Spelling suggestions: "subject:"faulttolerant control"" "subject:"faulttolerant coontrol""
21 |
Fault Diagnosis and Fault-Tolerant Control of Quadrotor UAVsAvram, Remus C. 31 May 2016 (has links)
No description available.
|
22 |
Active Fault Tolerant Model Predictive Control of a Turbofan Engine using C-MAPSS40kSaluru, Deepak Chaitanya 26 June 2012 (has links)
No description available.
|
23 |
Modelling, control and monitoring of high redundancy actuationDavies, Jessica January 2010 (has links)
The High Redundancy Actuator (HRA) project investigates a novel approach to fault tolerant actuation, which uses a high number of small actuation elements, assembled in series and parallel in order to form a single intrinsically fault tolerant actuator. Element faults affect the maximum capability of the overall actuator, but through control techniques, the required performance can be maintained. This allows higher levels of reliability to be attained in exchange for less over-dimensioning in comparison to conventional redundancy techniques. In addition, the combination of both serial and parallel elements provides intrinsic accommodation of both lock-up and loose faults. Research to date has concentrated on HRAs based on electromechanical technology, of relatively low order, controlled through passive Fault Tolerant Control (FTC) methods. The objective of this thesis is to expand upon this work. HRA configurations of higher order, formed from electromagnetic actuators are considered. An element model for a moving coil actuator is derived from first principles and verified experimentally. This element model is then used to form high-order, non-linear HRA models for simulation, and reduced-order representations for control design. A simple, passive FTC law is designed for the HRA configurations, the results of which are compared to a decentralised, active FTC approach applied through a framework based upon multi-agent concepts. The results indicate that limited fault tolerance can be achieved through simple passive control, however, performance degradation occurs, and requirements are not met under theoretically tolerable fault levels. Active FTC offers substantial performance improvements, meeting the requirements of the system under the vast majority of theoretically tolerable fault scenarios. However, these improvements are made at the cost of increased system complexity and a reliance on fault detection. Fault Detection (FD) and health monitoring of the HRA is explored. A simple rule-based FD method, for use within the active FTC, is described and simulated. An interacting multiple model FD method is also examined, which is more suitable for health monitoring in a centralised control scheme. Both of these methods provide the required level of fault information for their respective purposes. However, they achieve this through the introduction of complexity. The rule-based method increases system complexity, requiring high levels of instrumentation, and conversely the interacting multiple model approach involves complexity of design and computation. Finally, the development of a software demonstrator is described. Experimental rigs at the current project phase are restricted to relatively low numbers of elements for practical reasons such as cost, space and technological limitations. Hence, a software demonstrator has been developed in Matlab/Simulink which provides a visual representation of HRAs with larger numbers of elements, and varied configuration for further demonstration of this concept.
|
24 |
Contribution à la synthèse de commandes tolérantes aux défauts par l'approche comportementale / Behavioral System-theoretic approach to fault-tolerant controlJain, Tushar 20 November 2012 (has links)
La théorie des systèmes a acquis un statut interdisciplinaire au cours des cinq dernières décennies, et un aspect important de cette théorie concerne la commande automatique des systèmes dynamiques. Un dispositif de commande, appelé contrôleur ou régulateur, est un dispositif qu'on interconnecte à un système donné, qu'on désigne aussi sous le terme de procédé ou processus, de manière à réaliser un système global ayant un comportement désiré ou des performances spécifiées. Dans cette thèse, nous traitons de la problématique de la commande automatique des systèmes dynamiques sujets à des défaillances. Cette problématique est fortement motivée par les exigences de sûreté de fonctionnement des systèmes en milieu industriel où la commande tolérante aux défauts constitue un moyen pour améliorer la fiabilité et accroître la disponibilté des systèmes tout en assurant les performances souhaitées. Le travail présenté dans cette thèse porte