• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 13
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 36
  • 23
  • 21
  • 21
  • 20
  • 19
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

鐵磁材料/拓樸絕緣體(鎳鐵合金/碲化鉍)雙層薄膜結構之自旋幫浦效應 / Spin-pumping Effect in Ferromagnet/Topological Insulator (NiFe/Bi2Te3) Bilayer structure

邱文凱, Chiu, Wen Kai Unknown Date (has links)
我們主要研究拓樸絕緣體與鐵磁物質之間的自旋幫浦效應(spin pumping effect),我們選用的鐵磁材料是具有鐵磁性的鎳鐵合金(Py),厚度固定為40nm,而拓樸絕緣體則是選用碲化鉍(Bi2Te3),厚度範圍是0~100nm,碲化鉍已被確定為一個三維拓撲絕緣體,拓撲絕緣體其表面電子態呈線性色散關係,本身中心是絕緣體,但其表面容許有導電態。此導電態一個最有用的特性是其電子的動量與自旋維持一定方向關係(spin-momentum locking),這使得以自旋來傳遞訊息成為可能。但是實驗上要達到中心是絕緣體相當困難。 過去的實驗已驗證鐵磁共振(Ferromagnetic resonance,FMR)現象在鐵磁/一般金屬雙層膜以及鐵磁/半導體雙層膜,可以使其鐵磁層產生一純自旋流流向非磁性層,這被稱為自旋幫浦效應(spin pumping effect)。當此自旋流跨越膜面介面時,不同自旋的電子由於自旋軌道耦合作用(Spin–orbit interaction),將發生逆自旋霍爾效應(ISHE)並產生一橫向電荷流。在我們的研究中,鐵磁共振(FMR)現象透過網路分析儀在設定的外加磁場下掃描頻率。測得的共振頻率與磁場作圖並以Kittel equation擬合(fitting)出有效場(effective field)。我們發現於絕對溫度5K,隨著碲化鉍(Bi2Te3)膜厚從0nm到15nm增加時,其有效場也增加,但當薄膜厚度大於15nm時,有效磁場將下降。我們分析碲化鉍(Bi2Te3)的表面態(surface state)與塊材(bulk)對有效場變化之貢獻。
72

Estudo de encapsulação de nanopartículas magnéticas em nanoporos de alumina. / Encapsulation study of magnetic nanoparticles in alumina nanopores.

