• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Élaboration d'un système de libération contrôlée des facteurs de croissance FGF-2 et TGF-β1 en vue de leur utilisation en odontologie conservatrice et endodontie

Kalaji, Mohamed Nader 25 October 2010 (has links) (PDF)
Ce travail a été mené afin d'étudier l'effet du FGF 2 et du TGF-β1 sur les étapes précoces de la régénération dentinaire en utilisant la micro-encapsulation de ces facteurs dans une matrice pour les protéger et contrôler leur libération et ensuite l'application des microparticules obtenues en coiffage pulpaire direct dans un modèle de culture de dents entières. Ce travail consiste d'abord à l'optimisation des moyens techniques mis en oeuvre pour réaliser l'encapsulation du TGFβ1, FGF-2 à l'aide de l'acide poly (lactique-glycolique) PLGA. Les études de la caractérisation colloïdal et physico chimique des microparticules montre que les microparticules gardent leurs caractéristiques physicochimiques après séchage et resuspension dans l'eau. La procèdes optimisé a été ensuite utilisé pour encapsuler les facteurs de croissance. L'encapsulation de FGF-2 et TGF-β1 a été obtenue avec une taille, une efficacité d'encapsulation et une profile de libération adaptés au type d'application choisi. Les études biologiques ne montrent aucun effet toxique des particules sur les fibroblastes pulpaires. Les facteurs de croissance ont gardé leur activité biologique spécifique. Un modèle de culture de dent entier humain a été utilisé pour réaliser l'application de nos microparticules comme un matériau de coiffage dentaire pour confirmer leurs activités biologiques ex-vivo. Ces microparticules peuvent être utiles dans les études des étapes précoces de la régénération dentinaire, l'activation et la migration des cellules progénitrices de la pulpe dentaire
32

Le Fibroblast Growth Factor 2 ( FGF-2 ) et la neuropiline-1 (NRP-1) : nouveaux partenaires moléculaires de Heparin Affin Regulatory Peptide ( HARP) / The Fibroblast Growth Factor 2 (FGF-2) and the neuropiline-1 (NRP-1) : new molecular partners of Heparin Affin Regulatory Peptide (HARP)