essentiellement sur la synthèse de techniques de commande en ligne en vue de garantir une tolérance aux pannes à tout moment pour le système bouclé. Deux approches sont proposées, à savoir une première approche basée sur une banque de contrôleurs pré-conçus et une seconde approche basée sur la conception en ligne des commandes. L'originalité de ces approches réside dans le fait qu'aucune information a priori sur le procédé n'est exigée ou n'est disponible en temps réel. En particulier, aucune identification ni estimation des paramètres du procédé n'est effectuée en temps réel. La reconfiguration des contrôleurs suite à une défaillance du procédé se base uniquement sur les trajectoires réelles (signaux) issues du procédé. Nous utilisons l'approche comportementale des systèmes comme paradigme de modélisation mathématique pour le développement des solutions proposées. Dans ce cadre mathématique, le concept d'interconnexion entre deux systèmes dynamiques, à savoir le contrôleur et le procédé, joue un rôle important dans la formulation et la solution du problème de commande et permet de déterminer l'ensemble admissible des trajectoires du procédé qui sont compatibles avec les spécifications de performance. Du point de vue pratique, la réduction des transitoires lors de la reconfiguration des contrôleurs est l'une des exigences importantes dans les algorithmes de commandes tolérantes aux défauts. La dernière partie de la thèse traite de la gestion de ces transitoires à l'aide d'une technique d'implantation des contrôleurs en temps réel qui assure une transition sans-à-coup lors des reconfigurations. En outre, on illustre dans cette dernière partie de la thèse les solutions de commandes obtenues pour la tolérance aux fautes sur des exemples issus du monde réel, à savoir un procédé hydraulique constitué de deux bacs à niveau, un avion en phase d'approche à l'atterrissage, et une éolienne NREL de 5 mégawatts / The field of system and control theory has achieved an interdisciplinary status during the past five decades, and we refer to the theory that was developed during this period as the conventional control theory. This mainly relates to the study of automation and the design of controllers. A controller is a device that makes the interconnection with a given system so that the controlled system can behave in a desired way. In this thesis, we deal with the issues when the controlled system becomes faulty. The control of a faulty system addresses the concept of Fault-Tolerant Control System (FTCS). The study of such systems is in response to the demands of large-scale industries since from their viewpoint it is the foremost task to design control systems, which are capable of tolerating potential faults occurring either in the internal closedloops or from the environmental factors in order to improve the reliability and availability of a system while providing the expected performance. The work presented in this thesis is mainly focused on synthesizing the online controllers that guarantee the closed-loop system to be fault-tolerant at anytime. Two methodologies are proposed in this work, which rest under the broad classification of FTC systems, namely projection-based approach and online redesign approach. The novelty of these approaches lies in the fact that any a priori information about the plant is not available in realtime. In addition, no online identification or estimation of the operating plant is carried out. Rather, the re-configuration procedure of the controllers is solely based on the measurements generated by the unknown plant. This phenomenon is very nicely demonstrated by using the time-trajectory based viewpoint of behavioral theory. Within this mathematical framework, the interconnection between two dynamical systems, namely the plant and the controller, plays the significant role. Consequently, taking the benefits of this behavioral framework, the real-time measurement based solutions are proposed to handle the fault-tolerant control problem. From the practical implementation viewpoint, the transient management during the controller reconfiguration mechanism is one of the important requirements for active FTCS. The last part of the thesis deals with the online implementation of the controllers within the behavioral framework, which takes care of the transient mechanism. The proposed approach guarantees the "real-time smooth interconnection" between the controller and the unknown plant. Moreover, in this part the application of the theory developed in the thesis is effectively demonstrated on real-world examples, namely the two-tanks system, the aircraft landing mechanism, and the NREL's 5MW wind turbine system.
