• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 23
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Evolution du refroidissement, de l'exhumation et de la topographie des arcs magmatiques actifs : exemple des North Cascades (USA) et de zone de faille Motagua (Guatemala) / Cooling, exhumation and topographic evolution in continental magmatic arcs : an integrated thermochronological and numerical modelling approach : example from North Cascades (U.S.A.) and the Motagua fault zone (Guatemala)

Simon-Labric, Thibaud 27 January 2011 (has links)
Cette thèse cible l'étude de la structure thermique de la croûte supérieure (<10km) dans les arcs magmatiques continentaux, et son influence sur l'enregistrement thermochronologique de leur exhumation et de leur évolution topographique. Nous portons notre regard sur deux chaînes de montagne appartenant aux Cordillères Américaines : Les Cascades Nord (USA) et la zone de faille Motagua (Guatemala). L'approche utilisée est axée sur l'utilisation de la thermochronologie (U-Th-Sm)/He sur apatite et zircon, couplée avec la modélisation numérique de la structure thermique de la croûte. Nous mettons en évidence la variabilité à la fois spatiale et temporelle du gradient géothermique, et attirons l'attention du lecteur sur l'importance de prendre en compte la multitude des processus géologiques perturbant la structure thermique dans les chaînes de type cordillère, c'est à dire formées lors de la subduction océanique sous un continent. / This thesis focuses on the influence of the dynamic thermal structure of the upper crust (<10km) on the thermochronologic record of the exhumational and topographic history of magmatic continental arcs. Two mountain belts from the American Cordillera are studied: the North Cascades (USA) and the Motagua fault zone (Guatemala). I use a combined approach coupling apatite and zircon (U-Th-Sm)/He thermochronology and thermo-kinematic numerical modelling. This study highlights the temporal and spatial variability of the geothermal gradient and the importance to take into account the different geological processes that perturb the thermal structure of Cordilleran-type mountain belts (i.e. mountain belts related to oceanic subduction underneath a continent).
52

Exploration géophysique des processus de fracturation et de réactivation dans les carbonates à l'échelle métrique / Geophysical exploration of the fracturing and reactivation processes in carbonates at the meter scale

Matonti, Christophe 02 October 2015 (has links)
Le but de ce travail est de comprendre les relations entre la déformation et la diagenèse dans les carbonates. Pour cela, l’échelle du m au dam est adéquate car elle permet de séparer les effets matriciels, des fractures et des failles. Celle-ci est sous la résolution de la sismique, donc peu de données géophysiques et diagénétiques spatiale et quantitatives sont disponibles, le plus souvent limitées aux données 1D de puit.Nous avons choisi 4 affleurements présentant des hétérogénéités et des intensités de déformation et de diagenèse diverses. Un protocole multi-échelle et multidisciplinaire a été développé, comprenant de la géophysique à l’échelle du cm au dam, de la diagenèse structurale et de la géochimie sur les ciments de fracture. Nous montrons un fort effet d’échelle entre les Vp en laboratoire et à l’affleurement dû à des hétérogénéités sédimentaire, d’enfouissement et structurale, qui conduisent à différents motifs géostatistiques.Les fractures ont l’effet le plus fort sur les Vp, modulé par leur cimentation, et qui peut entièrement effacer la signature initiale du faciès. La réactivation des fractures induit une anisotropie directionnelle de 10% due à des changements dans le remplissage des fractures, caractérisés par de multiples phases de cimentation, broyage et dissolution.Dans les zones de faille, l’anisotropie sismique est amplifiée, conduisant à un fort affaiblissement de la roche au cisaillement et à une diminution de Vp autour de la faille. Les données géochimiques tracent plusieurs flux de fluides diagénétiques et soulignent les fortes interactions entre l’évolution de la perméabilité, la diagenèse structurale et la signature géophysique des carbonates. / The aim of this work was to understand the relationships between deformations and diagenesis in carbonates. The relevant scale to study it may be the m to dkm scale which allows individualizing fracture, fault and matrix effects. This scale is under the seismic resolution, so few quantitative diagenetic and geophysical spatial data are available, mainly constrained to 1D borehole.Therefore, we selected 4 dkm scale outcrops displaying various heterogeneities and intensities of deformation and diagenesis. We developed a multidisciplinary/multiscale protocol including geophysics from cm to dkm scale along with structural diagenesis study and geochemical measurements on fractures cements. We found a strong scale effect between laboratory and outcrop Vp due to sedimentary, burial and structural heterogeneities that lead to different geostatistical patterns. Fractures have the strongest effect on Vp, being modulated by their cementation and can erase the initial facies acoustic signature. The fracture reactivation induce a 10% Vp directional anisotropy due to microscale changes in the fractures infillings characterized by multiple cementation, crushing and dissolution phases. In fault-zones the seismic anisotropy magnitude is amplified, leading to a strong directional rock shear weakening and a Vp decrease around the fault, caused by higher discontinuities aperture and brecciation. Geochemical data indicate that the Vp signature evolution is linked to different diagenetic fluids flow origins occurring during each deformation phase. This underlines the strong interplay between permeability evolution, structural diagenesis and geophysical signature in carbonates.
53