BRANQUINHO, Luis Cesar 26 May 2010 (has links)
Made available in DSpace on 2014-07-29T15:07:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-05-26 / In this work we investigated the encapsulation of magnetite nanoparticles into the nanopores of anodic alumina membranes using atomic force microscopy (AFM), vibrating sample magnetometer (VSM) and electron magnetic resonance (EMR). Three biocompatible magnetic fluids, with different nanoparticle diameters, stably dispersed in water at physiological conditions, were used. The nanoparticles were obtained through the coprecipitation method and characterized by X-ray diffraction, from which we obtained the nanoparticle size and confirmed the crystal structure. The Scherrer´s relation revealed a nanoparticle diameter of 10.1nm, 12.3nm and 13.8nm. The alumina membrane were prepared through anodization process. The nanopores were arranged on a hexagonal lattice with an alumina thickness of 4 μm, a distance between pores (center to center) of 105 nm, and samples containing nanopores with diameter of 35 nm or 80 nm. The method of encapsulation of nanoparticles consisted of depositing a drop of magnetic fluid into the surface of alumina. The fluid enters the nanopores through capillarity carrying the nanoparticles into it. AFM images prove that we had success in encapsulating nanoparticles only for the alumina samples with nanopores with a size of 80 nm. Magnetization data of the alumina sample containing nanoparticles with a diameter of 13.8nm encapsulated into nanopores of 80 nm, revealed an increase, with respect to the first procedure of encapsulation, of 48 % of the nanoparticles internalized into the nanopore after the second process of encapsulation. Further, different from all the samples investigated, EMR data for the alumina containing nanopores of 80 nm and nanoparticles of 13.8 nm, after the first procedure of encapsulation, had shown perpendicular magnetization with respect to the alumina surface. The EMR spetra were curve fitted using two Gaussian lines, one representing the nanoparticles with magnetization parallel to the surface and the other perpendicular. AFM images suggest, in our sample, that residues on the alumina surface are responsible for the parallel component. The magnetic resonance field data, for the perpendicular contribution, were analyzed taking into account in the energy density terms with uniaxial and cubic symmetry. The uniaxial energy contribution had a term due to magnetic dipolar interaction, between nanoparticles forming a linear chain, a magnetostatic term, due to the nanostructures self-organization, and also a magnetoelastic contribution, which came from the stress generated by the packing of nanoparticles, whose origin were related to the dipolar interaction between nanoparticles forming the linear chain. Indeed, the theoretical analysis allowed us to conclude that the mean size of the chain could vary from 4 to 9.5 nanoparticles. Finally, after heating the alumina, at 300°C for one hour, which contained nanoparticles with a size of 10.1 nm, and dissolving it in NaOH aqueous solution, AFM data were obtained. The AFM images confirmed the existence of nanowires. The diameter distribution, obtained from the AFM images, were curve fitted with a lognormal distribution revealing a modal diameter for the nanowires of 25,8 0, ± 4nm and diameter dispersity of 0,30 ± 0,02nm . / Neste trabalho investigamos o encapsulamento de nanopartículas de magnetita (Fe3O4) em nanoporos de alumina anódica utilizando as técnicas de Microscopia de Força Atômica (AFM), Magnetometria de Amostra Vibrante (VSM) e Ressonância Magnética Eletrônica (RME). Utilizamos três fluidos magnéticos com nanopartículas de diâmetros diferentes dispersas em solução fisiológica. As nanopartículas foram sintetizadas pelo método da coprecipitação e foram caracterizadas por difração de raios-x, de onde confirmamos sua estrutura cristalina e obtivemos o diâmetro. A relação de Scherrer forneceu os seguintes diâmetros: DRX=10,1nm, DRX=12,3nm e DRX=13,8nm. As membranas de alumina foram preparadas pelo método da anodização de um filme de alumínio puro, gerando nanoporos em um arranjo hexagonal, sendo a espessura da alumina de 4μm com distância entre poros centro a centro de 105nm e amostras contendo diâmetros de nanoporos de 35nm ou 80nm. O método de encapsulamento das nanopartículas consistiu em depositar uma gota do fluido magnético sobre a alumina, que penetra nos nanoporos por capilaridade, carreando as nanopartículas. Imagens de AFM mostraram que obtivemos sucesso no encapsulamento das nanopartículas em alumina somente nas amostras com nanoporos de 80nm. Uma comparação entre as curvas de magnetização da amostra com nanopartículas de DRX=13,8nm em nanoporos de 80nm, encapsuladas uma vez e duas vezes, mostrou um acréscimo de 48% no número de nanopartículas encapsuladas do primeiro para o segundo processo de encapsulamento. Além disso, diferentemente de todas as outras amostras estudadas, os dados de RME para alumina com nanoporos de 80 nm e nanopartículas com diâmetro de 13,8 nm, após o primeiro processo de encapsulamento, apresentaram magnetização perpendicular ao plano da membrana de alumina. O espectro de RME foi ajustado por duas gaussianas, uma representando uma componente com magnetização paralela e outra perpendicular. Imagens de AFM sugerem, na nossa amostra, que resíduos na superfície são responsáveis pela componente paralela. A análise dos dados do campo de ressonância para a componente perpendicular foram ajustados considerando termos de simetria uniaxial e cúbica para a densidade de energia. Na contribução uniaxial foi explicitado o termo devido à interação dipolar magnética, entre nanopartículas formando uma cadeia linear, o termo magnetostático, devido à autoorganização das nanoestruturas, e um magnetoelástico, proveniente do stress gerado pelo empacotamento das nanopartículas, cuja origem foi atribuída à interação dipolar entre as nanoestruturas formando a cadeia. A análise teórica permitiu, ainda, concluir que o tamanho médio das cadeias lineares formadas no interior dos nanoporos corresponde a 6,0 nanopartículas, podendo variar entre 4 e 11. Essas cadeias podem existir não somente em nanoporos diferentes, mas também no interior de um mesmo nanoporo. Por fim, após aquecermos a membrana de alumina, a 300°C por 1 hora, que continha nanopartículas com DRX=10,1nm e a dissolvermos em uma solução aquosa de NaOH, obtivemos imagens de AFM dos nanofios. Uma distribuição de tamanho construída a partir das imagens e ajustada por uma lognormal nos forneceu um diâmetro modal para os nanofios de 25,8 0, ± 4nm e uma dispersidade de 0,30 ± 0,02nm.
73

