• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 226
  • 23
  • 22
  • 19
  • 18
  • 12
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 481
  • 205
  • 183
  • 170
  • 166
  • 116
  • 80
  • 68
  • 45
  • 45
  • 42
  • 37
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Optimisation of ceiling attachment for AVPOS using FEA

Koskenranta, Mikael January 2015 (has links)
In product manufacture and assembly it is important to lower materials usage and assembly timewhile retaining a safety margin against structural failure. In this project the ceiling attachment of theAVPOS offloading arm is redesigned based on objectives identified by Löfs Specialmaskiner. Theoriginal ceiling attachment is analysed using finite element analysis to identify any structuralweaknesses to be addressed during redesign. Based on information gained during the FEA threeconcepts are generated and rated based on their estimated assembly times, material usage, partscount and the cutting length for machining.One concept is selected for further topology optimisation and iterative FEA, where material isremoved from the selected concept design while maintaining safety objectives. The optimised designdeveloped during this project is shown to have a lower number of parts, lower usage of material andassembly time while retaining an overall FOS value of 4.In addition to redesigning the ceiling attachment, alternative bearings are also investigated whichchanges the existing ball bearings to a self-aligning sliding bearing with self-lubricating properties,lowering the machining tolerances as well as lowering the needs for service.This project contributes to lowering material usage and ease of assembly in the product AVPOS thatis manufactured by Löfs Specialmaskiner. The redesigned ceiling attachment along with thesuggested bearings will likely simplify future manufacturing as well as lower any concerns for damageto people and property as a result of structural failure.
352

FE-Analysis of stress variation during diamond cutting of prestressed concrete sleepers

Skoog, Adam, Mohamad Alahmad, Yaseen January 2015 (has links)
The manufacturing process ‘long line method’ has shown many advantages when producing prestressed concrete sleepers, such as rapid production and low cost. However, there have been certain difficulties when cutting the 100 m long concrete blocks into sleepers. The sleepers tend to crack when the diamond cutting blade cuts through the last strands. Moreover, the shape and size of the cracks varies from one sleeper to another. Although these cracks may not affect the load carrying capacity, they will not be aesthetically pleasing. No earlier studies within the area have been found, i.e. diamond cutting of prestressed concrete blocks. As a result, there have been certain difficulties when approaching the problem. Finite element analysis has been proven to be a useful tool when analyzing stress variation. Throughout this project, the cutting simulation has been analyzed using the finite element analysis software ABAQUS. To summarize, stress variation has been examined during different cutting depths. The results from the FE model shows that no critical values were reached in the areas expected to have cracks. The true cause of the problem could not be specified. Therefore, further studies are needed yet this thesis could be a good foundation.
353

Mechanical Aspects of Design, Analysis and Testing of the Nanosatellite for Earth Monitoring and Observation – Aerosol Monitor (NEMO-AM)

Diaconu, Dumitru 18 March 2014 (has links)
A next generation nanosatellite bus is under development at the University of Toronto’s Space Flight Laboratory (SFL), and is being used for the first time in an ambitious Earth observation mission to identify and monitor atmospheric aerosol species. The spacecraft system brings together novel advanced designs that expand the capability envelope of nanosatellites, with heritage SFL technology that is presently defining the state-of-the-art in microspace applications. The work presented in this thesis pertains primarily to the development of the structural subsystem of the Nanosatellite for Earth Monitoring and Observation – Aerosol Monitor (NEMO-AM). Described extensively are the design and analysis efforts made by the author to validate and finalize the structural design in order to bring it to a manufacturing-ready stage. Subsequent work to meet the mechanical requirements of ground operations during the assembly and testing of the spacecraft is also presented.
354

Mechanical Aspects of Design, Analysis and Testing of the Nanosatellite for Earth Monitoring and Observation – Aerosol Monitor (NEMO-AM)

Diaconu, Dumitru 18 March 2014 (has links)
A next generation nanosatellite bus is under development at the University of Toronto’s Space Flight Laboratory (SFL), and is being used for the first time in an ambitious Earth observation mission to identify and monitor atmospheric aerosol species. The spacecraft system brings together novel advanced designs that expand the capability envelope of nanosatellites, with heritage SFL technology that is presently defining the state-of-the-art in microspace applications. The work presented in this thesis pertains primarily to the development of the structural subsystem of the Nanosatellite for Earth Monitoring and Observation – Aerosol Monitor (NEMO-AM). Described extensively are the design and analysis efforts made by the author to validate and finalize the structural design in order to bring it to a manufacturing-ready stage. Subsequent work to meet the mechanical requirements of ground operations during the assembly and testing of the spacecraft is also presented.
355