|
25 |
Contrôle tolérant aux défauts appliqué aux systèmes pile à combustible à membrane échangeuse de protons (pemfc) / Fault Tolerant Control Applied to Proton Exchange Membrane Fuel Cell Systems (pemfc)Dijoux, Étienne 12 April 2019 (has links)
La pile à combustible apparaît comme un système performant pour produire de l’électricité « verte » à partir de l’hydrogène dès lors que celui-ci est produit à partir de sources d’énergie renouvelables. Les avantages et la maturité de la technologie à membrane polymère font des PEMFC des candidates prometteuses. Cependant, plusieurs verrous scientifiques et technologiques limitent encore leur utilisation à grande échelle, en particulier leur coût, leur fiabilité et leur durée de vie. L’amélioration de ces caractéristiques passe par la mise en place d’outils de supervision, de détection de défauts et de contrôle des systèmes pile à combustible (PàC). Le travail de recherche est le fruit d’une collaboration entre le FC LAB de l’Université de Bourgogne Franche Comté et le LE2P de l’Université de La Réunion. Ce sujet de thèse s’inscrit dans la continuité des travaux menés au laboratoire FC LAB, portant en particulier sur le diagnostic et le pronostic de systèmes PàC, et des travaux menés au laboratoire LE2P, portant sur le test en ligne d’algorithmes de commande de PEMFC. Parmi les méthodes développées pour déployer la sureté de fonctionnement à un système physique, on retrouve les techniques de tolérance aux défauts, conçues pour maintenir la stabilité du système ainsi que des performances acceptables, même en présence de défauts. Ces techniques se décomposent généralement en trois phases : la détection d’erreurs ou de défaillances, l’identification des défauts à l’origine des problèmes, et l’atténuation. La littérature fait état d’un grand nombre d’outils de diagnostic et d’algorithmes de contrôle, mais l’association du diagnostic et du contrôle reste marginale. L’objectif de ce travail de thèse est donc le test en ligne de différentes stratégies de commande tolérante aux défauts, permettant de maintenir la stabilité du système et des performances acceptables même en présence de défauts. / Fuel cells (FC) are powerful systems for electricity production. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. It makes the system particularly hard to control and increase the fault’s occurrence frequency. These two issues underline the necessity to maintain the expected system performance, even in faulty condition. It is a so-called “fault tolerant control” (FTC). The present paper aims to describe the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnostic part allows the identification and the isolation of a fault. It requires a good a priori knowledge of all the possible faults in the system. Then, a control part, where an optimal control strategy is needed to find the best operating point or to recover the fault.
|
26 |
A prognostic health management based framework for fault-tolerant controlBrown, Douglas W. 15 June 2011 (has links)
The emergence of complex and autonomous systems, such as modern aircraft, unmanned aerial vehicles (UAVs) and automated industrial processes is driving the development and implementation of new control technologies aimed at accommodating incipient failures to maintain system operation during an emergency. The motivation for this research began in the area of avionics and flight control systems for the purpose to improve aircraft safety. A prognostics health management (PHM) based fault-tolerant control architecture can increase safety and reliability by detecting and accommodating impending failures thereby minimizing the occurrence of unexpected, costly and possibly life-threatening mission failures; reduce unnecessary maintenance actions; and extend system availability / reliability.
Recent developments in failure prognosis and fault tolerant control (FTC) provide a basis for a prognosis based reconfigurable control framework. Key work in this area considers: (1) long-term lifetime predictions as a design constraint using optimal control; (2) the use of model predictive control to retrofit existing controllers with real-time fault detection and diagnosis routines; (3) hybrid hierarchical approaches to FTC taking advantage of control reconfiguration at multiple levels, or layers, enabling the possibility of set-point reconfiguration, system restructuring and path / mission re-planning. Combining these control elements in a hierarchical structure allows for the development of a comprehensive framework for prognosis based FTC.
First, the PHM-based reconfigurable controls framework presented in this thesis is given as one approach to a much larger hierarchical control scheme. This begins with a brief overview of a much broader three-tier hierarchical control architecture defined as having three layers: supervisory, intermediate, and low-level. The supervisory layer manages high-level objectives. The intermediate layer redistributes component loads among multiple sub-systems. The low-level layer reconfigures the set-points used by the local production controller thereby trading-off system performance for an increase in remaining useful life (RUL).
