• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 24
  • 18
  • 16
  • 13
  • 9
  • 8
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 292
  • 39
  • 29
  • 25
  • 25
  • 24
  • 24
  • 21
  • 21
  • 20
  • 18
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Changes in Social Networks and Narratives associated with Lake Erie Water Quality Management after the 2014 Toledo Water Crisis

Miles, Austin January 2020 (has links)
No description available.
192

Enhanced Electrospray Ionization for Mass Spectrometry and Ion Mobility Spectrometry

Zhou, Li 06 July 2006 (has links) (PDF)
Electrospray ionization (ESI) has become one of the most commonly used ionization techniques for mass spectrometry (MS) and ion mobility spectrometry (IMS), and efforts continue to improve its performance. ESI-MS is most recognized for its wide application to biomacromolecules where high sensitivity is of paramount importance. However, the major limitation in sensitivity with ESI-MS is due to its low ion transmission efficiency from the ESI source into the sampling orifice and through any stages utilized for transfer of ions from atmosphere to vacuum in the MS. A series of atmospheric pressure ion focusing interfaces were designed and implemented to enhance the performance of ESI-MS. The technical objective of this work was to improve sensitivity and detection limits of ESI-MS using a combination of concentric high velocity converging gas flow (aerodynamic focusing) and regulated external electric field (electrostatic focusing) to assist in focusing and transporting ions from the ESI sprayer tip into the sampling nozzle of the MS. The separation time in IMS, based on differing gas phase ion mobilities, ranges from several hundred microseconds to milliseconds. This allows faster analysis than most other conventional separation techniques, such as gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). However, the major limitation in ESI-IMS is its low resolution. It is believed that one of the most important contributions to low resolution in ESI-IMS is unwanted ion penetration through the ion gate. In order to solve this ion penetration problem, two mechanical ion gates were designed and optimized to assist in gating sprayed ions from the ESI source into the drift region of the IMS with improved sensitivity and resolution at atmospheric pressure. Applying a voltage to the ion gate and using a high flow drift gas helped to further improve the performance of ESI-IMS. Reduced pressure IMS should help to eliminate clustering and multiple peaks and, hence, improve experimental resolution when using ESI. Therefore, I report the design, construction and evaluation of new IMS systems for reduced pressures. However, the performance of the reduced pressure IMS was not as good as when using atmospheric pressure IMS.
193

Investigation of Novel Microseparation Techniques

Liu, Yansheng 18 April 2007 (has links) (PDF)
Ultrahigh pressure liquid chromatography (UHPLC) makes it possible to use very small particles (< 2 µm) as packing materials to provide high column efficiencies. Results from a careful comparison of small porous and nonporous particles show that when the particle size is small enough (< 2 µm), both porous and nonporous particles give excellent performance, and the differences in column efficiencies between porous and nonporous particles become insignificant. Columns packed with bare diamond particles could separate small molecules, especially polar molecules, however, severe tailing occurred for less polar compounds. The polybutadiene coated diamond particles gave greater retention and better separation of small molecules compared to bare particles, although no improvement in column efficiency was observed. Changes in surface bonding of thermally hydrogenated diamond particles was achieved by chemical modification using various organic peroxides with or without reagents containing long carbon chain functional groups. It appears that the alkyl groups were attached onto the diamond surface with limited coverage. LC experiments did not demonstrate good separation; however, changes in LC behavior were observed. A repetitive solvent programming approach was successfully applied to the analysis of a continuous sample stream in microbore LC. Each analysis cycle consisted of three steps: pseudo-injection, elution and rinse. In the pseudo-injection step, elution with a non- or poor-eluting solvent produced a concentrated sample plug due to on-column focusing. Factors influencing peak symmetry, resolution and analysis cycle length were investigated. Quantitative analysis of a continuous sample stream is possible under certain operating conditions. Electric field gradient focusing (EFGF) devices with distributed resistor substrates could focus proteins in the separation channel, however, the focused bands were not stable, and the repeatability was poor due to the formation of bubbles and pH gradient in the separation channel. Both fiber-based and porous glass capillary-based planar EFGF devices with changing cross-sectional area (CCSA) channels were constructed and evaluated with the aid of a home-made scanning laser-induced fluorescence detection system. The fiber-based CCSA EFGF devices gave poorer performance compared with glass capillary based devices. Porous glass capillary-based EFGF devices could focus single proteins and separate mixtures of two to three proteins.
194