Magnetostricção e Anisotropia Magnética de filmes de Cobalto em substratos de vidro e silício / Magnetostricção and magnetic anisotropy of cobalt films on glass substrates and silicon

SÁ, Luciano Vaz de 09 September 2011 (has links)
Made available in DSpace on 2014-07-29T15:07:08Z (GMT). No. of bitstreams: 1 Dissertacao Luciano Vaz de Sa.pdf: 1061982 bytes, checksum: 6f6a32de4e2caf51ea9a29ac0038f796 (MD5) Previous issue date: 2011-09-09 / The Ferromagnetic Resonance technique is used to study the magnetostriction and the magnetic anisotropy of cobalt thin films grown on glass and silicon substrates. The effective values of the magnetostriction and magnetic anisotropy constants obtained do not agree with known values in the literature, but show the viability of the experimental method used [with the film glued to a cantilever beam under stress] to study the magnetostriction of magnetic thin films. / Este trabalho tem como objetivo estudar a magnetostricção e a anisotropia magnética de filmes finos de cobalto usando a técnica de Ressonância Ferromagnética. As amostras investigadas foram produzidas pela técnica de magnetron sputtering, depositadas sobre substratos de vidro e silício, com espessuras variando na faixa de 10 a 20 nm. Os valores efetivos obtidos para as constantes de magnetostricção e de anisotropia magnética de volume e de superfície diferem de valores conhecidos na literatura, mas comprovam a viabilidade do procedimento experimental aplicado [com o filme fixo sobre uma haste cantilever sujeita a stress] para investigar a magnetostricção de filmes finos magnéticos.
74

Investigations Of Magnetic Anisotropy In Ferromagnetic Thin Films And Its Applications