Elahouel, Rania 13 December 2012 (has links)
HARP (Heparin Affin regulatory peptide) est un facteur de croissance qui constitue avec la midkine une sous-famille des Heparin Binding Growth Factors (HBGFs). HARP est impliqué dans de nombreux processus physiologiques comme la neurogenèse et la vasculogenèse mais aussi dans des processus physiopathologiques comme l’angiogenèse et la progression tumorale. HARP interagit avec différents récepteurs (N-syndécan, RPTPβ/ζ, et ALK). Plus récemment, il a été montré au laboratoire que la nucléoline, protéine navette entre le noyau, le cytoplasme, et la surface cellulaire est un nouveau récepteur à HARP. Malgré les avancées dans ce domaine, l’interaction de HARP avec ses récepteurs n’est pas totalement élucidée. L'objectif de ce projet de thèse était la recherche de nouveaux partenaires moléculaires qui interagissent avec HARP, de comprendre le mécanisme de leurs interaction et d’analyser les effets biologiques. A ce titre, j’ai participé à l’étude de l’interaction de HARP avec le facteur de croissance des fibroblastes, le FGF-2. Ce facteur liant l’héparine est également mitogène et angiogène. En utilisant des techniques de biocapteurs optiques et d’interaction protéine-protéine, nous avons montré une interaction directe entre HARP et le FGF-2 et qui implique les domaines C-TSR-I et C-terminale de HARP. De plus, cette interaction inhibe la migration et la prolifération des cellules endothéliales, induites par le FGF-2 ou par HARP seuls. En parallèle, j’ai mis en évidence l’interaction entre HARP et la NRP-1. NRP-1 est une protéine transmembranaire, ayant comme ligands principaux, les sémaphorines de classe 3 (SEMA 3A), le facteur de croissance endothélial vasculaire (VEGF) et le FGF-2. En plus de son rôle crucial dans le développement des systèmes nerveux et cardiovasculaires, la NRP-1 est impliquée dans les processus physiopathologiques tels que l’angiogenèse et l’invasion tumorale. Ainsi, la NRP-1 présente un profil biologique similaire à HARP. En utilisant des tests d’ELISA, d’immunoprécipitation et de « pull-down », nous avons montré que HARP interagit avec la NRP-1. Cette interaction semble être directe et s’effectue via les domaines de liaison à l’héparine TSR-I. HARP induit l’internalisation de la NRP-1 au bout de 15 minutes et son recyclage partiel à la surface cellulaire au bout d’une heure. L’internalisation de la NRP-1 s’accompagne par la phosphorylation des voies MAPK (ERK1/2), Akt et FAK. L’interaction HARP/NRP-1 est cruciale pour la migration des cellules endothéliales et l’invasion des cellules tumorales. En conclusion, ces résultats apportent de nouvelles avancées concernant les partenaires moléculaires de HARP en particulier et montrent également la complexité des interactions des facteurs de croissance entre eux et avec leurs récepteurs. Plus généralement, cette étude permet d'envisager des stratégies thérapeutiques ciblant l’interaction de la NRP-1 avec HARP et aussi les autres facteurs de croissance. / HARP (Heparin Affin regulatory peptide) is a growth factor that constitutes with midkine a subfamily of Heparin Binding Growth Factors (HBGFs). HARP is involved in many physiological processes such as neurogenesis and vasculogenesis but also in pathophysiological processes such as angiogenesis and tumor progression. HARP interacts with different receptors (N-syndecan, RPTPβ / ζ and ALK). More recently, it has been shown in the laboratory that nucleolin, a protein shuttle between the nucleus, cytoplasm, and cell surface, is a new HARP receptor. Despite the advances in this field, the interaction of HARP with its receptors is not fully understood. The aim of this thesis was the search for new molecular partners that interact with HARP, to understand the mechanism of their interaction and analyze the biological effects. My work was firstly to participate to the study of the interaction of HARP with the fibroblast growth factor-2, FGF-2. This factor is also an heparin-binding factor, with mitogenic and angiogenic activities. Using techniques of optical biosensors and protein-protein interaction, we have shown a direct interaction between HARP and FGF-2 that involves C-TSR-I and C-terminus domains of HARP. In addition, HARP inhibits the migration and proliferation of endothelial cells induced by FGF-2. In parallel, I highlighted the interaction between HARP and NRP-1. NRP-1 is a transmembrane protein having as main ligands, semaphorins class 3 (SEMA 3A), the vascular endothelial growth factor (VEGF) and FGF-2. In addition to its crucial role in the development of the nervous and cardiovascular systems, the NRP-1 is involved in physiopathological processes such as angiogenesis and tumor invasion. Thus, NRP-1 has a biological profile similar to HARP. Using ELISA, immunoprecipitation and "pull-down" tests, we have shown that HARP interacts with NRP-1. This interaction appears to be direct and occurs via heparin binding domains of HARP: TSR-I. HARP induces internalization of NRP-1 after 15 minutes and partial recycling to the cell surface after one hour. The internalization of the NRP-1 is accompanied by the phosphorylation of MAPK pathways (ERK1 / 2), Akt and FAK. HARP/NRP-1 interaction is crucial for endothelial cell migration and invasion of tumor cells. In conclusion, these results provide new advances on molecular partners of HARP in particular and also show the complexity of the interactions between these growth factors and their receptors. More generally, this study allows considering therapeutic strategies targeting the interaction of NRP-1 with HARP as well as other growth factors.
33

Intradermal Delivery of Plasmids Encoding Angiogenic Growth Factors by Electroporation Promotes Wound Healing and Neovascularization

Ferraro, Bernadette 20 March 2009 (has links)
Gene therapy techniques delivering exogenous angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2), are currently being investigated as potential treatments for ischemia resulting from a variety of conditions, such as peripheral artery disease (PAD) and chronic wounds. Despite these intense efforts, a viable clinical option to promote therapeutic neovascularization remains elusive. Electroporation is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues including skin and muscle. This study investigated intradermal injection of plasmids encoding angiogenic growth factors with electroporation as a novel therapeutic approach to increase perfusion in areas of ischemia. Two common animal models of ischemia were employed: a skin flap model, used to study wound healing, and a hindlimb ischemia model, used to investigate potential therapies for PAD. In the skin flap model, delivery of plasmid VEGF with electroporation significantly increased VEGF expression for 5 days after delivery compared to injection of the plasmid alone. While the increase in VEGF expression was short-term, it significantly increased expression of the downstream angiogenic growth factor endothelial nitric oxide synthase, as well as perfusion and healing in the distal area of the skin flap. To facilitate the translation of electroporation to the clinic, a novel electrode configuration was previously designed for cutaneous delivery of plasmids to a large surface area. The design of the Multielectrode Array allows for delivery to a large surface area without the need to increase the applied voltage. Conditions for plasmid delivery with this electrode were optimized and it was then utilized to deliver plasmid FGF-2 (pFGF) to the hindlimb ischemia model. FGF-2 expression, perfusion, and angiogenesis were assessed. FGF-2 expression was significantly higher for 10 days after treatment with pFGF with electroporation compared to injection of pFGF alone. This increase in FGF-2 expression induced a significant increase in perfusion and angiogenesis in the ischemic limb. The research presented here suggests intradermal injection of plasmids encoding angiogenic factors by electroporation is a novel potential therapeutic approach to increase perfusion to areas of ischemia and promote wound healing.
34