The behaviour of rollover protective structures subjected to static and dynamic loading conditions

Clark, Brian January 2005 (has links)
The Rollover of heavy vehicles operating in the construction, mining and agricultural sectors is a common occurrence that may result in death or severe injury for the vehicle occupants. Safety frames called ROPS (Rollover Protective Structures) that enclose the vehicle cabin, have been used by heavy vehicle manufacturers to provide protection to vehicle occupants during rollover accidents. The design of a ROPS requires that a dual criteria be fulfilled that ensures that the ROPS has sufficient stiffness to offer protection, whilst possessing an appropriate level of flexibility to absorb some or most of the impact energy during a roll. Over the last four decades significant research has been performed on these types of safety devices which has resulted in the generation of performance standards that may be used to assess the adequacy of a ROPS design for a particular vehicle type. At present these performance standards require that destructive full scale testing methods be used to assess the adequacy of a ROPS. This method of ROPS certification can be extremely expensive given the size and weight of many vehicles that operate in these sectors. The use of analytical methods to assess the performance of a ROPS is currently prohibited by these standards. Reasons for this are attributed to a lack of available fundamental research information on the nonlinear inelastic response of safety frame structures such as this. The main aim of this project was to therefore generate fundamental research information on the nonlinear response behaviour of ROPS subjected to both static and dynamic loading conditions that could be used to contribute towards the development of an efficient analytical design procedure that may lessen the need for destructive full scale testing. In addition to this, the project also aspired to develop methods for promoting increased levels of operator safety during vehicle rollover through enhancing the level of energy absorbed by the ROPS. The methods used to fulfil these aims involved the implementation of an extensive analytical modelling program using Finite Element Analysis (FEA) in association with a detailed experimental testing program. From these studies comprehensive research information was developed on both the dynamic impact response and energy absorption capabilities of these types of structures. The established finite element models were then used to extend the investigation further and to carry out parametric studies. Important parameters such as ROPS post stiffness, rollslope inclination and impact duration were identified and their effects quantified. The final stage of the project examined the enhancement of the energy absorption capabilities of a ROPS through the incorporation of a supplementary energy absorbing device within the frame work of the ROPS. The device that was chosen for numerical evaluation was a thin walled tapered tube known as frusta that was designed to crush under a sidewards rollover and hence lessen the energy absorption demand placed upon the ROPS. The inclusion of this device was found to be beneficial in absorbing energy and enhancing the level of safety afforded to the vehicle occupants.
356

Validation of blast simulation models via drop-tower tests

Rydman, Joakim January 2018 (has links)
This study aims to validate a screw joint simulation model used by BAE Systems in LS-DYNA during blast simulations. It is important that the screw joint simulation model is physically correct, since the simulation results can influence major design decisions. The study provides a short overview on the subject of bolts and screws, material deformation and stress and strain in materials, of the finite element method (FEM) and on some specific numerical methods used in this study. BAE Systems started a validation project of the screw joint simulation model in 2015, but it was not finished due to other priorities. In this older project some drop-tower tests measuring the axial force in a screw joint were conducted. These old tests can now serve as validation data for the screw joint simulation model. The screw joint simulation model used by BAE Systems is dependent on a special kind of finite element formulation; a so called beam element. This study provides a finite element analysis on this simulation model, which is implemented through an established industry FEM solver called LS-DYNA. The validation of the screw joint simulation model is done against three drop-tower experiments performed at 900, 1000 and 1100mm drop height respectively. The drop-tower experiments were replicated in LS-DYNA, with a prescribed velocity on the falling parts rather than simulating a free fall and non-elastic impact. A comparison between the simulation model using beam elements, that is used by BAE Systems, and a similar simulation model using solid elements is presented as part of the validation. To make sure that the result of the study is confident, a local mesh convergence study and a study of the mass scaling numerical method in LS-DYNA is also presented. The results show that the screw joint simulation model using beam elements is valid according to the available experimental data. In one of the experiments, where the drop-test was performed twice, an average maximum force on the screw was measured to be 33.5+-4.8 kN. Simulations of the same case, under the same conditions, using beam elements resulted in a maximum force on the screw of 35.4 kN, well within the experimental result range. In the other two drop-tower experiments, the simulated results showed correlation considering the error sources in the simulation model and the statistical spread that is present in the experimental results. The simulation model using beam elements is also similar to the results using solid elements, which also indicates that the beam model is valid. All in all, it is shown that the beam model can be used to produce safe results that either overestimate or place the simulations of the axial force in the screw in the upper spread of the measurements.
357

