence 19 3.1.1. Genomic contributors to atrial electroanatomical remodeling and atrial fibrillation progression: Pathway enrichment analysis of GWAS data. (Publication 1) 20 3.1.2. Genomic Contributors to Rhythm Outcome of Atrial Fibrillation Catheter Ablation - Pathway Enrichment Analysis of GWAS Data. (Publication 2) 28 3.1.3. Identification of Central Regulators of Calcium Signaling and ECM-Receptor Interaction Genetically Associated With the Progression and Recurrence of Atrial Fibrillation. (Publication 3) 40 3.1.4. Association of atrial fibrillation susceptibility genes, atrial fibrillation phenotypes and response to catheter ablation: a gene-based analysis of GWAS data. (Publication 4) 47 3.1.5. PR Interval Associated Genes, Atrial Remodeling and Rhythm Outcome of Catheter Ablation of Atrial Fibrillation—A Gene-Based Analysis of GWAS Data. (Publication 5) 54 3.2. New concepts on biomarkers of AF progression and recurrence 3.2.1. Role of NT-proANP and NT-proBNP in patients with atrial fibrillation: Association with atrial fibrillation progression phenotypes. (Publication 6) 61 3.2.2. Prediction of electro-anatomical substrate using APPLE score and biomarkers. (Publication 7) 68 4. Conclusions 75 5. References 76 6. Abbreviations 86 7. Erklärungen zur vorgelegten Habilitationsschrift 87 8. Lebenslauf 88 9. Danksagung 91
149

Safety and efficacy of drug eluting stents vs bare metal stents in patients with atrial fibrillation: A systematic review and meta-analysis

Sambola, Antonia, Rello, Pau, Soriano, Toni, Bhatt, Deepak L., Pasupuleti, Vinay, Cannon, Christopher P., Gibson, C. Michael, Dewilde, Willem J.M., Lip, Gregory Y.H., Peterson, Eric D., Airaksinen, K. E.Juhani, Kiviniemi, Tuomas, Fauchier, Laurent, Räber, Lorenz, Ruiz-Nodar, Juan M., Banach, Maciej, Bueno, Héctor, Hernandez, Adrian V. 01 November 2020 (has links)
Objective: A systematic review and meta-analysis was performed to evaluate the safety and efficacy of drug-eluting stents (DES) vs bare-metal stents (BMS) in atrial fibrillation (AF) patients. Methods: We systematically searched 5 engines until May 2019 for cohort studies and randomized controlled trials (RCTs). Primary outcomes were major bleeding and major adverse cardiac events (MACE) including cardiac death, myocardial infarction, target vessel revascularization (TVR) or stent thrombosis. Effects of inverse variance random meta-analyses were described with relative risks (RR) and their 95% confidence intervals (CI). We also stratified analyses by type (triple [TAT] vs dual [DAT]) and duration (short-vs long-term) of antithrombotic therapy. Results: Ten studies (3 RCTs; 7 cohorts) including 10,353 patients (DES: 59.6%) were identified. DES did not show higher risk of major bleeding than BMS (5.6% vs 6.9%, RR 1.07; 95%CI, 0.89–1.28, p = 0.47; I2 = 0%) or MACE (12% vs 13.6%; RR 0.96; 95%CI 0.81–1.13, p = 0.60; I2 = 44%). Although, DES almost decreased TVR risk (6.4% vs 8.4%, RR 0.78; 95%CI, 0.61–1.01, p = 0.06; I2 = 15%). Stratified analyses by type and duration of antithrombotic therapy showed no differences in major bleeding or MACE between both types of stents. In DES, long-term TAT showed higher major bleeding risk than long-term DAT (7.7% vs 4.7%, RR 1.48, 95%CI 1.08–2.03, p = 0.01; I2 = 12%). For both types of stents, MACE risk was similar between TAT and DAT. Conclusions: In patients with AF undergoing PCI, DES had similar rate of major bleeding and MACE than BMS. DAT seems to be a safer antithrombotic therapy compared with TAT. / Janssen Pharmaceuticals / Revisión por pares
150

Uncovering Reentrant Drivers of Atrial Fibrillation in the Human Heart

Hansen, Brian Josef 13 November 2020 (has links)
No description available.

Page generated in 0.0335 seconds