Numerical modelling of single- and multi-phase flow and transport processes in porous media for assessing hydraulic fracturing impacts on groundwater resources

Taher Dang Koo, Reza 19 May 2020 (has links)
No description available.
54

Understanding an evolving diffuse plate boundary with geodesy and geochronology

Lifton, Zachery Meyer 13 January 2014 (has links)
Understanding spatial and temporal variations in strain accumulation and release along plate boundaries is a fundamental problem in tectonics. Short-term and long-term slip rates are expected to be equal if the regional stress field remains unchanged over time, yet discrepancies between modern geodetic (decadal time scale) slip rates and long-term geologic (10^3 to 10^6 years) slip rates have been observed on parts of the Pacific-North American plate boundary system. Contemporary geodetic slip rates are observed to be ~2 times greater than late Pleistocene geologic slip rates across the southern Walker Lane. I use a combination of GPS geodesy, detailed field geologic mapping, high-resolution LiDAR geodetic imaging, and terrestrial cosmogenic nuclide geochronology to investigate the observed discrepancy between long- and short-term slip rates. I find that the present day slip rate derived from GPS geodesy across the Walker Lane at ~37.5°N is 10.6 ± 0.5 mm/yr. GPS data suggest that much of the observed discrepancy occurs west of the White Mountains fault zone. New dextral slip rates on the White Mountains fault zone of 1.1 ± 0.1 mm/yr since 755 ka, 1.9 +0.5/-0.4 mm/yr since 75-115 ka, 1.9 +0.5/-0.4 mm/yr since 38.4 ± 9.0 ka, and 1.8 +2.8/-0.7 mm/yr since 6.2 ± 3.8 ka are significantly faster than previous estimates and suggest that slip rates there have remained constant since the middle Pleistocene. On the Lone Mountain fault I calculate slip rates of 0.8 ± 0.1 mm/yr since 14.6 ± 1.0 ka and 0.7 ± 0.1 mm/yr since 8.0 ± 0.5 ka, which suggest that extension in the Silver Peak-Lone Mountain extensional complex has increased dramatically since the late Pleistocene.
55

Propriétés structurales, pétro-physiques et circulations de fluides au sein d'une zone de failles dans les argiles / Structural, petrophysical properties and fluid circulation in the shale fault zone