Hållfasthetssimulering av hydrauliska högtryckskopplingar / Solidmechanical simulation of high pressure hydraulic couplings

von Dewall, Johannes, Johansson-Näslund, Markus January 2018 (has links)
Hydrauliska högtryckskopplingar av typen FEM ½” studeras med avsikten att fastställa en effektiv beräkningsmetodik som kan användas till att prediktera kopplingarnas hållfasthet. Metodiken utgörs av finita element analyser (FEA), och valideras av experimentella trycktester utförda på kopplingstypen FEM ½”. Genom FEA kan kopplingarnas hållfasthetsbeteende och maximala belastningskapacitet studeras virtuellt, vilket minskar behovet av experimentella tester och medför potential för optimering av produkterna. Arbetet utförs på Parker Hannifin AB i Skövde. Experimentella tester utförs på 20 stycken kopplingspar av typen FEM ½” för att utöka förståelsen av kopplingarnas beteende under brottsförloppet och för att prediktera trycket som medför haveri. Testernas genomförande och struktur baseras på metodiken Design of Experiments (DOE). Kritiska komponenter identifieras utifrån experimentets resultat, vilka sedan studeras närmare via FEA. Analyserna valideras utifrån standarder som kopplingarna ska efterfölja, och mätdata insamlad under de experimentella testerna. Från de experimentella testerna är det komponenterna: kulhållaren, styrningen och nippelhuset som upptar belastning i störst utsträckning. Vid haveri framgår två brottmoder som vanliga, att kulhållaren slits isär samt att styrningen brister, båda fallen uppkommer vid approximativt samma tryck. FE-analyserna för styrningen och kulhållaren visar god överensstämmelse med experimentella resultat. Deformationerna skiljer sig dock mellan analyserna och de experimentella testerna, var nippelhusets analyser uppvisar störst avvikelser. FE-modellerna uppvisar god potential för att prediktera samt utvärdera kopplingarnas mekaniska beteende under tryckbelastning. Analyserna är dock helt beroende av ingående data, var saknaden av en verklig materialmodell medför avvikelser från experimentella resultat. Förhållandet framgår tydligt av nippelhuset, vars relaterade härdningsegenskaper saknas. / Hydraulic FEM ½" high pressure couplings are studied with the purpose of establishing an effective methodology that can be used to predict the strength of the couplings. The methodology consists of finite element analyzes (FEA) and is validated by experimental pressure tests, performed on the FEM ½” couplings pairs.  Using FEA, the couplings solid mechanical behavior and maximum load ability can be viewed virtual, reducing the need for experimental tests and gives the potential for optimized products. The work is performed at Parker Hannifin AB in Skovde. Experimental tests are performed on 20 FEM ½” couplings pairs, to understand the solid mechanical behavior of the couplings until failure occurs, and to predict the maximum pressure that can be applied. The experimental structure and performance is based on the method Design of Experiments (DOE). Critical components are identified based on the results from the experimental tests, which are then studied more closely through FEA. The analysis are validated based on the applied material model, and data collected during the experimental tests. From the experimental tests it is shown that the components: ball cage, guide and plug housing are the components in which failure occur. In case of failure, two failure modes appear as common, that the ball cage is worn apart and that the guide burst, both types of failure modes occur at a similar pressure. The analysis for the guide and ball cage corresponds with the experimental outcomes. Differences occurs however when looked at the deformations, in which the plug housing shows the largest deviation when compared to the experimental results. The usage of FE-models appears to be appropriate for predicting and evaluating the mechanical strengths of the couplings during pressure loads. The analysis are however entirely dependent on the input data, where an incorrect material model generates incorrect results. The relationship is shown for the plug housing, which lack the mechanical properties related to curing processes.
358

Análise numérica e experimental de falhas em juntas de materiais compósitos tipo single-lap fixadas por parafusos escareados / Numerical and experimental analysis of a single lap countersunk composite fastened joint

