• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 82
  • 40
  • 31
  • 26
  • 9
  • 6
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 580
  • 95
  • 75
  • 73
  • 72
  • 71
  • 69
  • 55
  • 49
  • 49
  • 46
  • 44
  • 43
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Lakes of the Peace-Athabasca Delta: Controls on nutrients, chemistry, phytoplankton, epiphyton and deposition of polycyclic aromatic compounds (PACs)

Wiklund, Johan Andre January 2012 (has links)
Floodplain lakes are strongly regulated by river connectivity because floodwaters exert strong influence on the water balance, the physical, chemical and biological limnological conditions, and the influx of contaminants. The Peace-Athabasca Delta (PAD) in northern Alberta (Canada) is a hydrologically complex landscape and is an important node in the upper Mackenzie River Drainage Basin. The ecological integrity of the PAD is potentially threatened by multiple environmental stressors, yet our understanding of the hydroecology of this large floodplain remains underdeveloped. Indeed, ever since the planning and construction of the WAC Bennett Dam (1960s), concerns have grown over the effects of upstream human activities on the lakes of the PAD. More recently, concerns over the health of the PAD have intensified and come to the fore of national and international dialogue due to water abstraction and mining and processing activities by the rapidly expanding oil sands industry centred in Fort McMurray Alberta. Currently, widespread perception is that upstream human activities have reduced water levels and frequency of flooding at the PAD, which have lowered nutrient availability and productivity of perched basin lakes, and have increased supply of pollutants from oil sands. However, these perceptions remain based on insufficient knowledge of pre-impact conditions and natural variability. Current and past relations between hydrology and limnology of PAD lakes are mostly undocumented, particularly during the important spring freshet period when the effects of river flood waters are strongest. Similarly, knowledge of the deposition of oil-sands- related contaminants in the PAD remains insufficient to determine whether anthropogenic activities have increased the deposition of important oil-sands-related contaminants such as polycyclic aromatic compounds (PACs) relative to natural processes. Such knowledge gaps must be filled to achieve effective monitoring, policy and governance concerning impacts of industrial development and the protection of human and environmental health within the PAD and Mackenzie drainage basin. This thesis examines the effects of river flooding (and the lack of) on water clarity, nutrients, chemistry, phytoplankton abundance, epiphyton community composition and the deposition of polycyclic aromatic compounds (PACs) in lakes of the Peace-Athabasca Delta. To determine the role of flooding on contemporary epiphytic diatom communities (an abundant and diverse guild of primary producers in PAD lakes), a field experiment was conducted examining the community composition and abundance of epiphytic diatoms in four PAD lakes. Two of these four lakes had received floodwaters that spring and two had not. Epiphytic diatom communities in each lake were sampled during the peak macrophyte biomass period (summer) from two macrophyte taxa (Potamogeton zosteriformis, P. perfoliatus var. richardsonii) and from polypropylene artificial substrates previously deployed that spring. A two-way analysis of similarity (ANOSIM) test identified that epiphytic diatom community composition differed between lakes that flooded and those that did not flood. From the use of similarity percentage (SIMPER) analysis, diatom taxa were identified that discriminate between flooded and non-flooded lakes. The relative abundance of ‘strong flood indicator taxa’ was used to construct an event-scale flood record spanning the past ~180 years using analyses of sedimentary diatom assemblages from a closed-drainage lake (PAD 5). Results were verified by close agreement with an independent paleo-flood record from a nearby flood-prone oxbow lake (PAD 54) and historical records. Comparison of epiphytic diatoms in flooded and non-flooded lakes in this study provides a promising approach to detect changes in flood frequency, and may have applications for reconstructing other pulse-type disturbances such as hurricanes and pollutant spills. Additionally, this study demonstrates that artificial substrates can provide an effective bio-monitoring tool for lakes of the PAD and elsewhere. To improve our understanding of the hydrolimnological responses of lake in the PAD to flooding, repeated measurements over three years (2003-05) were made on a series of lakes along a hydrological gradient. This allowed the role of river flooding to be characterized on limnological conditions of lakes and to identify the patterns and timescales of limnological change after flooding. River floodwaters elevate lake water concentrations of suspended sediment, total phosphorus (TP), SO4 and dissolved Si (DSi), and reduce concentrations