Sakshath, S 07 1900 (has links) (PDF)
Physical systems having dimensions smaller than, or of the same order of magnitude as, the characteristic length scale relevant to a physical property are referred to as mesoscopic physical systems. Due to the dimensions of the system, several physical properties get affected and this could reveal interesting physics which would other-wise have not been apparent. In the recent times, a lot interesting applications have resulted from such studies. The fundamental length scale in ferromagnetic systems is the exchange length. It is related to the magnetic anisotropy and exchange constants. Other length scales such as the size of a magnetic domain or a domain wall depends on the minimisation of energy associated with this length scale along with other factors such as zeeman energy, magnetostatic, magnetoelastic and anisotropy energies. Ultrathin magnetic films have thickness smaller than the exchange length. In this thickness regime, the surface of the film plays an important role. The magnetic anisotropy energy would get a significant contribution from the surface of the film and if it dominates over the volume contribution, would eventually lead to magnetisation pointing out of the plane of the film as opposed to imposition of demagnetising fields. Examples for such cases are FePt(L10 phase) films and Co(0001) films. Such films are important in memory applications where perpendicularly magnetised recording media are desired. When the lateral dimensions of thin films are reduced, demagnetising fields become even more important. Depending on the anisotropy in the system, certain domain patterns get stabilised in the final structure. This has led to important applications in the field of magnonics. The use of angular momentum transfer from spin polarised electrons to change the configuration of magnetisation of structured magnetic films has led to interesting memory and oscillator applications. The underlying physical parameter that needs to be controlled and carefully studied in all these cases is the magnetic anisotropy. It is favourable to have uniaxial magnetic anisotropy for memory and oscillators. This thesis chiefly deals with Fe/GaAs(001) systems. The choice of the physical system follows interest in spintronics where spin injection is desired into a semiconductor from a ferromagnet. The thesis is organized into chapters as follows. Chapter 1 attempts to introduce the reader to some of the basic concepts of mag-netism and some magnetic phenomena. The characteristic nature of a ferro-magnetic material is its spontaneous magnetisation due to long range ordering below the Curie temperature. But the moment is coupled, through some in-teractions, to spatial co-ordinates which leads to spatial variation of magnetic properties. Such interactions are also responsible for the formation of magnetic domains. The spatial variation of magnetic properties within a ferromagnet is called magnetic anisotropy. A major part of the thesis deals with the study of magnetic anisotropy of Fe thin films grown on GaAs(001) substrates. For a better understanding, the structure of the semiconductor is introduced first before discussing the influence of the structure of GaAs on the growth of Fe. A short description of the uniaxial magnetic anisotropy in Fe films is given before starting on an exploration of some possible reasons for it. Concepts of ferromagnetic resonance, spin torque effect and micromagnetic simulations are given. Chapter 2 gives a brief description of some of the experimental apparatus that was setup during the course of the research along with an overview of the differ-ent sample preparation and characterisation techniques used. The chapter is organised according to the general functionality of the techniques. Some con-cepts such as the use of low energy electrons, nanostructuring etc are introduced along with the corresponding techniques since it is best understood along with the instrumentation. Chapter 3 reports some surprising findings about the in-plane magnetic anisotropy in Fe films grown on an MgO underlayer. Until now, it has been understood that such films should exhibit only a four-fold magnetic anisotropy within the plane of the film. But the Fe/MgO/GaAs(001) films studied here exhibited an in-plane uniaxial magnetic anisotropy(IPUMA). IPUMA is dominant upto about 25 ML of Fe in case of Fe/MgO/GaAs(001) films whereas, in Fe/GaAs(001) films it is dominant only upto about 15 ML. Thus, the presence of the MgO film even appeared to enhance the uniaxial anisotropy as compared to the Fe/GaAs(001) films. In the ferromagnetic resonance (FMR) spectra, as many as three peaks were observed in Fe/GaAs(001) films of thickness 50 ML close to the hard axis of magnetisation. This means that three could be three energy minima possibly due to a competition between the anisotropies involved. Chapter 4 elaborates the investigations of the effect of orientation and doping con-centration of the GaAs substrate on the magnetic anisotropy of Fe/GaAs(001) films. It is found that doping the substrate (n type) reduces the strength of the IPUMA in Fe/GaAs films. In the wake of the long-standing debate of electronic structure v/s stress as the origin of the IPUMA in Ferromagnet/Semiconductor films, this result is important because it implies that the electronic structure of the Fe/GaAs interface influences the magnetic anisotropy. But stress, as a cause of IPUMA cannot be ruled out. The influence of deposition techniques on magnetic anisotropy is also investigated. Chapter 5 presents a way of manipulating magnetic anisotropy, and hence mag-netisation dynamics, by nanostructuring of epitaxial Fe films. It is based on the property that magnetic anisotropy of Fe films is thickness dependent. It is demonstrated that using techniques of nanostructuring, a 2 dimensional mag-netic system with controllable variation of local magnetic anisotropy is created. Such a system could be a potential magnonic crystal. chapter 6 demonstrates the proof of concept of a new memory device where memory is stored in the magnetic domain configuration of a ring in relation to that of a nano-wire. Switching between the memory states is acheived through spin trasfer torque of an electric current passing through the device, whereas read-out of the memory state is through the measurement of resistance of the device. Devices are made using NiFe and Co; it is seen that the behaviour of the devices can be explained taking into account the anisotropic magnetoresistance of the material used. Finally, the various results are summarised and a broad outlook is given. Some possible future research related to the topics dealt within this thesis is discussed.
75

Excitace a šíření spinových vln v magnonických krystalech připravených přímým zápisem fokusovaným iontovým svazkem / Spin wave excitation and propagation in magnonic crystals prepared by focused ion beam direct writing