Microchip Thermal Gradient Gas Chromatography

Wang, Anzi 01 December 2014 (has links) (PDF)
Although the airbath oven is a reliable heating method for gas chromatography (GC), resistive heating is needed for higher analytical throughput and on-site chemical analysis because of size, heating rate and power requirements. In the last thirty years, a variety of resistive heating methods were developed and implemented for both benchtop and portable GC systems. Although fast heating rates and low power consumption have been achieved, losses in column efficiency and resolution, complex construction processes and difficulties experienced in recovering damaged columns have also become problematic for routine use of resistively heated columns. To solve these problems, a new resistively heated column technique, which uses metal columns and self-insulated heating wires, was developed for capillary gas chromatography. With this method, the total thermal mass was significantly less than in commercial column assemblies. Temperature-programming using resistive heating was at least 10 times faster than with a conventional oven, while only consuming 1—5% of the power that an oven would use. Cooling a column from 350 °C to 25 °C with an air fan only required 1.5 min. Losses in column efficiency and peak capacity were negligible when compared to oven heating. The major trade-off was slightly worse run-to-run retention time deviations, which were still acceptable for most GC analyses. The resistively heated column bundle is highly suitable for fast GC separations and portable GC instruments. Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop GC to portable, microfabricated GC (µGC) devices, which have great potential for on-site chemical analysis and remote sensing. The separation performance of µGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of µGC devices has impeded their further commercialization and broader application. This problem can be resolved by incorporating thermal gradient GC (TGGC) into microcolumns. Negative thermal gradients reduce the on-column peak width when compared to temperature-programmed GC (TPGC) separations. This unique focusing effect can overcome many of the shortcomings inherent in µGC analyses. In this dissertation research, the separation performance of µGC columns was improved by using thermal gradient heating with simple set-ups. The analysis time was ~20% shorter for TGGC separations than for TPGC when wide injections were performed. Up to 50% reduction in peak tailing was observed for polar analytes, which significantly improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3 to 4 fold. These results indicate that TGGC is a useful tool for bridging the performance gap between µGC and benchtop GC.
195

Gabor Domain Optical Coherence Microscopy

Murali, Supraja 01 January 2009 (has links)
Time domain Optical Coherence Tomography (TD-OCT), first reported in 1991, makes use of the low temporal coherence properties of a NIR broadband laser to create depth sectioning of up to 2mm under the surface using optical interferometry and point to point scanning. Prior and ongoing work in OCT in the research community has concentrated on improving axial resolution through the development of broadband sources and speed of image acquisition through new techniques such as Spectral domain OCT (SD-OCT). In SD-OCT, an entire depth scan is acquired at once with a low numerical aperture (NA) objective lens focused at a fixed point within the sample. In this imaging geometry, a longer depth of focus is achieved at the expense of lateral resolution, which is typically limited to 10 to 20 [micro]m. Optical Coherence Microscopy (OCM), introduced in 1994, combined the advantages of high axial resolution obtained in OCT with high lateral resolution obtained by increasing the NA of the microscope placed in the sample arm. However, OCM presented trade-offs caused by the inverse quadratic relationship between the NA and the DOF of the optics used. For applications requiring high lateral resolution, such as cancer diagnostics, several solutions have been proposed including the periodic manual re-focusing of the objective lens in the time domain as well as the spectral domain C-mode configuration in order to overcome the loss in lateral resolution outside the DOF. In this research, we report for the first time, high speed, sub-cellular imaging (lateral resolution of 2 [micro]m) in OCM using a Gabor domain image processing algorithm with a custom designed and fabricated dynamic focus microscope interfaced to a Ti:Sa femtosecond laser centered at 800 nm within an SD-OCM configuration. It is envisioned that this technology will provide a non-invasive replacement for the current practice of multiple biopsies for skin cancer diagnosis. The research reported here presents three important advances to this technology all of which have been demonstrated in full functional hardware conceived and built during the course of this research. First, it has been demonstrated that the coherence gate created by the femtosecond laser can be coupled into a scanning optical microscope using optical design methods to include liquid lens technology that enables scanning below the surface of skin with no moving parts and at high resolution throughout a 2x2x2 mm imaging cube. Second, the integration the variable-focus liquid lens technology within a fixed-optics microscope custom optical design helped increase the working NA by an order of magnitude over the limitation imposed by the liquid lens alone. Thus, this design has enabled homogenous axial and lateral resolution at the micron-level (i.e., 2 [micro]m) while imaging in the spectral domain, and still maintaining in vivo speeds. The latest images in biological specimens clearly demonstrate sub-cellular resolution in all dimensions throughout the imaging volume. Third, this new modality for data collection has been integrated with an automated Gabor domain image registration and fusion algorithm to provide full resolution images across the data cube in real-time. We refer to this overall OCM method as Gabor domain OCM (GD-OCM). These advantages place GD-OCM in a unique position with respect to the diagnosis of cancer, because when fully developed, it promises to enable fast and accurate screening for early symptoms that could lead to prevention. The next step for this technology is to apply it directly, in a clinical environment. This step is underway and is expected to be reported by the next generation of researchers within this group.
196