of total Kjeldahl nitrogen (TKN), DOC and most ions. River flooding increases limnological homogeneity among lakes, because post-flood conditions are strongly affected by the river water properties. After floodwaters recede, limnological conditions become more heterogeneous among lakes in response to diversity of local basin influences (geology, slope, vegetation, depth, fetch, and biological communities and processes), and limnological changes occur at two distinct timescales. In the weeks to months after flooding, water clarity increases as suspended sediments and TP settle out of the water column. In the absence of flooding for many years to decades, evaporative concentration leads to an increase in most nutrients (TKN, inorganic N, and dissolved P), DOC and ions. Contrary to a prevailing paradigm, these results suggest that regular flooding is not required to maintain high nutrient concentrations. In light of anticipated declines in river discharge, limnological conditions in the southern Athabasca sector will become increasingly less dominated by the short-term effects of flooding, and resemble nutrient- and solute-rich lakes in the northern Peace sector that are infrequently flooded. To determine the roles of the Athabasca River and atmospheric transport as vectors for the deposition of PACs in the PAD, sediment cores spanning the last ~200 years were collected from three lakes within the delta. A closed-drainage basin elevated well above the floodplain (PAD 18) was selected to determine temporal patterns of change in PAC concentration due to atmospheric deposition and within-basin production of PACs. Known patterns of paleohydrological changes at the other two lakes (PAD 23 and 31) were used to assess the role of the Athabasca River in delivering PACs to the Athabasca Delta during the ~200 year. Well- dated sediment core samples were analysed for 52 alkylated and non-alkylated PACs (method EPA 3540/8270-GC/MS). Sediments deposited in the non-flood prone lake (PAD 18) contained lower concentrations of total PACs compared to sediments deposited during flood-prone periods in the other study lakes, and were dominated by PACs of a pyrogenic rather than bitumen origin. Multivariate analysis of similarity tests identified that the composition of PACs differs between sediments deposited during not flood-prone and flood-prone periods. Subsequent Similarities Percentage (SIMPER) analysis was used and identified seven PACs that are preferentially deposited during flood-prone periods. These seven PACs are bitumen-associated, river-transported and account for 51% of the total PACs found in oil-sands sediment. At PAD 31, which has been flood-prone both before and since onset of Athabasca oil sands development, identified no measureable differences in both the proportion and concentration of the river-transported indicator PACs in sediments deposited pre-1940s versus post-1982. Our findings suggest that natural erosion of exposed bitumen along the banks of the Athabasca River and its tributaries is the main process delivering PACs to the Athabasca Delta, and that the spring freshet is a key period for contaminant mobilization and transport. Such key baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring and surveillance programs for the lower Athabasca River watershed in the face of future oil sands development. Further monitoring activities and additional paleolimnological studies of the depositional history of PACs and other oil-sands- and non-oil-sands-related contaminants is strongly recommended. Overall, results of this research identify that river flooding exerts strong control on physical, chemical and biological conditions of lakes within the PAD. However, contrary to prevailing paradigms, the PAD is not a landscape that has been adversely and permanently affected by regulation of the Peace River and industrial development of the oil sands along the Athabasca River. Instead, data from contemporary and paleolimnological studies identify that natural processes continue to dominate the delivery of water and contaminants to the delta. Regular and frequent flooding is not essential to maintain the supply of nutrients and productivity of delta lakes, which has been a widespread paradigm that developed in the absence of objective scientific data. Instead, nutrient concentrations rise over years to decades after flooding and lake productivity increases. During the thesis research, novel approaches were developed and demonstrated to be effective. Namely, new artificial substrate samplers were designed for aquatic biomonitoring that accrue periphyton and can identify the occurrence of flood events. Also, paleolimnological methods were employed to characterize the composition and concentration of PACs supplied by natural processes prior to oil sands industrial activity, which serves as an important benchmark for assessing industrial impacts. These are effective methods that can be employed to improve monitoring programs and scientific understanding of the factors affecting this world-renowned landscape, as well as floodplains elsewhere.
332

