Spelling suggestions: "subject:"fibonacci"" "subject:"tribonacci""
101 |
Predikce vývoje pohybu kurzu na forexu / Prediction of Exchange Rate Movements on ForexBalog, Miroslav January 2015 (has links)
The thesis deals with the possibility of prediction of the exchange rate on forex. The combination of Elliott wave principle and Fibonacci numbers examines to what extent and in what time periods it is possible to predict exchange rate. The thesis use fundamental analysis and MACD oscillator to confirm the accuracy of this prediction.
|
102 |
Studies on Non-autonomous Discrete Hungry Integrable Systems Associated with Some Eigenvalue Problems / 固有値問題に関連する非自励型離散ハングリー可積分系の研究Shinjo, Masato 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20739号 / 情博第653号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 山下 信雄, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
103 |
Jeu de TempsReinhold, Steffen 01 July 2022 (has links)
Die Komposition „Jeu de Temps“ ist ein Spiel mit Zeitwahrnehmung. Verschieden übereinandergelegte Zeitleisten – nach der Fibonacci-Zahlenreihe erstellt – bestimmen den musikalischen Verlauf. Sie generieren eine permanente Beschleunigung und Verlangsamung als auch Verdichtung und Entspannung. Wenn diese Prozesse gleichzeitig ablaufen, so scheinen sie sich aufzuheben.
„Jeu de Temps“ wurde 2003 von Bernhard Forster (Oboe) und Andreas Wehrenfennig (Harfe) in München uraufgeführt.
|
104 |
MANAGING PENDING EVENTS IN SEQUENTIAL & OPTIMISTIC PARALLEL DISCRETE EVENT SIMULATIONSHigiro, Julius Didier 01 December 2017 (has links)
No description available.
|
105 |
Diseño y aplicaciones de nuevas estructuras difractivas aperiódicasFerrando Martín, Vicente 06 April 2017 (has links)
Tesis por compendio / The diffractive optical elements have enhanced his importance in the last decades due to the improvement of the technology which allows its construction and the greater computing power that helps predicting the behaviour of the diffractive structures in function of the design parameters without en extra cost. The periodic symmetry become a key factor in order to understand the performance of these elements, and it allows to study the properties and the applicability of the different diffractive elements. However, this periodicity also introduces certain limitation in the design of the elements and their properties, such as high chromatic aberration when they are used as image forming elements. To overcome this limitations it was proposed the use of deterministic aperiodic sequences in the design of the diffractive optical elements. In this Thesis work I study different aperiodic sequences and their effect in the design of new diffractive structures. In particular, we use the Cantor fractal set, the Fibonacci sequence and the Thue--Morse series in the design of devices with different purposes.
Along the development of the Thesis there have been generated new diffractive elements which overcome some limitations, opening new field for the application of pre-existing technologies. Between them, they can be highlighted the optical alignment systems, the generation of optical vortex, the reduction of the chromatic aberration and the enhancement of the focal depth in image forming elements. / Los elementos ópticos difractivos han ganado importancia en las últimas décadas debido al avance de la tecnología que permite su construcción y al aumento de la potencia de cálculo computacional que permite predecir, con un coste mínimo, su comportamiento en función de los múltiples parámetros que definen su estructura. La periodicidad constituye un factor clave a la hora de entender su funcionamiento y estudiar las propiedades y aplicabilidad de los diferentes tipos de elementos difractivos. Ahora bien, esta periodicidad también introduce ciertas limitaciones en el diseño de los elementos y en sus propiedades, como por ejemplo una alta aberración cromática al ser utilizados como elementos formadores de imagen. Para superar estas limitaciones se propuso la aplicación de secuencias aperiódicas deterministas al diseño de los elementos ópticos difractivos. En este trabajo de Tesis se han estudiado diferentes secuencias aperiódicas y sus efectos en el diseño de nuevas estructuras difractivas. En particular, se ha utilizado la secuencia fractal de Cantor, la serie de Fibonacci y la serie de Thue--Morse en el diseño de dispositivos difractivos con diferentes finalidades.