Next, a low-level reconfigurable controller is defined as a time-varying multi-objective criterion function and appropriate constraints to determine optimal set-point reconfiguration. A set of necessary conditions are established to ensure the stability and boundedness of the composite system. In addition, the error bounds corresponding to long-term state-space prediction are examined. From these error bounds, the point estimate and corresponding uncertainty boundaries for the RUL estimate can be obtained. Also, the computational efficiency of the controller is examined by using the number of average floating point operations per iteration as a standard metric of comparison.
Finally, results are obtained for an avionics grade triplex-redundant electro-mechanical actuator with a specific fault mode; insulation breakdown between winding turns in a brushless DC motor is used as a test case for the fault-mode. A prognostic model is developed relating motor operating conditions to RUL. Standard metrics for determining the feasibility of RUL reconfiguration are defined and used to study the performance of the reconfigured system; more specifically, the effects of the prediction horizon, model uncertainty, operating conditions and load disturbance on the RUL during reconfiguration are simulated using MATLAB and Simulink. Contributions of this work include defining a control architecture, proving stability and boundedness, deriving the control algorithm and demonstrating feasibility with an example.
|
27 |
Controlling over-actuated road vehicles during failure conditionsWanner, Daniel January 2015 (has links)
The aim of electrification of chassis and driveline systems in road vehicles is to reduce the global emissions and their impact on the environment. The electrification of such systems in vehicles is enabling a whole new set of functionalities improving safety, handling and comfort for the user. This trend is leading to an increased number of elements in road vehicles such as additional sensors, actuators and software codes. As a result, the complexity of vehicle components and subsystems is rising and has to be handled during operation. Hence, the probability of potential faults that can lead to component or subsystem failures deteriorating the dynamic behaviour of road vehicles is becoming higher. Mechanical, electric, electronic or software faults can cause these failures independently or by mutually influencing each other, thereby leading to potentially critical traffic situations or even accidents. There is a need to analyse faults regarding their influence on the dynamic behaviour of road vehicles and to investigate their effect on the driver-vehicle interaction and to find new control strategies for fault handling. A structured method for the classification of faults regarding their influence on the longitudinal, lateral and yaw motion of a road vehicle is proposed. To evaluate this method, a broad failure mode and effect analysis was performed to identify and model relevant faults that have an effect on the vehicle dynamic behaviour. This fault classification method identifies the level of controllability, i.e. how easy or difficult it is for the driver and the vehicle control system to correct the disturbance on the vehicle behaviour caused by the fault. Fault-tolerant control strategies are suggested which can handle faults with a critical controllability level in order to maintain the directional stability of the vehicle. Based on the principle of control allocation, three fault-tolerant control strategies are proposed and have been evaluated in an electric vehicle with typical faults. It is shown that the control allocation strategies give a less critical trajectory deviation compared to an uncontrolled vehicle and a regular electronic stability control algorithm. An experimental validation confirmed the potential of this type of fault handling using one of the proposed control allocation strategies. Driver-vehicle interaction has been experimentally analysed during various failure conditions with typical faults of an electric driveline both at urban and motorway speeds. The driver reactions to the failure conditions were analysed and the extent to which the drivers could handle a fault were investigated. The drivers as such proved to be capable controllers by compensating for the occurring failures in time when they were prepared for the eventuality of a failure. Based on the experimental data, a failure-sensitive driver model has been developed and evaluated for different failure conditions. The suggested fault classification method was further verified with the conducted experimental studies. The interaction between drivers and a fault-tolerant control system with the occurrence of a fault that affects the vehicle dynamic stability was investigated further. The control allocation strategy has a positive influence on maintaining the intended path and the vehicle stability, and supports the driver by reducing the necessary corrective steering effort. This fault-tolerant control strategy has shown promising results and its potential for improving traffic safety. / <p>QC 20150520</p>
|
28 |
Control allocation as part of a fault-tolerant control architecture for UAVsBasson, Lionel 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: The development of a control allocation system for use as part of a fault-tolerant control
(FTC) system in unmanned aerial vehicles (UAVs) is presented. This system plays a
vital role in minimising the possibility that a fault will necessitate the reconfiguration of
the control, guidance or navigation systems of the aircraft by minimising the difference
between the desired and achievable aircraft performance parameters. This is achieved
by optimising the allocation of control effort commanded by the virtual actuators to the
physical actuators present on the aircraft.