Skyfallskartering och åtgärdsanalys för Akademiska sjukhuset i Uppsala : Hydraulisk modellering i MIKE 21 och känslighetsanalys / Cloudburst mapping and flood prevention analysis for Uppsala University Hospital : Hydraulic modelling in MIKE 21 and sensitivity analysis

Lampinen, Alexi January 2020 (has links)
Översvämningar till följd av skyfall har blivit allt vanligare och förväntas att öka i takt med klimatförändringarna. Översvämningar kan ställa till stora skador för ett samhälle, framförallt när de samhällsviktiga verksamheterna blir drabbade. För att undvika att detta sker bör samhället vara byggt för att tåla stora volymer vatten som faller vid ett skyfall. Ett steg för att nå dit är att göra en skyfallskartering där flödesvägar, vattenvolymer och översvämningens utbredning tas fram genom hydraulisk modellering. Utifrån skyfallskarteringen kan sårbara områden upptäckas och förebyggande åtgärder kan utföras för att minska översvämningens negativa påverkan. Akademiska sjukhuset i Uppsala är en samhällsviktig verksamhet och har tidigare haft problem med översvämningar. I den här studien har en skyfallskartering utförts på Akademiska sjukhusets område för att ta reda på översvämningens utbredning vid ett skyfall och vilka åtgärder som lämpar sig för att förhindra översvämningar. Skyfallskarteringen utfördes i det tvådimensionella (2D) hydrauliska modelleringsprogrammet MIKE 21 Flow Model. Eftersom en skyfallskartering baseras på många generaliseringar finns det vissa osäkerheter kring valet av parametrar. Därför har även en känslighetsanalys utförts kring valet av regntyp (Chicago Design Storm (CDS) jämfört med ett blockregn), regnets varaktighet, grönytornas avrinningskoefficient och markens infiltrationshastighet. Indata till modellen baserades på olika kartdata som bearbetades i GIS-programmet ArcMap. Flera olika regn med varierande återkomsttid simulerades. Resultaten visade att det blir översvämning inne på sjukhusområdet vid ett 100-årsregn som förvärras när återkomsttiden ökar. Åtgärdsanalysen utfördes genom att lägga in förändringar i höjdmodellen för att se hur det påverkar översvämningens utbredning. Analysen visade att åtgärder som jordvallar och höjdsättning av marken kan tillämpas på området för att minska översvämningsrisken. Resultatet från känslighetsanalysen visade att ett CDS-regn ger större översvämningskonsekvenser i modelleringen än om ett blockregn av samma återkomsttid och varaktighet används. Känslighetsanalysen av varaktigheterna visade att en lång varaktighet kan leda till låga flödestoppar som inte representerar ett skyfall väl. En avrinningskoefficient på 0,4 beskriver infiltrationen i området väl och när en större avrinningskoefficient används tenderar översvämningen att bli större på grönytorna. Till sist visade resultatet att infiltrationshastigheten är en känslig parameter som bör väljas efter mer noggrann analys av marken i modelleringsområdet. / Flooding as a cause of cloudbursts have become more common and is expected to increase with climate change. Floods can cause substantial damage to a society, especially when the critical societal functions are affected. To avoid this the city should be built to tolerate large volumes of water from cloudbursts. As a step on the way to accomplish this, a cloudburst mapping could be made where flow paths, water volumes and the extent of the flooding are studied through hydraulic modelling. Through the cloudburst mapping, vulnerable areas can be spotted, and flood prevention measures can be taken to lessen the extent of the floods negative impact. Uppsala University Hospital serves a critical societal function and has previously had problems with flooding. In this project a cloudburst mapping has been made in the two dimensinoal (2D) hydraulic modelling program, MIKE 21. This was done to find out the extent of a flood caused by a cloudburst event and what measures that can be taken to prevent floods. A cloudburst mapping is based off many generalized assumptions and there are some uncertainties when selecting the parameters. Because of this, a sensitivity analysis was performed on the selection of rain-type (Chicago Design Storm (CDS) vs. block-rain), rain duration, the runoff coefficient and the soil's infiltration capacity. The inputs of the model were based off different geographic data and then constructed in the GIS-program ArcMap. Several different rain events with varying duration and return periods were simulated. The results showed that there is considerable flooding in the area after a rain with a 100-year return period and it gets worse when the return period increases. The flood prevention analysis was made by editing the terrain to mimic flood prevention measures and study how the extent of the flood responds to the edits. The analysis showed that measures like soil barriers and changes in elevation were effective in lessening the risk of flooding. The results from the sensitivity analysis showed that a CDS-rain causes a more significant flooding compared to a block-rain of the same return period and duration. The sensitivity analysis of the rain duration proved that a long duration can lead to flat flow curves that doesn't resemble a flow curve from a cloudburst event. A runoff coefficient of 0.4 describes the infiltration in the area well and with a larger coefficient the flooding on greenery tend to grow. Lastly, the infiltration capacity proved to be a sensitive parameter that needs to be selected carefully, preferably after a thorough soil analysis.
333