Křižáková, Viola January 2018 (has links)
Paramagnetické niklem stabilizované tenké vrstvy plošně centrovaného kubického Fe, epitaxně narostené na monokrystalickém substrátu Cu(100) jsou známy svou schopností strukturní a magnetické fázové přeměny při ozáření iontovým svazkem, a to do prostorově centrované kubické struktury charakteristické feromagnetickými vlastnostmi. Monokrystalický Cu(100) substrát je možné také nahradit Si(100) s mezivrstvou Cu(100). Pomocí fokusovaného iontového svazku lze dále snadno lokálně modifikovat magnetické vlastnosti ozařované vrstvy. Tato metoda přímého zápisu magnetických struktur je alternativou k běžným litografickým technikám, nabízející nové jimi nedosažitelné možnosti. Připravené magnetické struktury následně využíváme k propagaci spinových vln. V práci je představen celý proces od růstu vrstev, přes přípravu mikrostruktur, až po studium jejich struktury a statických i dynamických magnetických vlastností. S využitím vektorového síťového analyzátoru studujeme ve vrstvách a v mikrostrukturách připravených fokusovaným iontovým svazkem feromagnetickou rezonanci a propagující se spinové vlny. Zdrojem spinových vln o definovaných vlnových vektorech jsou litograficky připravené koplanární vlnovody, sloužící také k induktivní detekci vln. Pomocí feromagnetické rezonance kvantitativně určujeme materiálové charakteristiky jako jsou saturační magnetizace a parametr útlumu a ze spekter propagujících módů následně určujeme charakteristiky spinových vln, které porovnáváme s dalšími feromagnetickými materiály.
76

Integrated Magnetic Components for RF Applications

Hussaini, Sheena 03 June 2015 (has links)
No description available.
77

Phénomènes hyperfréquences et nonlinéaires dans les structures actives ferromagnétiques planaires / High frequency and nonlinear phenomena in thin active ferromagnetic planar structures

Ignatov, Yury 29 June 2012 (has links)
Les récentes découvertes sur les phénomènes hyperfréquences et nonlinéaires dans les structures minces ferromagnétiques actives planaires ont fait émerger un grand nombre de nouvelles études et applications pratiques prometteuses. La conversion de l'énergie magnétoélastique peut être beaucoup plus efficace à proximité de la transition de réorientation de spin (TRS). Les structures minces ferromagnétiques actives planaires fournissent un grand nombre de caractéristiques haute fréquence uniques : par exemple, les conditions pour l’effet Doppler anomal peuvent être satisfaites. Les cristaux magnoniques représentent également un domaine prometteur pour les futures investigations.Dans le présent travail nous avons établi la description théorique de la propagation des ondes hyperfréquences et non-linéaires dans les structures minces ferromagnétiques actives planaires de compositions différentes. Il a été démontré expérimentalement et théoriquement que les vibrations basse fréquence d’un cantilever peuvent être amplifiées quand la résonance ferromagnétique est excitée par un champ électromagnétique HF à proximité de la TRS. En outre, l'effet de la démodulation magnétoélastique peut être complété par un effet magnétoélectrique nonlinéaire. La possibilité de l'apparition de l'effet Doppler anomal lors de la propagation d'une onde de surface magnétostatique dans une structure ferrite-diélectrique-métal, dans une certaine plage de paramètres du système, est démontrée. La dispersion d'une onde magnétostatique de surface se propageant dans un film dont l'épaisseur varie linéairement, et possédant une structure périodique sous la forme de bandes parallèles gravées, a été calculée / Recently discovered investigations on the high frequency and nonlinear phenomena in thin active ferromagnetic planar structures showed a great number of new studies and promising practical applications. The magnetoelastic energy conversion can be much more efficient in the vicinity of spin reorientation transition (SRT). The thin active ferromagnetic planar structures provide a lot of unique high frequency features: for instance, the anomalous Doppler effect conditions can be satisfied. The magnon crystals are also an actual area for the further investigation of the domain.In the present work we derived the theoretical description for the high frequency and non-linear waves propagation in thin planar ferromagnetic structures with different compositions. It was demonstrated experimentally and theoretically that LF vibrations of the cantilever can be amplified when FMR is excited by HF electromagnetic field near SRT. Moreover the magnetoelastic demodulation effect can be supplemented with nonlinear magnetoelectric effect. The possibility of the occurrence of the anomalous Doppler effect during propagation of an MSSW in an FDM structure in a certain range of system parameters is substantiated. The dispersion of a surface magnetostatic wave propagating in a film, whose thickness varies linearly, with a periodic structure in the form of parallel etched strips was calculated. As it was clearly demonstrated these works are of great interest for the new studies and practical applications
78

