• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação da análise de componentes independentes em estudo de eventos em finanças / Independent component analysis application on events study in finance

Franco, Alexandre Lerch January 2008 (has links)
Nas últimas duas décadas, estudos empíricos em finanças têm utilizado o método de estudo de eventos para detectar retornos anormais no entorno de eventos que, teoricamente, deveriam ser incorporados instantaneamente no preço dos títulos. O método de estudo de eventos, a partir da década de 90, com a massificação das planilhas eletrônicas e dos pacotes estatísticos, se popularizou no meio acadêmico brasileiro, sendo um dos principais métodos de pesquisa em finanças com ênfase em mercado de capitais ou finanças corporativas. Apesar da eficácia do método em detectar a anormalidade dos retornos, comprovada em diversos estudos empíricos, acredita-se que o método seja pouco eficiente em determinar a verdadeira amplitude do retorno anormal, uma vez que são necessários pressupostos estatísticos e argumentos econômico-financeiros que podem não ser válidos. O fato de que cada modelo apresenta um desempenho diferente de captura dos retornos anormais contribui com a tese de que os modelos utilizados atualmente não conseguem filtrar totalmente o retorno anormal da série normal. Portanto, este estudo teve como objetivo principal testar a aplicabilidade do método de Análise de Componentes Independentes - ICA - em detectar retornos anormais em séries temporais e comparar o seu desempenho com os modelos geradores de retornos anormais mais utilizados em testes empíricos. Com este objetivo, foram realizadas milhares de simulações envolvendo parâmetros semelhantes aos do mercado de ações brasileiro, com o uso de algoritmos de simulação elaborados exclusivamente para esta finalidade. Os resultados sugerem que o método ICA é capaz de detectar anormalidades em séries temporais, fornecendo, desta forma, a descoberta do real impacto do retorno anormal nos elementos da amostra, necessitando apenas de uma modelagem prévia em função do tamanho da amostra e sua variância. / In the last two decades financial empiric studies have used the event study method to detect abnormal return on events that in theory should be instantly incorporated on securities price. This method became popular to Brazilian academic environment through the intensification usage of electronic worksheet and statistic packages in the 90`s turning into one of the main research methods for financial studies with emphasis on stock market and corporative financing. Despite the efficiency of the method in detecting abnormalities it`s believed that it`s least effective on establishing the real amplitude of the abnormal return considering that statistics presupposed and economic and financial arguments may not be valid. The fact that each model shows a different performance on capturing abnormal returns contributes to the idea that today`s models can`t completely filter the abnormal return on a normal series. Therefore this study has as a main objective to test the applicability of the Independent Component Analysis method – ICA – in detecting abnormal returns in time series and comparing its performance against abnormal return generating models more used on empiric tests. With this objective, thousands of simulations involving parameters similar to the Brazilian stock market with the usage of simulation algorisms elaborated exclusively for this purpose. The results suggest that ICA method is capable of detecting abnormalities in time series supplying in this form a discovery on the real impact of abnormal return on sample elements needing only a previous molding due to the size of its sample and variance.
2

Aplicação da análise de componentes independentes em estudo de eventos em finanças / Independent component analysis application on events study in finance