Preparation of Heparin Surface for Quantification of Fibroblast Growth Factor-2 (FGF-2) Binding Using Surface Plasmon Resonance (SPR)

Kirtland, David Rand 17 June 2005 (has links)
A mixed self assembling monolayer (mSAM) chip with attached heparin was developed to analyze heparin-protein interactions using a Reichert Inc, SR7000, surface plasmon resonance (SPR) instrument. The heparin was attached via streptavidin-biotin linkage where the streptavidin was covalently coupled to the mSAM and biotinylated heparin bound to it. These chips were then used to quantify the interactions of fibroblast growth factor-2 (FGF-2) with the surface bound heparin. Kinetic rate constants of association and disassociation were calculated. The association data of FGF-2 with heparin was fit to a single compartment, well-mixed model as the data did not exhibit mass transfer limitations. The results suggested that rebinding was prevalent and observed disassociation rates differed significantly in the presence of competing soluble heparin during disassociation. Our results indicate that the Reichert instrument and mSAM chips can be used to analyze heparin-protein interactions but that a careful protocol, outlined in this thesis, should be followed to obtain optimal data. / Master of Science
35

Human Endometrial Angiogenesis : An Immunohistochemical Study of the Endometrial Expression of Angiogenic Growth Factors and Their Corresponding Receptors

Möller, Björn January 2004 (has links)
<p>The human endometrium undergoes dramatic changes in morphology and function during the menstrual cycle. Recurrent angiogenesis (the formation of new blood vessels) is of utmost importance for oxygen supply and nourishment of the rapidly growing endometrial tissue. </p><p>The importance of some growth factors known to stimulate new blood vessel formation both in vivo and in vitro in non-uterine tissues, for endometrial angiogenesis, was studied. Further, the possible relationship between the patterns of expression of some angiogenic growth factors and bleeding disturbances during the use of a progestin-only intrauterine contraceptive device was analyzed. Different ways of determining changes in the endometrial vascular density during the menstrual cycle were also evaluated. </p><p>The expression of the angiogenic growth factors vascular endothelial growth factors (VEGF) A, B, C, and D, fibroblast growth factor 2 (FGF-2), and epidermal growth factor (EGF) and their receptors was analyzed using immunohistochemistry.</p><p>VEGF-A, -B and -C, FGF-2 and EGF and their receptors were all found to be expressed in normal human endometrium, especially in and/or around blood vessels, supporting the hypothesis that these peptides most probably contribute to the regulation of angiogenesis and blood vessel function in normal human endometrium.</p><p>There were differences in expression of some of the studied ligands and receptors in endometrium from users of an LNG-IUS with and without bleeding disturbances. We conclude that changes in the expression of these growth factors and receptors might be involved in the formation of fragile and dysfunctional blood vessels that subsequently give rise to bleeding disturbances.</p><p>The three different methods that were applied for calculating endometrial blood vessel density showed similar results and none of them indicated any significant changes during the menstrual cycle. Angiogenesis thus seems to occur mainly by blood vessel elongation and the angiogenic activity is probably related to changes in endometrial thickness and coiling of the spiral arteries.</p>
36

Molecular Mechanisms in Endothelial Cell Differentiation

Rennel, Emma January 2004 (has links)
<p>Angiogenesis is the formation of new blood vessels from the pre-existing blood vessels. Blood vessels are composed of endothelial cells and supporting musculature. Angiogenesis is regulated by numerous soluble ligands and by cell-matrix interactions. We have studied the molecular mechanisms in fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A)-induced angiogenesis using immortalized endothelial cell lines in different angiogenesis assays.</p><p>The role of the signaling protein H-Ras in FGF-2-induced <i>in vitro</i> angiogenesis was studied by expressing mutated versions of H-Ras in immortalized mouse brain endothelial cells using a tetracycline-regulated expression system. <i>In vitro</i> angiogenesis was analyzed as the ability of cells to invade a fibrin matrix and form branching structures in response to a combination of FGF-2 and tumor necrosis factor-α (TNF-α). Inhibition of H-Ras through the expression of dominant negative (S17N) H-Ras or pharmacological inactivation of H-Ras with a farnesyl transferase inhibitor, did not inhibit growth factor-induced invasion. In contrast, expression of constitutively active (G12V) H-Ras caused cells to adopt a transformed phenotype which inhibited invasive growth and cells formed solid tumors when injected in nude mice. These studies suggest that H-Ras activity is not required for differentiation but its activity must be tightly regulated as aberrant activity impairs endothelial cell differentiation.</p><p>In order to screen for both known and novel genes that regulate angiogenesis we used large scale microarray analysis. In VEGF-A-stimulated telomerase immortalized human microvascular endothelial cells undergoing invasive growth in fibrin gels, or forming cord-like structures on collagen, we identified several genes that were differentially expressed. Some of these are known to be important for endothelial cell functions and angiogenesis while others have no previous connection with endothelial cell function or were transcripts with no assigned function. Further analysis of these proteins will aid in elucidating the molecular mechanisms underlying endothelial cell differentiation. </p>
37