A lo largo del desarrollo del trabajo de Tesis se han generado nuevos elementos difractivos que superan ciertas limitaciones, abriendo nuevos campos de aplicación a tecnologías preexistentes. Entre ellos, podemos destacar los sistemas de alineación óptica, la generación de vórtices ópticos, la reducción de la aberración cromática y el aumento de la profundidad de foco en elementos formadores de imagen. / Els elements òptics difractius han guanyat importancia les últimes dècades degut a l'avanç de la tecnología que permet la seua construcció y a l'augment de la potència de càlcul computacional que permet predir, amb un cost mínim, el seu comportament en funció dels diferents parámetres que defineixen la seua estructura. La periodicitat constitueix un factor clau a l'hora d'entendre el seu funcionament y estudiar les propietats y aplicabilitat dels diferents tipus d'elements difractius. Ara be, aquesta periodicitat tambe introdueix certes llimitacions en el disseny dels elements y les seus propietats, com per exemple una elevada aberració cromàtica quan actuen com a elements formadors d'imatges. Per superar aquestes llimitacions es va proposar l'aplicació de diferents sequencies aperiòdiques deterministes al disseny dels elements òptics difractius. En aquest treball de Tesi estudie diferents sequencies aperiòdiques y els seus efectes en el disseny de noves estructures difractives. En particular, s'han utilitzat la secuencia fractal de Cantor, la serie de Fibonacci y la serie de Thue--Morse en el disseny de dispositius difractius amb diferents finalitats.
Al llarg del desenvolupament del treball de Tesi s'han generat nous elements difractius que superen certes llimitacions, obint nous camps d'aplicació a tecnologies preexistents. Entre ells, podem destacar els sistemes d'alineació òptica, la generació de vòrtex òptics, la reducció de l'aberració cromàtica y l'augment de la profunditat de fòcus d'elements formadors d'imatges. / Ferrando Martín, V. (2017). Diseño y aplicaciones de nuevas estructuras difractivas aperiódicas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79508 / Premios Extraordinarios de tesis doctorales / Compendio
|
106 |
Topological Quantum Computing with Fibonacci AnyonsEnblad, Lovisa January 2024 (has links)
This thesis introduces the emerging field of quantum computing, emphasizing its capability to surpass traditional computing by solving complex problems that are beyond the reach of classical computers. Unlike classical systems that operate with bits and logic gates, quantum computing utilizes qubits and quantum gates, exploiting the vast computational space offered by quantum mechanics. A focal point of this study is topological quantum computing, a novel approach designed to overcome the inherent vulnerability of quantum systems to errors, such as decoherence and operational inaccuracies. At the heart of this method lies the use of non-Abelian anyons, with a particular focus on Fibonacci anyons, whose unique topological characteristics and braiding operations present a viable path to fault-tolerant quantum computation. This thesis aims to elucidate how the braiding of Fibonacci anyons can be employed to construct the necessary quantum gates for topological quantum computing. By offering a foundational exploration of quantum computing principles, especially topological quantum computing, and detailing the process for creating quantum gates through braiding of Fibonacci anyons, the work sets the stage for further research and development in this transformative computing paradigm.