Franco, Alexandre Lerch January 2008 (has links)
Nas últimas duas décadas, estudos empíricos em finanças têm utilizado o método de estudo de eventos para detectar retornos anormais no entorno de eventos que, teoricamente, deveriam ser incorporados instantaneamente no preço dos títulos. O método de estudo de eventos, a partir da década de 90, com a massificação das planilhas eletrônicas e dos pacotes estatísticos, se popularizou no meio acadêmico brasileiro, sendo um dos principais métodos de pesquisa em finanças com ênfase em mercado de capitais ou finanças corporativas. Apesar da eficácia do método em detectar a anormalidade dos retornos, comprovada em diversos estudos empíricos, acredita-se que o método seja pouco eficiente em determinar a verdadeira amplitude do retorno anormal, uma vez que são necessários pressupostos estatísticos e argumentos econômico-financeiros que podem não ser válidos. O fato de que cada modelo apresenta um desempenho diferente de captura dos retornos anormais contribui com a tese de que os modelos utilizados atualmente não conseguem filtrar totalmente o retorno anormal da série normal. Portanto, este estudo teve como objetivo principal testar a aplicabilidade do método de Análise de Componentes Independentes - ICA - em detectar retornos anormais em séries temporais e comparar o seu desempenho com os modelos geradores de retornos anormais mais utilizados em testes empíricos. Com este objetivo, foram realizadas milhares de simulações envolvendo parâmetros semelhantes aos do mercado de ações brasileiro, com o uso de algoritmos de simulação elaborados exclusivamente para esta finalidade. Os resultados sugerem que o método ICA é capaz de detectar anormalidades em séries temporais, fornecendo, desta forma, a descoberta do real impacto do retorno anormal nos elementos da amostra, necessitando apenas de uma modelagem prévia em função do tamanho da amostra e sua variância. / In the last two decades financial empiric studies have used the event study method to detect abnormal return on events that in theory should be instantly incorporated on securities price. This method became popular to Brazilian academic environment through the intensification usage of electronic worksheet and statistic packages in the 90`s turning into one of the main research methods for financial studies with emphasis on stock market and corporative financing. Despite the efficiency of the method in detecting abnormalities it`s believed that it`s least effective on establishing the real amplitude of the abnormal return considering that statistics presupposed and economic and financial arguments may not be valid. The fact that each model shows a different performance on capturing abnormal returns contributes to the idea that today`s models can`t completely filter the abnormal return on a normal series. Therefore this study has as a main objective to test the applicability of the Independent Component Analysis method – ICA – in detecting abnormal returns in time series and comparing its performance against abnormal return generating models more used on empiric tests. With this objective, thousands of simulations involving parameters similar to the Brazilian stock market with the usage of simulation algorisms elaborated exclusively for this purpose. The results suggest that ICA method is capable of detecting abnormalities in time series supplying in this form a discovery on the real impact of abnormal return on sample elements needing only a previous molding due to the size of its sample and variance.
3

Aplicação da análise de componentes independentes em estudo de eventos em finanças / Independent component analysis application on events study in finance

Franco, Alexandre Lerch January 2008 (has links)
Nas últimas duas décadas, estudos empíricos em finanças têm utilizado o método de estudo de eventos para detectar retornos anormais no entorno de eventos que, teoricamente, deveriam ser incorporados instantaneamente no preço dos títulos. O método de estudo de eventos, a partir da década de 90, com a massificação das planilhas eletrônicas e dos pacotes estatísticos, se popularizou no meio acadêmico brasileiro, sendo um dos principais métodos de pesquisa em finanças com ênfase em mercado de capitais ou finanças corporativas. Apesar da eficácia do método em detectar a anormalidade dos retornos, comprovada em diversos estudos empíricos, acredita-se que o método seja pouco eficiente em determinar a verdadeira amplitude do retorno anormal, uma vez que são necessários pressupostos estatísticos e argumentos econômico-financeiros que podem não ser válidos. O fato de que cada modelo apresenta um desempenho diferente de captura dos retornos anormais contribui com a tese de que os modelos utilizados atualmente não conseguem filtrar totalmente o retorno anormal da série normal. Portanto, este estudo teve como objetivo principal testar a aplicabilidade do método de Análise de Componentes Independentes - ICA - em detectar retornos anormais em séries temporais e comparar o seu desempenho com os modelos geradores de retornos anormais mais utilizados em testes empíricos. Com este objetivo, foram realizadas milhares de simulações envolvendo parâmetros semelhantes aos do mercado de ações brasileiro, com o uso de algoritmos de simulação elaborados exclusivamente para esta finalidade. Os resultados sugerem que o método ICA é capaz de detectar anormalidades em séries temporais, fornecendo, desta forma, a descoberta do real impacto do retorno anormal nos elementos da amostra, necessitando apenas de uma modelagem prévia em função do tamanho da amostra e sua variância. / In the last two decades financial empiric studies have used the event study method to detect abnormal return on events that in theory should be instantly incorporated on securities price. This method became popular to Brazilian academic environment through the intensification usage of electronic worksheet and statistic packages in the 90`s turning into one of the main research methods for financial studies with emphasis on stock market and corporative financing. Despite the efficiency of the method in detecting abnormalities it`s believed that it`s least effective on establishing the real amplitude of the abnormal return considering that statistics presupposed and economic and financial arguments may not be valid. The fact that each model shows a different performance on capturing abnormal returns contributes to the idea that today`s models can`t completely filter the abnormal return on a normal series. Therefore this study has as a main objective to test the applicability of the Independent Component Analysis method – ICA – in detecting abnormal returns in time series and comparing its performance against abnormal return generating models more used on empiric tests. With this objective, thousands of simulations involving parameters similar to the Brazilian stock market with the usage of simulation algorisms elaborated exclusively for this purpose. The results suggest that ICA method is capable of detecting abnormalities in time series supplying in this form a discovery on the real impact of abnormal return on sample elements needing only a previous molding due to the size of its sample and variance.
4