Magnetostatics and Dynamics of Ion Irradiated NiFe/Ta Multilayer Films Studied by Vector Network Analyzer Ferromagnetic Resonance

Markó, Daniel 31 January 2011 (has links) (PDF)
In the present work, the implications of ion irradiation on the magnetostatic and dynamic properties of soft magnetic Py/Ta (Py = Permalloy: Ni80Fe20) single and multilayer films have been investigated with the main objective of finding a way to determine their saturation magnetization. Both polar magneto-optical Kerr effect (MOKE) and vector network analyzer ferromagnetic resonance (VNA-FMR) measurements have proven to be suitable methods to determine µ0MS, circumventing the problem of the unknown effective magnetic volume that causes conventional techniques such as SQUID or VSM to fail. Provided there is no perpendicular anisotropy contribution in the samples, the saturation magnetization can be determined even in the case of strong interfacial mixing due to an inherently high number of Py/Ta interfaces and/or ion irradiation with high fluences. Another integral part of this work has been to construct a VNA-FMR spectrometer capable of performing both azimuthal and polar angle-dependent measurements using a magnet strong enough to saturate samples containing iron. Starting from scratch, this comprised numerous steps such as developing a suitable coplanar waveguide design, and writing the control, evaluation, and fitting software. With both increasing ion fluence and number of Py/Ta interfaces, a decrease of saturation magnetization has been observed. In the case of the 10×Py samples, an immediate decrease of µ0MS already sets in at small ion fluences. However, for the 1×Py and 5×Py samples, the saturation magnetization remains constant up to a certain ion fluence, but then starts to rapidly decrease. Ne ion irradiation causes a mixing and broadening of the interfaces. Thus, the Py/Ta stacks undergo a transition from being polycrystalline to amorphous at a critical fluence depending on the number of interfaces. The saturation magnetization is found to vanish at a Ta concentration of about 10–15 at.% in the Py layers. The samples possess a small uniaxial anisotropy, which remains virtually unaffected by the ion fluence, but slightly reduces with an increasing number of Py/Ta interfaces. In addition to magnetostatics, the dynamic properties of the samples have been investigated as well. The Gilbert damping parameter α increases with both increasing number of Py/Ta interfaces and higher ion fluences, with the former having a stronger influence. The inhomogeneous linewidth broadening ΔB0 increases as well with increasing number of Py/Ta interfaces, but slightly decreases for higher ion fluences. / In dieser Dissertation ist der Einfluss von Ionenbestrahlung auf die magnetostatischen und dynamischen Eigenschaften von weichmagnetischen Py/Ta-Einzel- und Multilagen (Py = Permalloy: Ni80Fe20) untersucht worden, wobei das Hauptziel gewesen ist, eine Methode zur Bestimmung der Sättigungsmagnetisierung zu finden. Sowohl polare magneto-optische Kerr-Effektmessungen (MOKE) als auch ferromagnetische Resonanzmessungen mittels eines Vektornetzwerkanalysators (VNA-FMR) haben sich als geeignet erwiesen, um µ0MS zu bestimmen, wobei das Problem des unbekannten effektiven magnetischen Volumens umgangen wird, welches bei der Verwendung von Techniken wie SQUID oder VSM auftreten würde. Unter der Voraussetzung, dass die Proben keinen senkrechten magnetischen Anisotropiebeitrag besitzen, kann die Sättigungsmagnetisierung selbst im Fall starker Grenzflächendurchmischung infolge einer großen Anzahl an Py/Ta-Grenzflächen und/oder Ionenbestrahlung mit hohen Fluenzen bestimmt werden. Ein weiterer wesentlicher Bestandteil dieser Arbeit ist die Konstruktion eines VNA-FMR-Spektrometers gewesen, welches vollautomatisiert ist, polare und azimutale Winkelabhängigkeiten messen kann und einen Magneten besitzt, der Proben, die Eisen beinhalten, sättigen kann. Von Grund auf beginnend umfasste dies zahlreiche Schritte wie z. B. die Entwicklung eines geeigneten koplanaren Wellenleiterdesigns sowie das Schreiben von Steuerungs-, Auswertungs- und Fitprogrammen. Mit steigender Fluenz und Zahl an Py/Ta-Grenzflächen ist eine Abnahme der Sättigungsmagnetisierung beobachtet worden. Im Fall der 10×Py-Proben findet diese bereits bei kleinen Fluenzen statt. Im Gegensatz dazu bleibt µ0MS der 1×Py- und 5×Py-Proben bis zu einer bestimmten Fluenz konstant, bevor sie sich dann umso schneller verringert. Die Bestrahlung mit Ne-Ionen verursacht eine Durchmischung und Verbreiterung der Grenzflächen. Infolgedessen erfahren die Py/Ta-Proben bei einer kritischen Fluenz, die von der Zahl der Grenzflächen abhängig ist, einen Phasenübergang von polykristallin zu amorph. Die Sättigungsmagnetisierung verschwindet ab einer Ta-Konzentration von etwa 10–15 Atom-% in den Py-Schichten. Die Proben besitzen eine kleine uniaxiale Anisotropie, die praktisch unbeeinflusst von der Fluenz ist, sich jedoch mit steigender Zahl an Py/Ta-Grenzflächen leicht verringert. Neben den statischen sind auch die dynamischen magnetischen Eigenschaften der Proben untersucht worden. Der Gilbert-Dämpfungsparameter α erhöht sich sowohl mit steigender Zahl an Py/Ta-Grenzflächen als auch mit höheren Fluenzen, wobei Erstere einen größeren Einfluss hat. Die inhomogene Linienverbreiterung ΔB0 nimmt ebenfalls mit steigender Zahl an Py/Ta-Grenzflächen zu, verringert sich jedoch bei größeren Fluenzen leicht.
79