|
107 |
Énumération de polyominos définis en terme d'évitement de motif ou de contraintes de convexité / Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraintsBattaglino, Daniela 26 June 2014 (has links)
Dans cette thèse nous étudions la caractérisation et l'énumération de polyominos définis par des contraintes de convexité et ou d'évitement de motifs. Nous nous intéressons à l'énumération des polyominos k-convexes selon le semi périmètre, qui n'était connue que pour k=1,2. Nous énumérons une sous classe, les polyominos k-parallélogrammes, grâce à une décomposition récursive dont nous déduisons la fonction génératrice qui est rationnelle. Cette fonction génératrice s'exprime à l'aide des polynômes de Fibonacci, ce qui nous permet d'en déduire une bijection avec les arbres planaires ayant une hauteur inférieure ou égale à k+2. Dans la deuxième partie, nous examinons la notion d'évitement de motif, qui a été essentiellement étudiée pour les permutations. Nous introduisons ce concept dans le contexte de matrices de permutations et de polyominos. Nous donnons des définitions analogues à celles données pour les permutations et nous explorons ses propriétés ainsi que celles du poste associé. Ces deux approches peuvent être utilisées pour traiter des problèmes ouverts sur les polyominos ou sur d'autres objets combinatoires. / In this thesis, we consider the problem of characterising and enumerating sets of polyominoes described in terms of some constraints, defined either by convexity or by pattern containment. We are interested in a well-known subclass of convex polyominoes, the k-convex polyominoes for which the enumeration according to the semi-perimeter is known only for k=1,2. We obtain, from recursive decomposition, the generating function of the class of k-convex parallelogram polyominoes, which turns out to be rational. Noting that this generating function can be expressed in terms of the Fibonacci polynomials, we describe a bijection between the class of k-parallelogram polyominoes and the class of planted planar trees having height less than k+3. In the second part of the thesis we examine the notion of pattern avoidance, which has been extensively studied for permutations. We introduce the concept of pattern avoidance in the context of matrices, more precisely permutation matrices and polyomino matrices. We present definitions analogous to those given for permutations and in particular we define polyomino classes, i.e. sets downward closed with respect to the containment relation. So, the study of the old and new properties of the redefined sets of objects has not only become interesting, but it has also suggested the study of the associated poset. In both approaches our results can be used to treat open problems related to polyominoes as well as other combinatorial objects.
|
108 |
Teoria das ondas de elliott: uma aplicação ao mercado de ações da bm&fbovespaBelmont, Daniele Ferreira de Sousa 17 September 2010 (has links)
Made available in DSpace on 2015-05-08T14:45:04Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1848162 bytes, checksum: 8d8c6d6ea96038f73be05f042425a488 (MD5)
Previous issue date: 2010-09-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The prices of securities traded on stock exchanges, as well as any other commodity in the financial market fluctuate naturally with the demand for these products. These oscillations, along with the asymmetry of information about the prices of these products generate volatility processes. Charles Dow in the early twentieth century created sector indexes, in which papers met the same area of activity, according to him, several indicators point to the same direction would be a sign that this really would be a tendency to drive the market, thus characterizing the Dow Theory. Ralph Nelson Elliott (1871-1948) studied the average prices of the Dow Jones Industrial and realized repetitions in the market changes, their observations were summarized in what became known as "The Wave Principle." Elliott developed his theory based on so-called Fibonacci sequence, discovered by Leonardo Pizza (Fibonacci) around 1200. In addition to the Dow Theory and the Theory of waves in this work was done using the Theory of Rationality of the agents as a complementary way to explain the decision process of investors, as happens in situations of uncertainty. A rational decision involves selecting the choice which has the largest expected return for a given level of risk. / Os preços dos ativos negociados em bolsas de valores, assim como qualquer outro tipo de commodity do mercado financeiro, oscilam naturalmente com a procura por esses produtos. Essas oscilações, juntamente com a assimetria das informações acerca dos preços desses produtos geram processos de volatilidade. Charles Dow, no início do século XX criou índices setoriais, nos quais reunia papéis da mesma área de atividade, segundo ele, se vários índices apontassem para a mesma direção seria um sinal de que realmente essa seria uma tendência de movimentação do mercado, caracterizando assim a Teoria de Dow. Ralph Nelson Elliott (1871-1948) estudou as cotações médias dos índices Dow Jones Industrial e percebeu repetições nas alterações do mercado, suas observações foram resumidas no que ficou conhecido como O Princípio da Onda . Elliott desenvolveu a sua teoria com base na denominada Sequência de Fibonacci, descoberta por Leonardo de Pizza (Fibonacci) por volta de 1200. Além da Teoria de Dow e da Teoria das Ondas, nesse trabalho, fez-se uso da Teoria da Racionalidade dos agentes como uma forma complementar para se explicar o processo de decisão dos investidores, dado que acontecem em situações de incerteza. Uma decisão racional implica em selecionar a escolha que apresente o maior retorno esperado para um dado nível de risco.