A simple general six degree of freedom aircraft model is presented that contains all of
the relevant terms needed to find the trim biases of the aircraft actuators and evaluate
the performance of the virtual actuators. This model was used to develop a control
allocation formulation that optimises the performance of the virtual actuators of the
aircraft while minimising adverse effects and avoiding actuator saturation. The resulting
problem formulation was formulated as a multi-objective optimisation problem which was
solved using the sequential quadratic programming method.
The control allocation system was practically implemented and tested. A number of
failure categories of varying severity were defined and two aircraft with different levels
of actuator redundancy were used to test the system. The control allocation algorithm
was evaluated for each failure category, aircraft test case and for a number of differing
control allocation system configurations. A number of enhancements were then made
to the control allocation system which included adding frequency-based allocation and
adapting the algorithm for an unconventional ducted-fan UAV.
The control allocation system is shown to be applicable to a number of different conventional
aircraft configurations with no alterations as well as being applicable to unconventional
aircraft with minor alterations. The control allocation system is shown to
be capable of handling both single and multiple actuator failures and the importance of
actuator redundancy is highlighted as a factor that influences the effectiveness of control
allocation. The control allocation system can be effectively used as part of a FTC system
or as a tool that can be used to investigate control allocation and aircraft redundancy. / AFRIKAANSE OPSOMMING: Die ontwikkeling van ’n beheertoekenning sisteem vir gebruik as deel van ’n fout verdraagsame
beheersisteem in onbemande lugvaartuie word voorgelê. Hierdie sisteem speel
’n essensiële rol in die vermindering van die moontlikheid dat ’n fout die herkonfigurasie
van die beheer, bestuur of navigasiesisteme van die vaartuig tot gevolg sal hê, deur die
verskil te verminder tussen die verlangde en bereikbare werkverrigtingsraamwerk van die
vaartuig. Dit word bereik deur die optimisering van die toekenning van beheerpoging
aangevoer deur die virtuele aktueerders na die fisiese aktueerders teenwoordig op die
vaartuig.
’n Eenvoudige algemene ses grade van vryheid lugvaartuig model word voorgestel wat
al die relevante terme bevat wat benodig word om die onewewigtigheid verstelling van
die vaartuig se aktueerders te vind en die werksverrigting van die virtuele aktueerders
te evalueer. Hierdie model is gebruik om ’n beheer toekenning formulering te ontwikkel
wat die werkverrigting van die virtuele aktueerders van die vaartuig optimiseer terwyl
nadelige gevolge verminder word asook aktueerder versadiging vermy word. Die gevolglike
probleem formulering is omskryf as ’n multi-doel optimiserings probleem wat opgelos is
deur gebruik van die sekwensiële kwadratiese programmerings metode.
Die beheertoekenning sisteem is prakties geïmplementeer en getoets. ’n Aantal fout kategorieë
van verskillende grade van erns is gedefinieer en twee vaartuie met verskillende
vlakke van aktueerder oortolligheid is gebruik om die sisteem te toets. Die beheer toekenning
algoritme is geëvalueer vir elke fout kategorie, vaartuig toetsgeval, asook vir ’n aantal
verskillende beheertoekenning sisteem konfigurasies. ’n Aantal verbeterings is aangebring
aan die beheertoekenning sisteem, naamlik die toevoeging van frekwensie gebaseerde
toekenning en wysiging van die algoritme vir ’n onkonvensionele onbemande geleide waaier
lugvaartuig.
Die beheertoekenning sisteem is van toepassing op ’n aantal verskillende konvensionele
vaartuig konfigurasies met geen verstellings asook van toepassing op onkonvensionele
vaartuie met geringe verstellings. Die beheertoekenning sisteem kan beide enkel- en
veelvoudige aktueerder tekortkominge hanteer en die belangrikheid van aktueerder oortolligheid is beklemtoon as ’n faktor wat die effektiwiteit van beheertoekenning beïnvloed.