Détection d'attaques dans un système WBAN de surveillance médicale à distance / Attacks detection in a WBAN system for remote medical monitoring

Makke, Ali 30 May 2014 (has links)
L'un des défis majeurs du monde de ces dernières décennies a été l'augmentation continue de la population des personnes âgées dans les pays développés. D’où la nécessité de fournir des soins de qualité à une population en croissance rapide, tout en réduisant les coûts des soins de santé. Dans ce contexte, de nombreux travaux de recherche portent sur l’utilisation des réseaux de capteurs sans fil dans les systèmes WBAN (Wireless Body Area Network), pour faciliter et améliorer la qualité du soin et de surveillance médicale à distance. Ces réseaux WBAN soulèvent de nouveaux défis technologiques en termes de sécurité et de protection contre les anomalies et les attaques. Le mode de communication sans fil utilisé entre ces capteurs et l’unité de traitement accentue ces vulnérabilités. En effet les vulnérabilités dans un système WBAN se décomposent en deux parties principales. La première partie se compose des attaques possibles sur le réseau des capteurs médicaux et sur le médium de communications sans fils entre ces capteurs et l’unité de traitement. La deuxième partie se compose des attaques possibles sur les communications à haut débit entre le système WBAN et le serveur médical. L’objectif de cette thèse est de répondre en partie aux problèmes de détection des attaques dans un système WBAN de surveillance médicale à distance. Pour atteindre cet objectif, nous avons proposé un algorithme pour détecter les attaques de brouillage radio (jamming attack) qui visent le médium de communications sans fils entre les capteurs et l’unité de traitement. Ainsi nous avons proposé une méthode de mesure de divergence pour détecter les attaques de type flooding qui visent les communications à haut débit entre le système WBAN et le serveur médical. / One of the major challenges of the world in recent decades is the continued increase in the elderly population in developed countries. Hence the need to provide quality care to a rapidly growing population while reducing the costs of health care is becoming a strategic challenge. In this context, many researches focus on the use of wireless sensor networks in WBAN (Wireless Body Area Network) systems to facilitate and improve the quality of medical care and remote monitoring. These WBAN systems pose new technological challenges in terms of security and protection against faults and attacks. The wireless communication mode used between the sensors and the collection node accentuates these vulnerabilities. Indeed vulnerabilities in a WBAN system are divided into two main parts. The first part consists of the possible attacks on the network of medical sensors and on the wireless communications medium between the sensors and the processing unit. The second part consists of possible attacks on high-speed communications between the WBAN system and the medical server. The objective of this thesis is to meet some of the problems of detecting attacks in a WBAN system for remote medical monitoring. To achieve this goal, we propose an algorithm to detect the jamming attacks targeting the wireless communications medium between the sensors and the processing unit. In addition we propose a method of measuring divergence to detect the flooding attacks targeting the high-speed communications between the WBAN system and the medical server.
334

Web-based prototype for protecting controllers from existing cyber-attacks in an industrial control system / Webbaserad prototyp för att skydda styrsystem från förekommande cyberattacker i ett industriellt kontrollsystem