Human Endometrial Angiogenesis : An Immunohistochemical Study of the Endometrial Expression of Angiogenic Growth Factors and Their Corresponding Receptors

Möller, Björn January 2004 (has links)
The human endometrium undergoes dramatic changes in morphology and function during the menstrual cycle. Recurrent angiogenesis (the formation of new blood vessels) is of utmost importance for oxygen supply and nourishment of the rapidly growing endometrial tissue. The importance of some growth factors known to stimulate new blood vessel formation both in vivo and in vitro in non-uterine tissues, for endometrial angiogenesis, was studied. Further, the possible relationship between the patterns of expression of some angiogenic growth factors and bleeding disturbances during the use of a progestin-only intrauterine contraceptive device was analyzed. Different ways of determining changes in the endometrial vascular density during the menstrual cycle were also evaluated. The expression of the angiogenic growth factors vascular endothelial growth factors (VEGF) A, B, C, and D, fibroblast growth factor 2 (FGF-2), and epidermal growth factor (EGF) and their receptors was analyzed using immunohistochemistry. VEGF-A, -B and -C, FGF-2 and EGF and their receptors were all found to be expressed in normal human endometrium, especially in and/or around blood vessels, supporting the hypothesis that these peptides most probably contribute to the regulation of angiogenesis and blood vessel function in normal human endometrium. There were differences in expression of some of the studied ligands and receptors in endometrium from users of an LNG-IUS with and without bleeding disturbances. We conclude that changes in the expression of these growth factors and receptors might be involved in the formation of fragile and dysfunctional blood vessels that subsequently give rise to bleeding disturbances. The three different methods that were applied for calculating endometrial blood vessel density showed similar results and none of them indicated any significant changes during the menstrual cycle. Angiogenesis thus seems to occur mainly by blood vessel elongation and the angiogenic activity is probably related to changes in endometrial thickness and coiling of the spiral arteries.
38

Molecular Mechanisms in Endothelial Cell Differentiation

Rennel, Emma January 2004 (has links)
Angiogenesis is the formation of new blood vessels from the pre-existing blood vessels. Blood vessels are composed of endothelial cells and supporting musculature. Angiogenesis is regulated by numerous soluble ligands and by cell-matrix interactions. We have studied the molecular mechanisms in fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A)-induced angiogenesis using immortalized endothelial cell lines in different angiogenesis assays. The role of the signaling protein H-Ras in FGF-2-induced in vitro angiogenesis was studied by expressing mutated versions of H-Ras in immortalized mouse brain endothelial cells using a tetracycline-regulated expression system. In vitro angiogenesis was analyzed as the ability of cells to invade a fibrin matrix and form branching structures in response to a combination of FGF-2 and tumor necrosis factor-α (TNF-α). Inhibition of H-Ras through the expression of dominant negative (S17N) H-Ras or pharmacological inactivation of H-Ras with a farnesyl transferase inhibitor, did not inhibit growth factor-induced invasion. In contrast, expression of constitutively active (G12V) H-Ras caused cells to adopt a transformed phenotype which inhibited invasive growth and cells formed solid tumors when injected in nude mice. These studies suggest that H-Ras activity is not required for differentiation but its activity must be tightly regulated as aberrant activity impairs endothelial cell differentiation. In order to screen for both known and novel genes that regulate angiogenesis we used large scale microarray analysis. In VEGF-A-stimulated telomerase immortalized human microvascular endothelial cells undergoing invasive growth in fibrin gels, or forming cord-like structures on collagen, we identified several genes that were differentially expressed. Some of these are known to be important for endothelial cell functions and angiogenesis while others have no previous connection with endothelial cell function or were transcripts with no assigned function. Further analysis of these proteins will aid in elucidating the molecular mechanisms underlying endothelial cell differentiation.
39

Effects of Early Life Neglect on Cocaine use during adolescence and subsequent effect on FGF-2 levels in adulthood

Patel, Vaidehi 26 May 2020 (has links)
No description available.

Page generated in 0.3844 seconds