Experiments on norm focusing and losses in dictator games

Windrich, Ivo, Kierspel, Sabrina, Neumann, Thomas, Berger, Roger, Vogt, Bodo 27 November 2023 (has links)
We conducted experiments on norm focusing. The tests were carried out with two versions of dictator games: in one version of the game, the dictator had to allocate a gain of e10, while in the other version, a loss of e−10 needs to be allocated. In a first treatment, we focused subjects on the average giving in similar previous dictator games. The second treatment focused subjects on the behaviour of what a self-interested actor should do. In total, N = 550 participants took part in our experiments. We found (1) a significant difference in giving behaviour between gain and loss treatments, with subjects being moderately more self-interested in the loss domain, (2) a significant effect of focusing subjects on the average behaviour of others, but (3) no effect of focusing subjects on the behaviour of self-interested actors.
197

DEVELOPMENT OF HIGH POWER FIBER LASER TECHNOLOGIES

Zhou, Renjie 05 May 2010 (has links)
No description available.
198

An F/2 Focal Reducer For The 60-Inch U.S. Naval Observatory Telescope

Meinel, Aden B., Wilkerson, Gary W. 28 February 1968 (has links)
QC 351 A7 no. 07 / The Meinel Reducing Camera for the U. S. Naval Observatory's 60-inch telescope, Flagstaff, Arizona, comprises an f /10 collimator designed by Meinel and Wilkerson, and a Leica 50-mm f/2 Summicron camera lens. The collimator consists of a thick, 5-inch field lens located close to the focal plane of the telescope, plus four additional elements extending toward the camera. The collimator has an efl of 10 inches, yielding a 1-inch exit pupil that coincides with the camera's entrance pupil, 1.558 inches beyond the final surface of the collimator. There is room between the facing lenses of the collimator and camera to place filters and a grating. The collimated light here is the best possible situation for interference filters. Problems of the collimator design work included astigmatism due to the stop's being so far outside the collimator, and field curvature. Two computer programs were used in development of the collimator design. Initial work, begun in 1964, was with the University of Rochester's ORDEALS program (this was the first time the authors had used such a program) and was continued through July, 1965. Development subsequently was continued and completed on the Los Alamos Scientific Laboratory's program, LASL. The final design, completed January 24, 1966, was evaluated with ORDEALS. This project gave a good opportunity to compare ORDEALS, an "aberration" program, with LASL, a "ray deviation" program. It was felt that LASL was the superior program in this case, and some experimental runs beginning with flat slabs of glass indicated that it could have been used for the entire development of the collimator. Calculated optical performance of the design indicated that the reducing camera should be "seeing limited" for most work. Some astigmatism was apparent, but the amount did not turn out to be harmful in actual astronomical use. After the final design was arrived at, minor changes were made to accommodate actual glass indices of the final melt, and later to accommodate slight changes of radii and thicknesses of the elements as fabricated. An additional small change in spacing between two of the elements was made at the observatory after the reducing camera had been in use for a short time. The fabricated camera is working according to expectations. Some photographs are included in the report to illustrate its performance and utility.
199

Fabricating Superhydrophobic and Superoleophobic Surfaces with Multiscale Roughness Using Airbrush and Electrospray