The performance of open-end Brazilian fixed income mutual funds for retail clients

Weintraub, Abraham Bragança de Vasconcellos 30 October 2013 (has links)
Submitted by Abraham Weintraub (abrahambvw@gmail.com) on 2013-11-06T19:22:30Z No. of bitstreams: 1 AbrahamWeintraub_dissertação_MPA.pdf: 887510 bytes, checksum: 3bf28f60e8c4bf117132d0e01e958f40 (MD5) / Approved for entry into archive by Vera Lúcia Mourão (vera.mourao@fgv.br) on 2013-11-06T19:31:25Z (GMT) No. of bitstreams: 1 AbrahamWeintraub_dissertação_MPA.pdf: 887510 bytes, checksum: 3bf28f60e8c4bf117132d0e01e958f40 (MD5) / Made available in DSpace on 2013-11-06T20:01:43Z (GMT). No. of bitstreams: 1 AbrahamWeintraub_dissertação_MPA.pdf: 887510 bytes, checksum: 3bf28f60e8c4bf117132d0e01e958f40 (MD5) Previous issue date: 2013-10-30 / From a financial perspective, this dissertation analyzes the Brazilian mutual fund industry performance for an average retail client. The most representative funds for the local population, that are the fixed income open-end ones, will be selected and their performance will be measured aiming to answer if clients of this industry obtained a proper return over their investments in the period between August 2010 and August 2013. A proper return will be understood as the preservation of the purchasing power of the individual´s savings, what is achieved with a positive performance of a mutual fund after discounting taxes, administrative fees and inflation. After obtaining an answer for the previous question, this dissertation will explore a possible alternative solution: Tesouro Direto, that is an example of a financial approach that could foster the disintermediation between savings and investments through electronic channels. New electronic platforms, with a broader scope, could be utilized to increase the efficiency of funding productive investments through better remunerating Brazilian savings. Tesouro Direto may point towards a new paradigm.
5

Strategic Sustainable Investing : Recognizing Value in Transitional Leadership

Blandford, Nicholas, Nash, Timothy, Winter, André January 2008 (has links)
Institutional Investors own a large share of publicly traded companies, controlling a significant amount of the economy‟s working capital. These investors currently use little or no sustainability-related information to make their decisions, reinforcing a loop of increasingly unsustainable growth. This paper puts forward a new investment strategy that recognizes true movement towards sustainability and its link with bottom line benefits for investors: Strategic Sustainable Investing (SSI). To achieve this desired future, Institutional Investors must be able to recognize corporations that are strategically leading the transition towards sustainability. An Analysis Tool was developed to help address this need by identifying sectoral Emerging Sustainability Issues (ESI) using a consensus-based scientific definition of sustainability. Once ESIs are identified, companies‟ strategies regarding each issue are assessed. This Tool was scrutinized by a panel of experts in the financial and sustainable development industries, and was tested on three companies within the Unconventional Oil & Gas Sector in Canada. Results confirmed the usefulness of a tool that can recognize which companies are leading the sustainable development agenda, and identified the need for future research on the financial materiality of sustainability-oriented actions.

Page generated in 0.0489 seconds