Magnetisierungsdynamik weichmagnetischer Dünnschichten mit modifizierter magnetischer Mikrostruktur / Magnetization dynamics of soft magnetic thin films with modified magnetic microstructure

Hengst, Claudia 12 March 2014 (has links) (PDF)
Abschlussdomänenstrukturen in strukturierten weichmagnetischen dünnen Schichten wurden systematisch hinsichtlich ihrer Domänenweite, Domänenmagnetisierungsrichtung, Domänenwandtypen und Wandlängen modifiziert. Somit konnte ein umfassendes Verständnis über die Beeinflussungsmöglichkeiten des dynamischen Magnetisierungsverhaltens von Abschlussdomänenkonfigurationen im GHz-Bereich erarbeitet werden. Ein bekanntes Modell zur Berechnung der akustischen Domänenresonanzfrequenz von 180° -Domänenkonfigurationen wurde unter Berücksichtigung von Abschlussdomänen und endlichen effektiven Domänenwandweiten erfolgreich erweitert. Damit ist eine präzise Vorhersage des dynamischen Verhaltens von 180° - Abschlussdomänenstrukturen möglich. Außerdem wurde aufgezeigt, dass über die Messung der ferromagnetischen Resonanz Domänenwandumwandlungen im Magnetfeld detektiert werden können. Für Strukturen mit angepasster Anisotropie wurde unabhängig von der Anisotropiestärke eine konstante akustische Resonanzfrequenz beobachtet. Dieser unerwartete Zusammenhang wird auf die kompensatorischeWirkung von Abschlussdomänenstrukturen zurückgeführt. Abschließend wird gezeigt, dass für sogenannte Bucklingdomänenstrukturen eine signifikant größere Beeinflussung der ferromagnetischen Resonanzfrequenz durch vergleichsweise kleine statische Magnetfelder erzielt werden kann, als dies bei homogen magnetisierten Strukturen und Schichten der Fall ist. Die vorgestellten Ergebnisse dieser Arbeit zeigen, dass über eine Einstellung der ferromagnetischen Domänenstruktur das dynamische Verhalten weichmagnetischer strukturierter Schichten über einen vergleichsweise breiten Frequenzbereich hinweg gezielt modifiziert werden kann.
80

Magnetisierungsdynamik weichmagnetischer Dünnschichten mit modifizierter magnetischer Mikrostruktur