|
109 |
Aplica??es da q-?lgebra em f?sica da mat?ria condensadaMarinho, Andr? Afonso Ara?jo 25 April 2014 (has links)
Made available in DSpace on 2014-12-17T15:15:01Z (GMT). No. of bitstreams: 1
AndreAAM_TESE.pdf: 2226063 bytes, checksum: fe5fa44772a8628a39e211a6a6d4e925 (MD5)
Previous issue date: 2014-04-25 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / We address the generalization of thermodynamic quantity q-deformed by q-algebra that
describes a general algebra for bosons and fermions . The motivation for our study stems
from an interest to strengthen our initial ideas, and a possible experimental application. On
our journey, we met a generalization of the recently proposed formalism of the q-calculus,
which is the application of a generalized sequence described by two parameters deformation
positive real independent and q1 and q2, known for Fibonacci oscillators . We apply the wellknown
problem of Landau diamagnetism immersed in a space D-dimensional, which still
generates good discussions by its nature, and dependence with the number of dimensions
D, enables us future extend its application to systems extra-dimensional, such as Modern
Cosmology, Particle Physics and String Theory. We compare our results with some experimentally
obtained performing major equity. We also use the formalism of the oscillators to
Einstein and Debye solid, strengthening the interpretation of the q-deformation acting as a
factor of disturbance or impurity in a given system, modifying the properties of the same.
Our results show that the insertion of two parameters of disorder, allowed a wider range of
adjustment , i.e., enabling change only the desired property, e.g., the thermal conductivity
of a same element without the waste essence / Abordamos a generaliza??o das quantidades termodin?micas q-deformadas atrav?s da
q-?lgebra que descreve uma ?lgebra generalizada para b?sons e f?rmions. A motiva??o
para o nosso estudo surge do interesse de fortalecer nossas id?ias iniciais, a fim de propor
uma poss?vel aplica??o experimental. Em nossa jornada, conhecemos uma generaliza??o
recentemente proposta ao formalismo do q-c?lculo, que ? a aplica??o de uma seq??ncia generalizada,
descrita por dois par?metros de deforma??o reais positivos e independentes q1 e
q2, conhecidos por osciladores de Fibonacci. Aplicamos ao conhecido problema do diamagnetismo
de Landau imerso em um espa?o D-dimensional, que ainda gera boas discuss?es
por sua natureza, e a depend?ncia com o n?mero de dimens?es D, nos possibilita futuramente
estendermos a sua aplica??o para sistemas extra-dimensionais, tais como a CosmologiaModerna,
a F?sica de Part?culas e Teoria de Cordas. Comparamos nossos resultados com
alguns obtidos experimentalmente, apresentando grande equival?ncia. Aplicamos ainda o
formalismo dos osciladores aos s?lidos de Einstein e Debye, fortalecendo ? interpreta??o da
q-deforma??o atuando como um fator de perturba??o ou impureza, num determinado sistema,
modificando as propriedades do mesmo. Nossos resultados mostram que a inser??o
de dois param?tros de desordem, possibilitaram uma maior faixa de ajuste, ou seja, possibilitando
alterar apenas a propriedade desejada, por exemplo, a condutividade t?rmica de um
elemento sem que o mesmo perca sua ess?ncia
.
|
110 |
Kritisches Komponieren: Nicolaus A. Hubers zweite Bagatelle und Beethovens zweiter Satz der Klaviersonate op. 111Müller, Thomas 28 October 2024 (has links)
No description available.
|
Page generated in 0.0313 seconds