Kim Martineli Souza Gonçalves 03 June 2015 (has links)
Este trabalho trata das falhas que podem ocorrer em uniões e juntas de materiais compósitos unidas mecanicamente por parafusos. O compósito de fibra de carbono (tecido) embutido em resina epoxy foi estudado neste trabalho devido ao amplo uso em estruturas de vários segmentos da indústria. O trabalho apresenta vários critérios de falha, demonstrando as vantagens e desvantagens de cada um para materiais compósitos. A fabricação dos corpos de provas e os ensaios necessários para obtenção de parâmetros e validação de estruturas são descritos. A resistência da junta mostrou-se muito menor do que a da estrutura de compósito, demonstrando a importância de estudos assim. Criou-se um modelo numérico utilizando critérios de falhas como o critério de Hashin e o de máxima tensão. Os resultados da simulação de elementos finitos tiveram uma boa relação com os ensaios experimentais e o modelo foi então validado e considerado representativo. / This work shows failures that can occur in composite mechanically fastened joints. The composite carbon fiber embedded in epoxy resin, used in this study, was chosen due to it\'s wide use in structures of any segment of the industry. Many failure criteria, showing the advantages and disadvantages for each, regarding composite structures are presented in this work. Test specimens\' manufacturing is described along with required tests for parameter definition and structures validation. The countersunk fastened joint strength is much lower than the composite structure itself, demonstrating the necessity of studies like this. A numerical model using criteria like Hashin and maximum stress was created. The finite elements\' simulation results had a close response to the experimental results and the model was validated and considered representative.
359

Caractérisation in situ des propriétés mécaniques des parois vasculaires par une technique non invasive / Mechanical characterization of arterial wall by a non-invasive method

Ramaël, Bruno 22 November 2016 (has links)
La thèse s’axe sur l’identification des propriétés mécaniques des artères faciales. Elle s’inscrit dans le cadre du projet FlowFace, qui porte sur l’étude du réseau artériel facial par Imagerie de Résonance Magnétique (IRM). Elle s’appuie sur une campagne de mesures effectuées sur un échantillon de 30 témoins au CHU d’Amiens, qui a permis d’obtenir de manière non invasive l’évolution de la déformation des vaisseaux, ainsi que la mesure des débits les parcourant. Des pressions diastoliques et systoliques ont été mesurées au niveau du bras, indépendamment des mesures IRM. L’objectif de la thèse a été de modéliser la déformation patient-spécifique des vaisseaux sanguins et de mettre en place une technique d’optimisation, afin de déterminer leurs propriétés mécaniques par analyse inverse. Des simulations du comportement des vaisseaux sanguins ont été réalisées au moyen des logiciels d’ANSYS Inc., en modélisant les interactions fluide-structure aussi bien en couplage fort que faible. L’objectif a été de déterminer les déformations pariétales induites par les conditions hémodynamiques, ainsi que les pertes de charge dans les vaisseaux considérés. Les simulations ont mis en jeu des modèles hyperélastiques grande déformation pour simuler le comportement des parois. Les déplacements prédits par le modèle numérique ont été comparés aux déplacements expérimentaux mesurés par IRM. Les propriétés mécaniques des vaisseaux ont été identifiées au moyen de la technique d’optimisation proposée dans la suite ANSYS et basée sur les algorithmes de gradient et algorithmes génétiques. La méthode d’identification a été validée sur des fantômes de vaisseaux, consistant en des tubes cylindriques en élastomère, et pour lesquelles des mesures de déformation sous écoulement pulsé ont été acquises par imagerie IRM. Les valeurs des propriétés mécaniques ainsi déterminées ont été comparées à celles obtenues par tests de traction et tests de dilatation. Un des points cruciaux de l’identification a consisté en la détermination de l’état non pré-contraint. S’il est un paramètre connu pour les fantômes de vaisseaux, il est à déterminer pour les vaisseaux natifs. Le challenge de cette thèse a aussi été de déterminer les propriétés hyperélastiques des vaisseaux sanguins à partir des valeurs systoliques et diastoliques de pression et déformation. La méthode a permis de conclure que le module tangent en diastole avoisine 200 KPa alors que celui en systole se trouve dans un intervalle entre 300 KPa et 1 MPa. / This thesis is based on identifying the mechanical properties of facial arteries. It is part of FlowFace project, which focuses on the study of the facial arterial system by MRI imaging. It is based on a measurement campaign conducted on a sample of 30 people at the Hospital of Amiens, which allowed obtaining noninvasively the evolution of the blood vessel deformation and the measurement of the flow. Diastolic and systolic pressures were measured at the arm independently of the MRI measurements. The aim of the thesis was to model the deformation of blood vessels and to implement an optimization technique to determine their mechanical properties by inverse analysis using MRI measurements of deformation. Simulations of the behavior of the blood vessels were performed, using ANSYS Inc. software, modeling fluid-structure interactions both strong and weak coupling. The objective was to determine the parietal deformations induced by hemodynamic conditions and pressure drops in the vessels concerned. The simulations involved hyperelastic and large deflection models to simulate the behavior of the wall. They allow calculate the numerical displacements that we compared with experimental displacements measured by MRI, the aim is that the difference between numerical and experimental be as low as possible to deduce the adequate mechanical parameters for the artery. To identify the mechanical properties of the vessels, the optimization technique proposed in ANSYS based on genetic algorithms or gradient algorithms was used. The identification method was validated on cylindrical tubes (elastomer), for which deformation measurements were acquired by MRI imaging under pulsating flow. The values of mechanical properties determined were compared with those obtained by traction tests and dilatation tests. One of the crucial points of identification involves the determination of the non-stress state. If it is a known parameter for the elastic tube, it has to be determining for blood vessels. The challenge of this thesis is to determine from a "minimum" quantity of pressure and deformation information, the hyper-elastic properties of blood vessels. The method based on a patient-specific geometry deformation concluded that the tangent modulus in diastole is approximately 200kPa while that in systole is in a range of 300 kPa to 1 MPa.
360