Almilaji, Karam N 01 January 2016 (has links)
Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag reduction, anti-icing, anti-fogging, energy conservation, noise reduction, and self-cleaning. In fact, the same concept could be applied in designing and producing surfaces that repel organic contaminations (e.g. low surface tension liquids). However, superoleophobic surfaces are more challenging to fabricate than superhydrophobic surfaces since the combination of multiscale roughness with re-entrant or overhang structure and surface chemistry must be provided. In this study, simple, cost-effective and potentially scalable techniques, i.e., airbrush and electrospray, were employed for the sake of making superhydrophobic and superoleophobic coatings with random and patterned multiscale surface roughness. Different types of silicon dioxide were utilized in this work to in order to study and to characterize the effect of surface morphology and surface roughness on surface wettability. The experimental findings indicated that super liquid repellent surfaces with high apparent contact angles and extremely low sliding angles were successfully fabricated by combining re-entrant structure, multiscale surface roughness, and low surface energy obtained from chemically treating the fabricated surfaces. In addition to that, the experimental observations regarding producing textured surfaces in mask-assisted electrospray were further validated by simulating the actual working conditions and geometries using COMSOL Multiphysics.
200

Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équations / Propriétés asymptotiques de la dynamique dans un voisinage des solutions stationnaires de certaines équations de Schrödinger non-linéaires