Lefèvre, Mélody 26 April 2016 (has links)
Les zones de failles concentrent la migration de fluides et la déformation dans la croûte supérieure. Les propriétés hydrauliques des formations argileuses en font des excellents sites de stockage et des roches mères performants. Les zones de failles peuvent jouer deux rôles contraires dans la circulation de fluides, soit elles s’expriment sous forme de drains, soit elles constituent une barrière, et souvent les deux rôles sont combinés au sein d’une même zone de failles. Les processus de migration des fluides dans les zones de failles affectant les argiles sont peu connus. Cette étude s’est focalisée sur la structure, les paléo-circulations, les circulations actuelles lors de tests d’injection et les propriétés pétro-physiques de la zone de failles présente dans le laboratoire de recherche souterrain de Tournemire dans les argilites Toarciennes. La structure de la zone de failles a été caractérisée par des forages et reconstituée en 3D par modélisation numérique, permettant de définir des faciès de déformation. L’architecture de la zone de failles se caractérise par une imbrication de facies de déformations plus ou moins intenses sans claire organisation en cœur et zone endommagée comme observée dans les roches plus dures. Les zones intactes, fracturées et les brèches sont respectivement caractérisées par des porosités matricielles comprises entre 9.5-13.5, 10-15 et 13-21%. La circulation de fluide se concentrant aux limites de la brèche et au niveau des zones de failles «immatures» ou secondaires comprises dans les zones fracturées. Lors de son activité, la zone de failles a déjà été affectée par au moins deux phases de circulations de fluides. / Fault zones concentrate fluids migration and deformations in the upper crust. The shale hydraulic properties make them excellent storage sites and hydrocarbon reservoirs/source rocks. Fault zones can play two roles in the fluid circulation; drains or barriers, in general, both roles are combined within the same fault zone. What are the conditions that promote the fluid circulation along the fault zones in shales and what are the fault zone impacts on the formation properties are relatively poorly explored key questions. This study focused on characterizing the relationships between fault architecture, paleo-fluid as well as current fluid circulations through the analysis of fault calcite mineralization, injection tests and petrophysical properties conducted on a fault zone outcropping underground in the Tournemire research laboratory nested in the Toarcian shale. The fault zone structure was characterized using boreholes data and reconstructed in 3D through modeling to define different deformation facies. No clear facies organization is observed, a fault core and a fault damage zone being difficult to define as it is in hard rocks. The intact, fractured and breccia facies are characterized by a porosity of 9.5-13.5, 10-15 and 13-21%. Large fluid flowrate concentrated along a few “channels” located at the breccia boundaries and in the secondary fault zones that displayed fractured facies and limited breccia fillings. Detailed microstructural and geochemical analysis at the breccia/fractured zones interface revealed that fluids circulated out of the main shear zones, in micro-more or less inherited fractures highlighting a decoupling between fault slip and fluid migrations.
56

Delineation of the Nootka fault zone and structure of the shallow subducted southern Explorer plate as revealed by the Seafloor Earthquake Array Japan Canada Cascadia Experiment (SeaJade)

Hutchinson, Jesse 25 May 2020 (has links)
At the northern extent of the Cascadia subduction zone, the subducting Explorer and Juan de Fuca plates interact across a translational deformation zone, known as the Nootka fault zone. The Seafloor Earthquake Array Japan-Canada Cascadia Experiment (SeaJade) was designed to study this region. In two parts (SeaJade I and II, deployed from July – September 2010 and January – September 2014), seismic data from the SeaJade project has led to several important discoveries. Hypocenter distributions from SeaJade I and II indicate primary and secondary conjugate faults within the Nootka fault zone. Converted phase analysis and jointly determined seismic tomography with double-difference relocated hypocenters provide evidence to several velocity-contrasting interfaces seaward of the Cascadia subduction front at depths of ~4-6 km, ~6-9 km, ~11-14 km, and ~14-18 km, which have been interpreted as the top of the oceanic crust, upper/lower crust boundary, oceanic Moho, and the base of the highly fractured and seawater/mineral enriched veins within oceanic mantle. During SeaJade II, a MW 6.4 mainshock and subsequent aftershocks, known as the Nootka Sequence, highlighted a previously unidentified fault within the subducted Explorer plate. This fault reflects the geometry of the subducting plate, showing downward bending of the plate toward the northwest. This plate bend can be attributed to negative buoyancy from margin parallel mantle flow induced by intraslab tearing further northwest. Seismic tomography reinforces the conclusions drawn from the Nootka Sequence hypocenter distribution. Earthquakes from the entire SeaJade II catalogue reveal possible rotated paleo-faults, identifying the former extent of the Nootka fault zone from ~3.5 Ma. / Graduate

Page generated in 0.0419 seconds