Sanyang, Pa January 2020 (has links)
Industrial control system or ICS is a critical part of the infrastructure in society. An example of ICS is the rail networks or energy plants like the nuclear plant. SCADA is an ICS system following a hierarchical structure. Due to the fact that a control system can be very large, monitoring remote through networks is an effective way to do so. But because of digitalization ICS or SCADA systems are vulnerable to cyber attacks that can hijack or intercept network traffic or deny legitimate user services. SCADA protocols (e.g. Modbus, DNP3) that are prone to get attacks due to not being a secure protocol make a SCADA system even more vulnerable to attacks. The paper focuses on how to best protect the network traffic between an HMI as the client and a different controller as the server from attacks. The proposed solution, the prototype, is based on the reverse proxy server setup to protect controllers from the external network traffic. Only the reverse proxy server, or gateway server, can forward a client request to the intended controller. The gateway server, a web-based solution, will be the additional security layer that encrypts the payload in the application layer using TLS version 1.2 by using HTTPS protocol, thereby protect from usual security threats. The prototype went through a penetration testing of MITM (Based on ARP-poisoning), SYN flooding, slow HTTP POST attacks. And the result indicated that the prototype was vulnerable to SYN flooding and the network traffic was intercepted by the MITM. But from the Confidentiality-Integrity-Availability (C.I.A) criteria, the prototype did uphold the integrity and confidentiality due to the TLS security and successful mitigation of certain attacks. The results and suggestions on how to improve the gateway server security were discussed, including that the testing was not comprehensive but that the result is still valuable. In conclusion, more testing in the future would most likely showcase different results, but that will only mean to better the security of the gateway server, the network that the client and gateway server runs in and the physical security of the location where the client and gateway server is located. / Industrial Control System (ICS, sve. Industriella Kontrollsystem) är en kritisk del av infrastrukturen i samhället. Ett exempel på ICS är järnvägsnät eller energianläggningar som kärnkraftverket. SCADA är ett ICS-system som följer en hierarkisk struktur. Eftersom ett kontrollsystem kan täcka stora ytor är fjärrövervakning och fjärrstyrning via nätverk ett effektivt sätt att göra det på. Men på grund av digitalisering är ICS- eller SCADA-system sårbara för cyberattacker som kan kapa nätverkstrafik eller förneka legitima användare från att nå vissa tjänster. SCADA-protokoll (t.ex. Modbus, DNP3) som är benägna att få attacker på grund av att de inte är ett säkert protokoll gör SCADA-system ännu mer sårbart för attacker. Uppsatsen fokuserar huvudsakligen på hur man bäst skyddar nätverkstrafiken mellan en HMI som klient och en annan controller som servern från attacker. Den föreslagna lösningen, prototypen, är baserad på hur en reverse proxy server är uppsatt för att skydda styrenheter från den externa nätverkstrafiken. Endast reverse proxy servern eller gateway-servern kan vidarebefordra en begäran från en klient till den avsedda styrenheten. Gateway-servern, en webbaserad lösning, kommer att vara det extra säkerhetslagret som krypterar nyttolasten (eng. payload) i applikationslagret med TLS version 1.2 med hjä lp av protokollet HTTPS, och därmed skyddar mot de mest förekommande säkerhetshot som vill se och påverka skyddad information. Prototypen genomgick en penetrationstestning av MITM (Baserat på ARP-poisoning), SYN-flooding, slow HTTP POST-attacker. Och resultatet indikerade att prototypen var sårbar för SYN-flooding och nätverkstrafiken avlyssnades genom MITM. Men baserad på kriterierna för C.I.A (sve. Konfidentialitet, Integritet och Tillgänglighet) upprätthöllprototypen integriteten och konfidentialiteten på grund av säkerhetsprotokollen TLSv1.2 och framgångsrika minskningar av vissa attacker. Resultaten och förslag på hur man kan förbättra prototypen diskuterades, inklusive att testningen inte var omfattande men att resultatet fortfarande är värdefullt. Sammanfattningsvis skulle fler tester i framtiden sannolikt visa ett helt annat resultat, men det kommer bara att innebära att förbättra säkerheten för gateway-servern, nätverket som klienten och gateway-servern kör i och den fysiska säkerheten för platsen där klienten och gateway-servern befinner sig inom.
335