Die beheertoekenning sisteem kan effektief geïmplementeer word as deel van ’n fout verdraagsame
beheersisteem of as ’n werktuig om beheertoekenning en vaartuig oortolligheid
te ondersoek.
|
29 |
Online system identification for fault tolerant control of unmanned aerial vehiclesAppel, Jean-Paul 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: In this thesis the strategy for performing System Identification on an aircraft is presented. The
ultimate aim of this document is to outline the steps required for successful aircraft parameter
estimation within a Fault Tolerant Control Framework.
A brief derivation of the classical 6 degree-of-freedom aircraft model is firstly presented. The
derivation gives insight into the aircraft dynamics that are to be used to estimate the aircraft
parameters, and provides a basis for the methods provided in this thesis.
Different techniques of System Identification were evaluated, resulting in the choice of the
Regression method to be used. This method, based on the Least-Squares method, is chosen
because of its simplicity of use and because it does not require as much computational time as
the other methods presented. Regression methods, including a recursive algorithm, are then
applied to aircraft parameter estimation and practical considerations such as Identifiability and
corrupted measurements are highlighted.
The determination of unknown measurements required for System Identification of aircraft
parameters is then discussed. Methods for both estimating and measuring the Angle-of-Attack
(AoA) and angular accelerations are presented. The design and calibration of an AoA probe
for AoA measurements, as well as a novel method that uses distributed sensors to determine
the angular accelerations is also presented.
The techniques presented in this thesis are then tested on a non-linear aircraft model. Through
simulation it was shown that for the given sensor setup, the methods do not provide
sufficiently accurate parameter estimates. When using the Regression method, obtaining
measurements of the angle-of-attack solely through estimation causes problems in the
estimation of the aerodynamic lift coefficients.
Flight tests were performed and the data was analyzed. Similar issues as experienced with
estimation done on the non-linear aircraft simulation, was found. Recommendations with
regards to how to conduct future flight tests for system identification is proposed and possible sources of errors are highlighted. / AFRIKAANSE OPSOMMING: In hierdie tesis word die strategie vir die uitvoering van Stelsel Identifikasie op 'n vliegtuig
aangebied. Die uiteindelike doel van hierdie document is om die stappe wat nodig is vir 'n
suksesvolle vliegtuig parameter beraming, binne 'n Fout Tolerante Beheer Raamwerk, uit
eente sit.
'n Kort afleiding van die klassieke 6 graad-van-vryheid vliegtuig model word eerstens
aangebied. Die afleiding gee insig in die vliegtuig dinamika wat gebruik moet word om die
vliegtuig parameters te beraam, en bied 'n basis vir die metodes wat in hierdie tesis verskyn.
Verskillende tegnieke van Stelsel Identifikasie is geëvalueer, wat lei tot gebruik van die
regressie-metode. Hierdie metode is gekies as gevolg van sy eenvoudigheid en omdat dit nie
soveel berekening tyd as die ander metodes vereis nie. Regressie metodes, insluitend 'n
rekursiewe algoritme, word dan toegepas op vliegtuig parameter beraming en praktiese
orwegings soos identifiseerbaarheid en korrupte metings word uitgelig.
Die bepaling van onbekende afmetings wat benodig is, word vir Stelsel Identifisering van die
vliegtuig parameters bespreek. Metodes om die invalshoek en hoekige versnellings te meet en
beraam, word aangebied. Die ontwerp en kalibrasie van 'n invalshoek sensor vir invalshoek
metings, sowel as 'n nuwe metode wat gebruik maak van verspreide sensore om die
hoekversnellings te bepaal, word ook aangebied.
Die tegnieke wat in hierdie tesis aangebied is, word dan op 'n nie-lineêre vliegtuig model
getoets. Deur simulasie is dit getoon dat die metodes vir die gegewe sensor opstelling nie
voldoende akkurate parameters beraam nie. Dit is ook bewys dat met die gebruik van die
Regressie metode, die vekryging van metings van die invalshoek slegs deur skatting,
probleme in die beraming van die aerodinamiese lug koëffisiente veroorsaak.