Modelling of friction stir spot welding

Reilly, Aidan January 2013 (has links)
Friction stir spot welding (FSSW) is a solid-state welding process which is especially useful for joining precipitation-hardened aluminium alloys that undergo adverse property changes during fusion welding. It also has potential as an effective method for solid-state joining of dissimilar alloys. In FSSW, heat generation and plastic flow are strongly linked, and the scale of the process in time and space is such that it is difficult to separate and control the influence of all the relevant input parameters. The use of modelling is well-established in the field of welding research, and this thesis presents an analysis of the thermal and mechanical aspects of FSSW, principally using the finite element (FE) technique. Firstly, a thermal FE model is shown, which is subsequently validated by reference to experimental temperature data in both aluminium-to-aluminium and aluminium-to-steel welds. Correlations between high-quality welds and temperature fields are established, and predictions are made for peak temperatures reached under novel welding conditions. Deformation and heating are strongly linked in FSSW, but existing modelling tools are poorly suited to modelling flow processes in the conditions extant in FSSW. This thesis discusses the development and optimisation of two novel techniques to overcome the limitations of current approaches. The first of these uses greatly simplified constitutive behaviour to convert the problem into one defined purely by kinematics. In doing so, the boundary conditions reduce to a small number of assumptions about the contact conditions between weld material and tool, and the model calculation time is very rapid. This model is used to investigate changes in the slip condition at the tool to workpiece interface without an explicit statement of the friction law. Marker experiments are presented which use dissimilar composition but similar strength alloys to visualise flow patterns. The layering behaviour and surface patterns observed in the model agree well with observations from these experiments. The second approach extends the FE method to include deformation behaviour without the need for a fully-coupled approach, guided by the kinematic model. This is achieved using an innovative sequential small-strain analysis method in which thermal and deformation analyses alternate, with each running at a very different timescale. This technique avoids the requirement to either remesh the model domain at high strains or to use an explicit integration scheme, both of which impose penalties in calculation time and model complexity. The method is used to relate the purely thermal analysis developed in the work on thermal modelling to welding parameters such as tool speed. The model enables predictions of the spatial and temporal evolution of heat generation to be made directly from the constitutive behaviour of the alloy and the assumed velocity profile at the tool-workpiece interface. Predictions of the resulting temperature history are matched to experimental data and novel conditions are simulated, and these predictions correlate accurately with experimental results. Hence, the model is used to predict welding outcomes for situations for which no experimental data exists, and process charts are produced to describe optimum welding parameters. The methods and results presented in this thesis have significant implications for modelling friction stir spot welding, from optimising process conditions, to integration with microstructural models (to predict softening in the heat-affected zone, or the formation of intermetallics at the interface in dissimilar welds). The technique developed for sequential small strain finite element analysis could also be investigated for use in other kinematically constrained solid-state friction joining processes.

Page generated in 0.0467 seconds