Geochemical investigation and quantification of potential CO₂ storage within the Arbuckle aquifer, Kansas

Campbell, Brent D. January 1900 (has links)
Master of Science / Department of Geology / Saugata Datta / With the ever-rising atmospheric concentrations of CO₂ there arises a need to either reduce emissions or develop technology to store or utilize the gas. Geologic carbon storage is a potential solution to this global problem. This work is a part of the U.S. Department of Energy small-scale pilot studies investigating different areas for carbon storage within North America, with Kansas being one of them. This project is investigating the feasibility for CO₂ storage within the hyper-saline Arbuckle aquifer in Kansas. The study incorporates the investigation of three wells that have been drilled to basement; one well used as a western calibration study (Cutter), and the other two as injection and monitoring wells (Wellington 1-28 and 1-32). Future injection will occur at the Wellington field within the Arbuckle aquifer at a depth of 4,900-5,050 ft. This current research transects the need to understand the lateral connectivity of the aquifers, with Cutter being the focus of this study. Three zones are of interest: the Mississippian pay zone, a potential baffle zone, and the Arbuckle injection zone. Cored rock analyses and analyzed formation water chemistry determined that at Wellington there exists a zone that separated the vertical hydrologic flow units within the Arbuckle. This potential low porosity baffle zone within the Arbuckle could help impede the vertical migration of the buoyant CO₂ gas after injection. Geochemical analysis from formation water within Cutter indicates no vertical separation of the hydrologic units and instead shows a well-mixed zone. The lateral distance between Cutter and Wellington is approximately 217 miles. A well-mixed zone would allow the CO₂ plume to migrate vertically and potentially into potable water sources. Formation brine from Cutter was co-injected with supercritical CO₂ into a cored rock from within the Arbuckle (7,098 ft.). Results show that the injected CO₂ preferentially preferred a flow pathway between the chert nodules and dolomite. Post reaction formation chemistry of the brine showed the greatest reactivity occurring with redox sensitive species. Reactivity of these species could indicate that they will only be reactive on the CO₂ plumes front, and show little to no reactivity within the plume.
336

A model to investigate the impact of flooding on the vulnerability of value of commercial properties

Bhattacharya, Namrata January 2014 (has links)
Flooding has the potential to have significant impact on the value of properties depending on the level of inherent vulnerability. Experts argue that it is not the actual risk but the perception of risk among property holders that influences vulnerability of value. The hypothesis that changing perception of flood risk could make property value vulnerable in the market is the main focus of the research. This dimension of research has received very low attention in commercial property literature. The existing knowledge base of flooding and property value reveals that focus has been largely associated with residential properties. Conceptual understanding of the extent and scale of the effect of flooding on the vulnerability of property value of commercial properties would be worthwhile for relevant stakeholders. The research methodology follows a quantitative approach with sequential application: of literature review, conceptual model generation, data collection from primary and secondary sources with remote questionnaire survey of selected study areas in the UK. The conceptual model was operationalised using analysis and interpretation of the collected data and finally cross validated with secondary data gained from commercial real estate experts . The strength of this research lies in the conceptualisation of the subject matter of property value in the context of flood vulnerability. This work provides innovative conceptual insight towards business vulnerability and vulnerability of value. The variables contributing towards vulnerability were hierarchically ranked using both collected data and deductive methods. The patterns of impact and recovery analysis emphasized that within the commercial sector indirect effects of flooding should be given equal importance with direct damages. The implication of perception on the vulnerability of property value showed a slightly different picture from business vulnerability in the chosen study areas when differentiated based on flood experience. In a nutshell the study reflected that the commercial property sector does not take flooding as one of their priorities. This is in part due to differential attitude towards risk of the population within the flood plain based on their knowledge and experience of flooding. The perception of stakeholders towards vulnerability of value can change with increasing magnitude and severity of floods and it is possible that the implications on market value of commercial properties will be visible in the future. Practitioners and researchers will find this study useful in developing an understanding of the vulnerability of commercial property value in the context of changing flood risk.
337

