• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 40
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 137
  • 42
  • 31
  • 27
  • 25
  • 22
  • 22
  • 17
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Violet Archer’s “The Twenty-Third Psalm” (1952): An Analytical Study of Text and Music Relations through Fibonacci Numbers, Melodic Contour, Motives, and Piano Accompaniment

Wan, Jessica J January 2012 (has links)
This study explores text and music relations in Canadian composer Violet Archer’s “The Twenty-Third Psalm” by analysing the text of Psalm 23, Fibonacci numbers, melodic contours, motives, and the role of the accompaniment. The text focuses on David’s faith in God and his acceptance of God as his shepherd on earth. The four other approaches allow us to examine the work on three different structural levels: background through Fibonacci numbers, middleground through melodic contour analysis, and foreground through motivic analysis and the role of the accompaniment. The measure numbers that align with Fibonacci numbers overlap with some of the melodic contour phrases, which are demarcated by rests, as well as with the most important moments at the surface level, such as the emphasis on the word “death” through recurring and symbolic motives. The piano accompaniment further supports these moments in the text.
132

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 February 2012 (has links) (PDF)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
133

Applications of recurrence relation

Chuang, Ching-hui 26 June 2007 (has links)
Sequences often occur in many branches of applied mathematics. Recurrence relation is a powerful tool to characterize and study sequences. Some commonly used methods for solving recurrence relations will be investigated. Many examples with applications in algorithm, combination, algebra, analysis, probability, etc, will be discussed. Finally, some well-known contest problems related to recurrence relations will be addressed.
134

Applications of Generating Functions

Tseng, Chieh-Mei 26 June 2007 (has links)
Generating functions express a sequence as coefficients arising from a power series in variables. They have many applications in combinatorics and probability. In this paper, we will investigate the important properties of four kinds of generating functions in one variables: ordinary generating unction, exponential generating function, probability generating function and moment generating function. Many examples with applications in combinatorics and probability, will be discussed. Finally, some well-known contest problems related to generating functions will be addressed.
135

Essays in Economics of Sports / Eseje o ekonomii sportu

Lahvička, Jiří January 2013 (has links)
This dissertation consists of five articles about economics of sports. The first three articles investigate various types of outcome uncertainty and how they relate to match attendance demand, while the remaining two articles test the efficiency of sports betting markets. The first article presents a new method of calculating match importance. Unlike the previous approaches in the literature, it does not require ex-post information and can be used for any type of season outcome. The second article shows that the additional playoff stage in the Czech ice hockey "Extraliga" lowers the probability of the strongest team becoming a champion and thus increases seasonal uncertainty. The third article demonstrates that the inconsistent findings in the literature about the link between match uncertainty and attendance could be explained by wrongly specified regressions, proposes a new approach to analyzing the effect of match uncertainty and shows that attendance demand is maximized if teams of the same quality play against each other. The fourth article examines the favorite-longshot bias in the context of betting on tennis matches. It shows that the favorite-longshot bias pattern is consistent with bookmakers protecting themselves against both better informed insiders and the general public exploiting new information. The fifth article investigates the supposedly profitable strategy of betting on soccer draws using the Fibonacci sequence. The strategy is tested both in a simulated market and on a real data set and found to lose money.
136

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 January 2012 (has links)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
137

Vnímání krásy - biologické vs. kulturní determinanty / Perception of beauty - biological vs. cultural determinants

Obdržálková, Zita January 2013 (has links)
This thesis deals with problems of biological and cultural determinants influencing perception of beauty. It attempts to find out if there is a common biological basis of perception of beauty or if beauty represents merely a sociocultural construct - product of a specific culture. With respect to biological determinants it concerns biological processes significantly influencing perception of beauty. In this context, these processes include probably innate evolutionary adaptations, effects of brain cognitive systems and neural correlates processing perceptions of beautiful objects. In connection with cultural determinants it presents studies emphasizing cross-cultural differences in perception of beauty. Further subject of the thesis is an aesthetic conception of subjective and objective beauty and related concept of beauty based on mathematical relations. In this connection, the creation of universally beautiful objects based on fixed mathematical rules as well as the possibility of exact measurement of beauty are discussed.

Page generated in 0.0382 seconds