Die tegnieke wat in hierdie tesis verskyn, word dan op werklike vlug data toegepas.Vlugtoetse
is uitgevoer en die data is ontleed. Aanbeveling met betrekking tot hoe om toekomstige vlug
toetse vir Stelsel Identifikasiete word voorgestel, en moontlike bronne van foute word uitgelig.
|
30 |
Architecture de commande tolérante aux défauts capteurs proprioceptifs et extéroceptifs pour un véhicule autonome / Proprioceptive and exteroceptive sensor fault tolerance architecture for an autonomous vehicleBoukhari, Mohamed Riad 05 February 2019 (has links)
Le véhicule autonome offre plusieurs avantages : le confort, la réduction du stress, et la réduction de la mortalité routière. Néanmoins, les accidents mortels impliquant sa responsabilité, ont mis en exergue ses limitations et ses imperfections. Ces accidents soulèvent des questions sur la fiabilité et des voix ont fait part d'une forte préoccupation pour la sécurité des usagers du véhicule autonome. En outre, les tâches de perception et de localisation des véhicules autonomes peuvent avoir des incohérences amenant à des erreurs qui nuiraient à la stabilité du véhicule. Les sources de ces incohérences peuvent être de natures différentes et agir à la fois sur le capteur lui-même (Hardware), ou bien sur le post-traitement de l'information (Software). Dans ce contexte, plusieurs difficultés doivent être surmontées pour arriver à sécuriser l'interaction des systèmes automatisés de conduite avec les conducteurs humains face à ces problèmes, l'adoption d'une stratégie de commande tolérante aux défauts est primordiale. Dans le cadre de cette thèse, des stratégies de détection et de tolérance aux fautes pour la perception et la localisation sont mise en œuvre. En outre, des stratégies de détection et d'estimation de défauts pour les capteurs proprioceptifs sont par ailleurs proposées. L'objectif est d'avoir une localisation fiable de défaut et assurer un fonctionnement avec des performances acceptables. Par ailleurs, vue l'imprédictibilité et la variété des scènes routières, une fusion tolérante aux fautes à base des algorithmes de vote est élaborée pour une meilleure perception. La fusion tire profit des technologies actuelles de détection d'obstacles (détection par radio, faisceaux lumineux ou par caméra) et l'algorithme de vote assure une sortie qui s'approche le plus de la réalité. Des tests avec des données réelles issues d'un véhicule démonstrateur sont utilisés pour valider les approches proposées dans cette thèse. / Driverless vehicle offers several advantages: comfort, reduced stress, and reduced road mortality. Nevertheless, fatal accidents involving its responsibility, have highlighted its limitations and imperfections. These accidents raise questions about autonomous vehicle reliability, and voices expressed a strong concern for the safety of users of the autonomous vehicle. Furthermore, the tasks of perception and localization of autonomous vehicles may have inconsistencies leading to errors that would affect the stability of the vehicle. The sources of these inconsistencies can be of different natures and act both on the sensor itself (Hardware), or on the post-processing of information (Software). In this context, several difficulties must be overcome to secure the interaction of automated driving systems with human drivers facing these problems, the adoption of a fault-tolerant control strategy is paramount. In this thesis, a fault detection and fault tolerant control strategies for perception and localization are implemented. In addition, fault estimation strategies for proprioceptive sensors are also proposed. The purpose is to have a reliable fault localization and ensure acceptable performance. Moreover, given the unpredictability and variety of road scenes, a fault-tolerant fusion based on voting algorithms is developed for a better perception. The fusion takes advantage of current obstacle detection technologies (radio, light beam or camera detection) and the voting algorithm provides an output that is closest to reality. Tests with real data from a demonstrator vehicle are used to validate the approaches proposed in this thesis.
|
Page generated in 0.0776 seconds