Modeling chemical EOR processes using IMPEC and fully IMPLICIT reservoir simulators

Fathi Najafabadi, Nariman 05 November 2009 (has links)
As easy target reservoirs are depleted around the world, the need for intelligent enhanced oil recovery (EOR) methods increases. The first part of this work is focused on modeling aspects of novel chemical EOR methods for naturally fractured reservoirs (NFR) involving wettability modification towards more water wet conditions. The wettability of preferentially oil wet carbonates can be modified to more water wet conditions using alkali and/or surfactant solutions. This helps the oil production by increasing the rate of spontaneous imbibition of water from fractures into the matrix. This novel method cannot be successfully implemented in the field unless all of the mechanisms involved in this process are fully understood. A wettability alteration model is developed and implemented in the chemical flooding simulator, UTCHEM. A combination of laboratory experimental results and modeling is then used to understand the mechanisms involved in this process and their relative importance. The second part of this work is focused on modeling surfactant/polymer floods using a fully implicit scheme. A fully implicit chemical flooding module with comprehensive oil/brine/surfactant phase behavior is developed and implemented in general purpose adaptive simulator, GPAS. GPAS is a fully implicit, parallel EOS compositional reservoir simulator developed at The University of Texas at Austin. The developed chemical flooding module is then validated against UTCHEM. / text
338

Development of an implicit full-tensor dual porosity compositional reservoir simulator

Tarahhom, Farhad 11 January 2010 (has links)
A large percentage of oil and gas reservoirs in the most productive regions such as the Middle East, South America, and Southeast Asia are naturally fractured reservoirs (NFR). The major difference between conventional reservoirs and naturally fractured reservoirs is the discontinuity in media in fractured reservoir due to tectonic activities. These discontinuities cause remarkable difficulties in describing the petrophysical structures and the flow of fluids in the fractured reservoirs. Predicting fluid flow behavior in naturally fractured reservoirs is a challenging area in petroleum engineering. Two classes of models used to describe flow and transport phenomena in fracture reservoirs are discrete and continuum (i.e. dual porosity) models. The discrete model is appealing from a modeling point of view, but the huge computational demand and burden of porting the fractures into the computational grid are its shortcomings. The affect of natural fractures on the permeability anisotropy can be determined by considering distribution and orientation of fractures. Representative fracture permeability, which is a crucial step in the reservoir simulation study, must be calculated based on fracture characteristics. The diagonal representation of permeability, which is customarily used in a dual porosity model, is valid only for the cases where fractures are parallel to one of the principal axes. This assumption cannot adequately describe flow characteristics where there is variation in fracture spacing, length, and orientation. To overcome this shortcoming, the principle of the full permeability tensor in the discrete fracture network can be incorporated into the dual porosity model. Hence, the dual porosity model can retain the real fracture system characteristics. This study was designed to develop a novel approach to integrate dual porosity model and full permeability tensor representation in fractures. A fully implicit, parallel, compositional chemical dual porosity simulator for modeling naturally fractured reservoirs has been developed. The model is capable of simulating large-scale chemical flooding processes. Accurate representation of the fluid exchange between the matrix and fracture and precise representation of the fracture system as an equivalent porous media are the key parameters in utilizing of dual porosity models. The matrix blocks are discretized into both rectangular rings and vertical layers to offer a better resolution of transient flow. The developed model was successfully verified against a chemical flooding simulator called UTCHEM. Results show excellent agreements for a variety of flooding processes. The developed dual porosity model has further been improved by implementing a full permeability tensor representation of fractures. The full permeability feature in the fracture system of a dual porosity model adequately captures the system directionality and heterogeneity. At the same time, the powerful dual porosity concept is inherited. The implementation has been verified by studying water and chemical flooding in cylindrical and spherical reservoirs. It has also been verified against ECLIPSE and FracMan commercial simulators. This study leads to a conclusion that the full permeability tensor representation is essential to accurately simulate fluid flow in heterogeneous and anisotropic fracture systems. / text
339