Ortoleva, Cecilia Maria 18 February 2013 (has links)
Cette thèse est consacrée à l'étude de certains aspects du comportement en temps longs des solutions de deux équations de Schrödinger non-linéaires en dimension trois dans des régimes perturbatives convenables. Le premier modèle consiste en une équation de Schrödinger avec une non-linéarité concentrée obtenue en considérant une interaction ponctuelle de force $alpha$, c'est-à-dire une perturbation singulière du Laplacien décrite par un opérateur autoadjoint $H_{alpha}$, où la force $alpha$ dépend de la fonction d'onde : $ifrac{du}{dt}= H_alpha u$, $alpha=alpha(u)$. Il est bien connu que les éléments du domaine d'une interaction ponctuelle en trois dimensions peuvent être décrits comme la somme d'une fonction régulière et d'une fonction ayant une singularité proportionnelle à $|x - x_0|^{-1}$, où $x_0$ est l'emplacement du point d'interaction. Si $q$ est la charge d'un élément du domaine $u$, c'est-à-dire le coefficient de sa partie singulière, alors pour introduire une non-linéarité, on fait dépendre la force $alpha$ de $u$ selon la loi $alpha=-nu|q|^sigma$, avec $nu > 0$. Ce modèle est défini comme une équation de Schrödinger non-linéaire focalisant de type puissance avec une non-linéarité concentrée en $x_0$. Notre étude regarde la stabilité orbitale et asymptotique des ondes stationnaires de ce modèle. Nous prouvons l'existence d'ondes stationnaires de la forme $u (t)=e^{iomega t}Phi_{omega}$, qui soient orbitalement stables pour $sigma in (0,1)$ et orbitalement instables quand $sigma geq 1.$ De plus nous montrons que si $sigma in (0,frac{1}{sqrt 2}) cup (frac{1}{sqrt 2}, 1)$, alors chaque onde stationnaire est asymptotiquement stable, à savoir que pour des données initiales proches d'un état stationnaire dans la norme d'énergie et appartenant à un espace $L^p$ pondéré où les estimations dispersives sont valides, l'affirmation suivante est vérifiée : il existe $omega_{infty} > 0$ et $psi_{infty} in L^2(R^3)$ tel que $psi_{infty} = O_{L^2}(t^{-p})$ quand $t rightarrow +infty$, tel que $u(t) = e^{iomega_{infty} t +il(t)} Phi_{omega_{infty}} +U_t*psi_{infty} +r_{infty}$, où $U_t$ est le propagateur de Schrödinger libre, $p = frac{5}{4}$, $frac{1}{4}$ respectivement en fonction de $sigma in (0, 1/sqrt{2})$, $sigma in left( frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right)$, et $l(t)$ est une fonction à croissance logarithmique qui apparaît quand $sigma in (frac{1}{sqrt{2}}, sigma^*)$, où $sigma^* in left( frac{1}{sqrt{2}},frac{sqrt{3} +1}{2sqrt{2}} right]$. Notons que dans ce modèle les non-linéarités pour lesquelles on a la stabilité asymptotique sont sous-critiques dans le sens où quelle que soit la donnée initiale il n'y a pas de solutions explosives. Quant au deuxième modèle, il s'agit de l'équation de Schrödinger non-linéaire focalisant à énergie critique : $i frac{du}{dt}=-Delta u-|u|^4 u$. Pour ce cas, nous prouvons, pour tout $nu$ et $alpha_0$ suffisamment petits, l'existence de solutions radiales à énergie finie de la forme $u(t,x)=e^{ialpha(t)}lambda^{1/2}(t)W(lambda(t)x)+e^{iDelta t}zeta^*+o_{dot H^1} (1)$ tout $trightarrow +infty$, où $alpha(t)=alpha_0ln t$, $lambda(t)=t^{nu}$, $W(x)=(1+frac13|x|^2)^{-1/2}$ est l'état stationnaire et $zeta^*$ est arbitrairement petit en $dot H^1$ / The present thesis is devoted to the investigation of certain aspects of the large time behavior of the solutions of two nonlinear Schrödinger equations in dimension three in some suitable perturbative regimes. The first model consist in a Schrödinger equation with a concentrated nonlinearity obtained considering a {point} (or contact) interaction with strength $alpha$, which consists of a singular perturbation of the Laplacian described by a self adjoint operator $H_{alpha}$, and letting the strength $alpha$ depend on the wave function: $ifrac{du}{dt}= H_alpha u$, $alpha=alpha(u)$.It is well-known that the elements of the domain of a point interaction in three dimensions can be written as the sum of a regular function and a function that exhibits a singularity proportional to $|x - x_0|^{-1}$, where $x_0$is the location of the point interaction. If $q$ is the so-called charge of the domain element $u$, i.e. the coefficient of itssingular part, then, in order to introduce a nonlinearity, we let the strength $alpha$ depend on $u$ according to the law $alpha=-nu|q|^sigma$, with $nu > 0$. This characterizes the model as a focusing NLS with concentrated nonlinearity of power type. In particular, we study orbital and asymptotic stability of standing waves for such a model. We prove the existence of standing waves of the form $u (t)=e^{iomega t}Phi_{omega}$, which are orbitally stable in the range $sigma in (0,1)$, and orbitally unstable for $sigma geq 1.$ Moreover, we show that for $sigma in(0,frac{1}{sqrt 2}) cup left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right)$ every standing wave is asymptotically stable, in the following sense. Choosing an initial data close to the stationary state in the energy norm, and belonging to a natural weighted $L^p$ space which allows dispersive stimates, the following resolution holds: $u(t) =e^{iomega_{infty} t +il(t)} Phi_{omega_{infty}}+U_t*psi_{infty} +r_{infty}$, where $U_t$ is the free Schrödinger propagator,$omega_{infty} > 0$ and $psi_{infty}$, $r_{infty} inL^2(R^3)$ with $| r_{infty} |_{L^2} = O(t^{-p}) quadtextrm{as} ;; t right arrow +infty$, $p = frac{5}{4}$,$frac{1}{4}$ depending on $sigma in (0, 1/sqrt{2})$, $sigma in (1/sqrt{2}, 1)$, respectively, and finally $l(t)$ is a logarithmic increasing function that appears when $sigma in (frac{1}{sqrt{2}},sigma^*)$, for a certain $sigma^* in left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right]$. Notice that in the present model the admitted nonlinearities for which asymptotic stability of solitons is proved, are subcritical in the sense that it does not give rise to blow up, regardless of the chosen initial data. The second model is the energy critical focusing nonlinear Schrödinger equation $i frac{du}{dt}=-Delta u-|u|^4 u$. In this case we prove, for any $nu$ and $alpha_0$ sufficiently small, the existence of radial finite energy solutions of the form$u(t,x)=e^{ialpha(t)}lambda^{1/2}(t)W(lambda(t)x)+e^{iDeltat}zeta^*+o_{dot H^1} (1)$ as $tright arrow +infty$, where$alpha(t)=alpha_0ln t$, $lambda(t)=t^{nu}$,$W(x)=(1+frac13|x|^2)^{-1/2}$ is the ground state and $zeta^*$is arbitrarily small in $dot H^1$

Page generated in 0.0842 seconds