Hengst, Claudia 18 December 2013 (has links)
Abschlussdomänenstrukturen in strukturierten weichmagnetischen dünnen Schichten wurden systematisch hinsichtlich ihrer Domänenweite, Domänenmagnetisierungsrichtung, Domänenwandtypen und Wandlängen modifiziert. Somit konnte ein umfassendes Verständnis über die Beeinflussungsmöglichkeiten des dynamischen Magnetisierungsverhaltens von Abschlussdomänenkonfigurationen im GHz-Bereich erarbeitet werden. Ein bekanntes Modell zur Berechnung der akustischen Domänenresonanzfrequenz von 180° -Domänenkonfigurationen wurde unter Berücksichtigung von Abschlussdomänen und endlichen effektiven Domänenwandweiten erfolgreich erweitert. Damit ist eine präzise Vorhersage des dynamischen Verhaltens von 180° - Abschlussdomänenstrukturen möglich. Außerdem wurde aufgezeigt, dass über die Messung der ferromagnetischen Resonanz Domänenwandumwandlungen im Magnetfeld detektiert werden können. Für Strukturen mit angepasster Anisotropie wurde unabhängig von der Anisotropiestärke eine konstante akustische Resonanzfrequenz beobachtet. Dieser unerwartete Zusammenhang wird auf die kompensatorischeWirkung von Abschlussdomänenstrukturen zurückgeführt. Abschließend wird gezeigt, dass für sogenannte Bucklingdomänenstrukturen eine signifikant größere Beeinflussung der ferromagnetischen Resonanzfrequenz durch vergleichsweise kleine statische Magnetfelder erzielt werden kann, als dies bei homogen magnetisierten Strukturen und Schichten der Fall ist. Die vorgestellten Ergebnisse dieser Arbeit zeigen, dass über eine Einstellung der ferromagnetischen Domänenstruktur das dynamische Verhalten weichmagnetischer strukturierter Schichten über einen vergleichsweise breiten Frequenzbereich hinweg gezielt modifiziert werden kann.:1. Einleitung 2. Grundlagen 2.1. Magnetische Energieterme 2.1.1. Austauschenergie 2.1.2. Zeeman-Energie 2.1.3. Magnetostatische Energie 2.1.4. Anisotropie 2.2. Magnetische Mikrostrukturen 2.2.1. Domänenwände 2.3. Magnetisierungsdynamik 2.3.1. Magnetodynamik gesättigter strukturierter Schichten 2.3.2. Magnetodynamik ungesättigter magnetischer Strukturen 3. Experimentelles 3.1. Magnetooptische Domänenbeobachtung 3.2. Magnetische Rasterkraftmikroskopie 3.3. Hysteresemessung 3.4. Dynamische Charakterisierung 3.4.1. Gepulste Mikrowellen-Magnetometrie 3.4.2. Messung der ferromagnetischen Resonanz mit dem Vektor-Netzwerkanalysator 3.5. Mikromagnetische Simulationen 4. Eigenschaften ausgedehnter Referenzschichten 5. Magnetisierungsdynamik modifizierter 180-Grad-Domänenstrukturen 5.1. Erzeugung magnetischer Mikrostrukturen unterschiedlicher Domänenweite 5.2. Magnetisierungsdynamik modifizierter 180°-Grad-Domänenstrukturen im Nullfeld 5.2.1. Effekt der Abschlussdomänen 5.2.2. Effekt kleiner Domänenwandweiten 5.3. Domänenresonanz im magnetischen Feld 5.3.1. Transversales Magnetfeld 5.3.2. Longitudinales Magnetfeld 6. Dynamischer Kompensationseffekt magnetischer Domänen in strukturierten Schichten 7. Magnetisierungsdynamik von Bucklingdomänenstrukturen 7.1. Statisches Magnetisierungsverhalten linsenförmiger Elemente 7.2. Magnetisierungsdynamik linsenförmiger Elemente 7.2.1. Mikromagnetische Simulation der Bucklingstruktur 7.2.2. Diskussion der Magnetisierungsdynamik der Bucklingstruktur 8. Zusammenfassung und Ausblick A. Magnetometrische Entmagnetisierungsfaktoren nach Aharoni B. Ballistische Entmagnetisierungsfaktoren nach Aharoni C. Herleitung der akustischen Domänenresonanzfrequenz im transversalen Feld

Page generated in 0.1092 seconds