Two-Phase Flow Experiments on Counter-Current Flow Limitation in a model of the Hot Leg of a Pressurized Water Reactor (2015 test series)

Beyer, Matthias, Lucas, Dirk, Pietruske, Heiko, Szalinski, Lutz 15 February 2017 (has links) (PDF)
Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.
340

Dynamiques et gestion environnementales de 1970 à 2010 des zones humides au Sénégal : étude de l'occupation du sol par télédétection des Niayes avec Djiddah Thiaroye Kao (à Dakar), Mboro (à Thiès et Saint-Louis) / Dynamics and environmental management of Senegal wedlands from 1970 to 2010 : land cover remote sensing analysis of Niayes Djiddah Thiaroye Kao (Dakar), Mboro (Thiès et Saint-Louis)

Ndao, Mariétou 09 May 2012 (has links)
Les «Niayes», zones humides côtières du Sénégal constituent des écosystèmes fragiles, richesen biodiversité tout en étant traditionnellement des zones de maraîchage dans unenvironnement sahélien. La grande sécheresse des années 1970 qui a frappé l’ensemble despays du Sahel, s’est répercutée sur les Niayes par un afflux de populations rurales venant del’intérieur du pays pour y trouver des moyens de subsistance. Outre la sécheresse, cettemigration massive a considérablement augmenté la pression foncière et engendré à la fois uneurbanisation mal maîtrisée, notamment autour des grandes agglomérations, et une mise envaleur agricole; les deux portant atteinte à la valeur environnementale de ces écosystèmescôtiers. Depuis quelques années, on assiste à des hivernages particulièrement pluvieux. Ceretour pluviométrique intervenant dans des zones urbanisées de façon anarchique provoquedes inondations accompagnées de conditions sanitaires précaires pour les populations les plusdéfavorisées. A la variabilité pluviométrique, risque d’apparence naturel, s’joutent desfacteurs de risques anthropiques comme l’aménagement du territoire non maîtrisé, le nonrespectdu cadre réglementaire, diverses pollutions d’origine agricole et industrielle.Cette thèse, après avoir introduit la notion de zone humide et avoir présenté les Niayes de laGrande Côte en général et des trois zones d’étude focus (Pikine, banlieue de Dakar ; Mboro,région de Thiès; Saint-Louis), retrace leurs problèmes environnementaux et les différentespolitiques d’environnement. L’évolution de l’occupation du sol des Niayes est étudiée parrecours à l’imagerie satellitale pour la période 1986-2010 pour la confronter à la gestion deces écosystèmes sensibles et s’interroger sur la pertinence des politiques mises en place dansun esprit de développement durable. / The “Niayes”, coastal wetlands of Senegal, constitute fragile ecosystems that are rich inbiodiversity while traditionally being gardening areas in the “Sahelien” environment. The bigdrought of the 1970s that struck all the Sahel countries also affected the “Niayes” by an influxof rural populations coming from inside the country in search of livelihood. Besides theextreme drought, mass migration considerably increased the proprietary pressure and at thesame time generated an uncontrolled urbanization, especially around the big agglomerationsand agricultural development: both of them undermine the environmental value of thesecoastal ecosystems. In recent years, we have witnessed particularly rainy seasons. This returneof rainfall involved in urbanized areas causes flooding, accompanied by precarious sanitaryconditions for the most unprivileged populations. The rainfall variability, risk of naturalappearance, is added to anthropogenic risk factors such as the non-mastered regionalplanning, the failure of the regulatory framework, and the pollution from various agriculturaland industrial sources.This thesis, after having introduced the concept of wet zones and having presented the Niayesof the Great Coast in general, and of the three study areas (Pikine, outskirts of Dakar; Mboro,Thies region; and Saint-Louis) in particular, traces their environmental problems and variouspolitical differences. Land use of the Niayes is analysed by using remote sensing data for theperiod 1986-2010 to confront its evolution to the management of the sensible ecosystems andquestion the relevance of the implemented politics in the spirit of sustainable development.

Page generated in 0.046 seconds